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Abstract

Asynchronous Backtracking is the standard search procedure for distributed
constraint reasoning. It requires a total ordering on the agents. All polynomial
space algorithms proposed so far to improve Asynchronous Backtracking by re-
ordering agents during search only allow a limited amount ofreordering. In this
paper, we propose Agile-ABT, a search procedure that is ableto change the order-
ing of agents more than previous approaches. This is done viathe original notion
of termination value, a vector of stamps labelling the new orders exchanged by
agents during search. In Agile-ABT, agents can reorder themselves as much as
they want as long as the termination value decreases as the search progresses. Our
experiments show the good performance of Agile-ABT when compared to other
dynamic reordering techniques.

1 Introduction

Various application problems in distributed artificial intelligence are concerned with
finding a consistent combination of agent actions (e.g., distributed resource allocation
[6], sensor networks [1]). Such problems can be formalized as Distributed Constraint
Satisfaction Problems (DisCSPs). DisCSPs are composed of agents, each owning its
local constraint network. Variables in different agents are connected by constraints.
Agents must assign values to their variables so that all constraints between agents are
satisfied. Several distributed algorithms for solving DisCSPs have been developed,
among which Asynchronous Backtracking (ABT) is the centralone [10, 2]. ABT is
an asynchronous algorithm executed autonomously by each agent in the distributed
problem. Agents do not have to wait for decisions of others but they are subject to a
total (priority) order. Each agent tries to find an assignment satisfying the constraints
with what is currently known from higher priority agents. When an agent assigns a
value to its variable, the selected value is sent to lower priority agents. When no value
is possible for a variable, the inconsistency is reported tohigher agents in the form of
a nogood. ABT computes a solution (or detects that no solution exists) in a finite time.
The total order is static. Now, it is known from centralized CSPs that adapting the order
of variables dynamically during search drastically fastens the search procedure.

Asynchronous Weak Commitment (AWC) dynamically reorders agents during
search by moving the sender of a nogood higher in the order than the other agents in
the nogood [9]. But AWC requires exponential space for storing nogoods.Silaghi et al.
(2001) tried to hybridize ABT with AWC. Abstract agents fulfill thereordering oper-
ation to guarantee a finite number of asynchronous reordering operations. In [7], the
heuristic of the centralized dynamic backtracking was applied to ABT. However, in
both studies, the improvement obtained on ABT was minor.

Zivan and Meisels(2006) proposed Dynamic Ordering for Asynchronous Back-
tracking (ABTDO). When an agent assigns value to its variable, ABTDO can reorder
lower priority agents. A new kind of ordering heuristics forABTDO is presented in
[13]. In the best of those heuristics, the agent that generates anogood is placed between
the last and the second last agents in the nogood if its domainsize is smaller than that
of the agents it passes on the way up.
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In this paper, we propose Agile-ABT, an asynchronous dynamic ordering algorithm
that does not follow the standard restrictions in asynchronous backtracking algorithms.
The order of agents appearingbeforethe agent receiving a backtrack message can be
changed with a great freedom while ensuring polynomial space complexity. Further-
more, that agent receiving the backtrack message, called the backtrackingtarget, is
not necessarily the agent with the lowest priority within the conflicting agents in the
current order. The principle of Agile-ABT is built on termination values exchanged by
agents during search. A termination value is a tuple of positive integers attached to an
order. Each positive integer in the tuple represents the expected current domain size
of the agent in that position in the order. Orders are changedby agents without any
global control so that the termination value decreases lexicographically as the search
progresses. Since, a domain size can never be negative, termination values cannot de-
crease indefinitely. An agent informs the others of a new order by sending them its
new order and its new termination value. When an agent compares two contradictory
orders, it keeps the order associated with the smallest termination value.

The rest of the paper is organized as follows. Section2 recalls basic definitions.
Section3 describes the concepts needed to select new orders that decrease the termina-
tion value. We give the details of our algorithm in Section4 and we prove it in Section
5. An extensive experimental evaluation is given in Section6. Section7 concludes the
paper.

2 Preliminaries

The Distributed Constraint Satisfaction Problem (DisCSP)has been formalized in [10]
as a tuple(A,X ,D, C), whereA is a set of agents,X is a set of variables{x1, . . . , xn},
where each variablexi is controlled by one agent inA. D = {D1, . . . , Dn} is a set of
domains, whereDi is a finite set of values to which variablexi may be assigned. The
initial domain size of a variablexi is denoted byd0i . C is a set of binary constraints
that specify the combinations of values allowed for the two variables they involve. A
constraintcik ∈ C between two variablesxi andxk is a subset of the Cartesian product
cik ⊆ Di ×Dk.

For simplicity purposes, we consider a restricted version of DisCSP where each
agent controls exactly one variable. We use the terms agent and variable interchange-
ably and we identify the agent ID with its variable index. Allagents maintain their own
counter, and increment it whenever they change their value.The current value of the
countertagseach generated assignment.

Definition 1 An assignmentfor an agentAi ∈ A is a tuple(xi, vi, ti), wherevi is
a value from the domain ofxi and ti is the tag value. When comparing two assign-
ments, the most up to date is the one with the highest tagti. Two sets of assignments
{(xi1 , vi1 , ti1), . . . , (xik , vik , tik)} and{(xj1 , vj1 , tj1), . . . , (xjq , vjq , tjq )} are coher-
ent if every common variable is assigned the same value in both sets.

Ai is allowed to store a unique order denoted byoi. Agents appearing beforeAi in
oi are the higher agents (predecessors) denoted byPred(Ai) and conversely the lower
agents (successors)Succ(Ai) are agents appearing afterAi.
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Definition 2 TheAgentViewof an agentAi is an array containing the most up to date
assignments ofPred(Ai).

Agents can infer inconsistent sets of assignments, callednogoods. A nogood can
be represented as an implication. There are clearly many different ways of representing
a given nogood as an implication. For example,¬[(x1=v1)∧· · ·∧(xk=vk)] is logically
equivalent to[(x2=v2) ∧ · · · ∧ (xk=vk)] → (x1 6= v1). When a nogood is represented
as an implication, the left hand side (lhs) and the right hand side (rhs) are defined from
the position of→. A nogoodng is compatiblewith an orderoi if all agents inlhs(ng)
appear beforerhs(ng) in oi.

The current domain ofxi is the set of valuesv ∈ Di such thatxi 6= v does not
appear in any of the right hand sides of the nogoods stored byAi. Each agent keeps
only one nogood per removed value. The size of the current domain ofAi is denoted
by di.

3 Introductory Material

Before presenting Agile-ABT, we need to introduce new notions and to present some
key subfunctions.

3.1 Reordering details

There is one major issue to be solved for allowing agents to asynchronously propose
new orders: The agents must be able to coherently decide which order to select. We
propose that the priority between the different orders is based ontermination values.
Informally, if oi = [A1, . . . , An] is the current order known by an agentAi, then
the tuple of domain sizes[d1, . . . , dn] is the termination value ofoi on Ai. To build
termination values, agents need to exchangeexplanations.

Definition 3 An explanation ej is an expression of the formlhs(ej) → dj , where
lhs(ej) is the conjunction of the left hand sides of all nogoods stored byAj as justifi-
cations of value removals, anddj is the number of values not pruned by nogoods in the
domain ofAj . dj is also denoted byrhs(ej).

Each time an agent communicates its assignment to other agents (by sending them
an ok? message), it inserts its explanation in theok? message for allowing other
agents to build their termination value.

The variables in the left hand side of an explanationej must precede the variable
xj in the order because the assignments of these variables havebeen used to determine
the current domain ofxj . An explanationej induces ordering constraints, calledsafety
conditionsin [4].

Definition 4 A safety condition is an assertionxk ≺ xj . Given an explanationej,
S(ej) is the set of safety conditions induced byej , whereS(ej)={(xk ≺ xj) | xk ∈
lhs(ej)}.
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An explanationej is compatible with an ordero if all variables inlhs(ej) appear
beforexj in o. Each agentAi stores a setEi of explanations sent by other agents.
During search,Ei is updated to remove explanations that are no longer valid.

Definition 5 An explanationej in Ei is valid on agentAi if it is compatiblewith the
current orderoi andlhs(ej) is coherent with the AgentView ofAi .

WhenEi contains an explanationej associated withAj , Ai uses this explanation
to justify the size of the current domain ofAj . Otherwise,Ai assumes that the size of
the current domain ofAj is equal tod0j . The termination value depends on the order
and the set of explanations.

Definition 6 LetEi be the set of explanations stored byAi, o be an order on the agents
such that every explanation inEi is compatible witho, ando(k) be such thatAo(k) is
thekth agent ino. Thetermination value TV (Ei, o) is the tuple[tv1, . . . , tvn], where
tvk = rhs(eo(k)) if eo(k) ∈ Ei, otherwise,tvk = d0o(k).

In Agile-ABT, an order is always associated with a termination value. When
comparing two orders thestrongestorder is that associated with the lexicographi-
cally smallesttermination value. In case of ties, we use the lexicographicorder on
agents IDs, the smallest being the strongest. Consider for instance the two orders
o1=[A1, A2, A5, A4, A3] and o2=[A1, A2, A4, A5, A3] where agents are ordered ac-
cording to their IDs from left to right. If the termination value associated witho1
is equal to the termination value associated witho2, o2 is stronger thano1 because the
vector[1, 2, 4, 5, 3]of IDs ino2 is lexicographically smaller than the vector[1, 2, 5, 4, 3]
of IDs in o1.

3.2 The backtracking target

When all values of an agentAi are ruled out by nogoods, these nogoods are resolved,
producing a new nogoodng. ng is the conjunction oflhs of all nogoods stored by
Ai. If ng is empty, then the inconsistency is proved. Otherwise, one of the conflicting
agents must change its value. In standard ABT, the agent thathas the lowest priority
must change its value. Agile-ABT overcomes this restriction by allowingAi to select
with great freedom the target agentAk who must change its value (i.e., the variable to
place in the right hand side ofng). The only restriction to place a variablexk in the
right hand side ofng is to find an ordero′ such thatTV (up E, o′) is lexicographically
smaller than the termination value associated with the current order ofAi. up E is
obtained by updatingEi after placingxk in rhs(ng).

FunctionupdateExplanations takes as arguments the setEi, the nogoodng
and the variablexk to place in therhs of ng. updateExplanations removes all
explanations that are no longer coherent after placingxk in the right hand side ofng.
It updates the explanation of agentAk stored inAi and it returns a set of explanations
up E.

This function does not create cycles in the set of safety conditions S(up E) if
S(Ei) is acyclic. Indeed, all the explanations added or removed from S(Ei) to ob-
tainS(up E) containxk. Hence, ifS(up E) contains cycles, all these cycles should
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function updateExplanations(Ei, ng, xk)

1. up E← Ei;

2. setRhs(ng,xk);

3. remove eachej ∈ up E such thatxk ∈ lhs(ej);

4. if (ek /∈up E ) then
5. setLhs(ek,∅);

6. setRhs(ek,d0
k
);

7. add ek to up E;

8. setLhs(e′
k

, lhs(ek) ∪ lhs(ng));

9. setRhs(e′
k

, rhs(ek)−1);

10. replaceek by e′
k

;

11. return up E;

containxk. However, there does not exist any safety condition of the form xk ≺ xj

in S(up E) because all of these explanations have been removed in line3. Thus,
S(up E) cannot be cyclic. As we will show in Section4, the updates performed
by Ai ensure thatS(Ei) always remains acyclic. As a result,S(up E) is acyclic as
well, and it can be represented by a directed acyclic graphG = (N,U) such that
N = {x1, . . . , xn} is the set of nodes andU is the set of directed edges. An edge
(j, l) ∈ U if (xj ≺ xl) ∈ S(up E). Thus, any topological sort ofG is an order that
agrees with the safety conditions induced byup E.

3.3 Decreasing termination values

Termination of Agile-ABT is based on the fact that the termination values associated
with orders selected by agents decrease as search progresses. To speed up the search,
Agile-ABT is written so that agents decrease termination values whenever they can.
When an agent resolves its nogoods, it checks whether it can find a new order of agents
such that the associated termination value is smaller than that of the current order. If so,
the agent will replace its current order and termination value by those just computed,
and will inform all other agents.

Assume that after resolving its nogoods, an agentAi, decides to placexk in therhs
of the nogood (ng) produced by the resolution and letup E =updateExplanations
(Ei, ng, xk). The functioncomputeOrder takes as parameter the setup E and returns
an orderup o compatible with the partial ordering induced byup E. Let G be the
acyclic directed graph associated withup E. The functioncomputeOrder works by
determining, at each iterationp, the setRoots of vertices that have no predecessor.
As we aim at minimizing the termination value, functioncomputeOrder selects the
vertexxj in Roots that has the smallest domain size. This vertex is placed at the pth

position and removed fromG. Finally, p is incremented and all outgoing edges from
xj are removed fromG.

Having proposed an algorithm that determines an order with small termination
value for a given backtracking targetxk, one needs to know how to choose this
variable to obtain an order decreasing more the terminationvalue. The function
chooseVariableOrder iterates through all variablesxk included in the nogood, com-
putes a new order and termination value withxk as the target (lines22–24), and stores

5



function computeOrder(up E)

12. G = (N,U) is the acyclic graph associated toup E;

13. p← 1; o is an array of lengthn;

14. while G 6= ∅ do
15. Roots ← {xj ∈ N | xj has no incoming edges} ;

16. o[p]← xj such thatdj = min{dk | xk ∈ Roots} ;

17. remove xj from G;

18. p← p+ 1;

19. return o;

the target and the associated order if it is the strongest order found so far (lines25–29).
Finally, the information corresponding to the strongest order is returned.

function chooseVariableOrder(Ei, ng)

20. o′ ← oi ; TV ′ ← TVi ; E′ ← nil; x′ ← nil;

21. for eachxk ∈ ng do
22. up E ← updateExplanations(Ei, ng,xk) ;

23. up o←computeOrder(up E);

24. up TV ← TV(up E, up o);

25. if (up TV is smaller than TV ′) then
26. x′ ←xk;

27. o′ ← up o;

28. TV ′ ← up TV ;

29. E′ ← up E;

30. return 〈x′, o′, TV ′, E′〉;

4 The Algorithm

Each agent keeps some amount of local information about the global search, namely
an AgentView, a NogoodStore, a set of explanations (Ei), a current order (oi) and a
termination value (TVi). Agile-ABT allows the following types of messages (where
Ai is the sender):

• ok? message is sent byAi to lower agents to ask whether a chosen value is
acceptable. Besides the chosen value, theok? message contains an explanation
ei which communicates the current domain size ofAi. An ok? message also
contains the current orderoi and the current termination valueTVi stored byAi.

• ngd message is sent byAi when all its values are ruled out by its NogoodStore.
This message contains a nogood, as well asoi andTVi.

• order message is sent to propose a new order. This message includesthe order
oi proposed byAi accompanied by the termination valueTVi.

Agile-ABT (Figures1 and 2) is executed on every agentAi. After initializa-
tion, each agent assigns a value and informs lower priority agents of its decision
(CheckAgentView call, line 32) by sendingok? messages. Then, a loop consid-
ers the reception of the possible message types. If no message is traveling through the
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procedureAgile-ABT( )

31. ti ← 0; TVi ← [∞,∞, . . . ,∞]; end← false;vi ← empty;

32. CheckAgentView() ;

33. while (¬end) do
34. msg ← getMsg();

35. switch (msg.type) do
36. ok? : ProcessInfo(msg);

37. order : ProcessOrder(msg);

38. ngd : ResolveConflict(msg);

39. stp : end← true;

procedureProcessInfo(msg)

40. CheckOrder(msg.Order, msg.TV) ;

41. UpdateAgentView(msg.Assig∪ lhs(msg.Exp)) ;

42. if (msg.Exp is valid) then add(msg.Exp, E);

43. CheckAgentView() ;

procedureProcessOrder(msg)

44. CheckOrder(msg.Order,msg.TV) ;

45. CheckAgentView() ;

procedureResolveConflict(msg)

46. CheckOrder(msg.Order,msg.TV) ;

47. UpdateAgentView(msg.Assig∪ lhs(msg.Nogood)) ;

48. if (Coherent(msg.Nogood, AgentView∪ xi=vi) ∧ Compatible(msg.Nogood,oi)) then
49. add(msg.Nogood,NogoodStore); vi ← empty;

50. CheckAgentView();

51. else if(rhs(msg.Nogood)=vi) then
52. sendMsg:ok?(vi, ei, oi, TVi) to msg.Sender ;

procedureCheckOrder(o, TV )

53. if (o is stronger thanoi ) then oi← o; TVi← TV ;

54. remove nogoods and explanations incompatible withoi;

procedureCheckAgentView()

55. if (¬Consistent(vi,AgentView)) then
56. vi ← ChooseValue() ;

57. if (vi) then sendMsg:ok?(vi, ei, oi, TVi) to Succ(Ai);

58. else Backtrack();

59.. else if(oi was modified) then
60. sendMsg:ok?(vi, ei, oi, TVi) to Succ(Ai);

procedureUpdateAgentView(Assignments)

61. for each var ∈ Assignmentsdo
62. if (Assignments[var].t> AgentView [var].t) then
63. AgentView [var]← Assignments[var];

64. remove nogoods and explanations incoherent withAgentView;

Figure 1: The Agile-ABT algorithm (Part 1).
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procedureBacktrack( )

65. ng ← solve(NogoodStore) ;

66. if (ng = empty) then end← true;sendMsg:stp(system) ;

67. 〈xk, o
′, TV ′, E′〉 ←chooseVariableOrder(Ei, ng) ;

68. if (TV ′ is smaller than TVi ) then
69. TVi← TV ′; oi← o′; Ei← E′ ;

70. setRhs(ng, xk);

71. sendMsg:ngd(ng, oi, TVi) to Ak ;

72. remove ek fromEi ;

73. broadcastMsg:order(oi, TVi) ;

74. else
75. setRhs(ng, xk);

76. sendMsg:ngd(ng, oi, TVi) to Ak ;

77. UpdateAgentView (xk ← unknown) ;

78. CheckAgentView() ;

function ChooseValue()

79. for each (v ∈ Di not eliminated by NogoodStore) do
80. if (∃ xj ∈ AgentV iew such that¬Consistent(v, xj)) then
81. add(xj=vj ⇒ xi 6= v, NogoodStore) ;

82. if (Di = ∅) then return (empty);

83. else ti ← ti+1 return (v); /* v ∈ Di */

Figure 2: The Agile-ABT algorithm (Part 2).

network, the state of quiescence is detected by a specialized algorithm [5], and a global
solution is announced. The solution is given by the current variables’ assignments.

When an agentAi receives a message (of any type), it checks if the order included
in the received message is stronger than its current orderoi (CheckOrder call, lines
40, 44 and46). If it is the case,Ai replacesoi andTVi by those newly received (line
53). The nogoods and explanations that are no longer compatible with oi are removed
to ensure thatS(Ei) remains acyclic (line54).

If the message was anok? message, the AgentView ofAi is updated to include
the new assignments (UpdateAgentView call, line41). Beside the assignment of the
sender,Ai also takes newer assignments contained in the left hand sideof the explana-
tion included in the receivedok? message to update its AgentView. Afterwards, the
nogoods and the explanations that are no longer coherent with AgentView are removed
(UpdateAgentView line 64). Then, if the explanation in the received message is valid,
Ai updates the set of explanations by storing the newly received explanation. Next,Ai

calls the procedureCheckAgentView (line 43).
When receiving anorder message,Ai processes the new order (CheckOrder) and

callsCheckAgentView (line 45).
WhenAi receives angd message, it callsCheckOrder andUpdateAgentView

(lines 46 and47). The nogood contained in the message is accepted if it is coherent
with the AgentView and the assignment ofxi and compatible with the current order
of Ai. Otherwise, the nogood is discarded and anok? message is sent to the sender
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as in ABT (lines51 and 52). When the nogood is accepted, it is stored, acting as
justification for removing the current value ofAi (line 49). A new value consistent
with the AgentView is searched (CheckAgentView call, line50).

The procedureCheckAgentView checks if the current valuevi is consistent with
the AgentView. Ifvi is consistent,Ai checks ifoi was modified (line59). If so, Ai

must send its assignment to lower priority agents throughok? messages. Ifvi is not
consistent with its AgentView,Ai tries to find a consistent value (ChooseValue call,
line 56). In this process, some values ofAi may appear as inconsistent. In this case,
the nogoods justifying their removal are added to the NogoodStore (line81of function
ChooseValue). If a new consistent value is found, an explanationei is built and the
new assignment is notified to the lower priority agents ofAi throughok? messages
(line 57). Otherwise, every value ofAi is forbidden by the NogoodStore andAi has to
backtrack (Backtrack call, line58).

In procedureBacktrack, Ai resolves its nogoods, deriving a new nogood (ng).
If ng is empty, the problem has no solution.Ai terminates execution after sending a
stp message (line66). Otherwise, one of the agents included inng must change its
value. The functionchooseVariableOrder selects the variable to be changed (xk)
and a new order (o′) such that the new termination valueTV ′ is as small as possible.
If TV ′ is smaller than that stored byAi, the current order and the current termination
value are replaced byo′ andTV ′ andAi updates its explanations by that returned by
chooseVariableOrder (line 69). Then, angd message is sent to the agentAk owner
of xk (line 71). Then,ek is removed fromEi sinceAk will probably change its expla-
nation after receiving the nogood (line72). Afterwards,Ai sends anorder message to
all other agents (line73). WhenTV ′ is not smaller than the current termination value,
Ai cannot propose a new order and the variable to be changed (xk) is the variable that
has the lowest priority according to the current order ofAi (lines75and76). Next, the
assignment ofxk (the target of the backtrack) is removed from the AgentView of Ai

(line 77). Finally, the search is continued by calling the procedureCheckAgentView

(line 78).

5 Correctness and complexity

In this section we demonstrate that Agile-ABT is sound, complete and terminates, and
that its space complexity is polynomially bounded.

Theorem 1 The spatial complexity of Agile-ABT is polynomial.

Proof. 1 The size of nogoods, explanations, termination values, andorderings, is
bounded byn, the total number of variables. Now, on each agent, Agile-ABT only
stores one nogood per value, one explanation per agent, one termination value and one
ordering. Thus, the space complexity of Agile-ABT is inO(nd + n2 + n + n) =
O(nd+ n2) on each agent. �
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Theorem 2 The algorithm Agile-ABT is sound.

Proof. 2 Let us assume that the state of quiescence is reached. The order (sayo) known
by all agents is the same because when an agent proposes a new order, it sends it to all
other agents. Obviously,o is the strongest order that has ever been calculated by agents.
Also, the state of quiescence implies that every pair of constrained agents satisfies the
constraint between them. To prove this, assume that there exist some constraints that
are not satisfied. This implies that there are at least two agentsAi andAk that do not
satisfy the constraint between them. LetAi be the agent which has the highest priority
between the two agents according too. Letvi be the current value ofAi when the state
of quiescence is reached (i.e.,vi is the most up to date assignment ofAi) and letM be
the lastok? message sent byAi before the state of quiescence is reached. Clearly,
M containsvi, otherwise,Ai would have sent anotherok? message when it chose
vi. Moreover, when M was sent,Ai already knew the ordero, otherwiseAi would
have sent anotherok? message when it received (or generated)o. Ai sent M to all its
successors according too (includingAk). The only case whereAk can forgetvi after
receiving it is the case whereAk derives a nogood proving thatvi is not feasible. In
this case,Ak should send a nogood message toAi. If the nogood message is accepted
by Ai, Ai must send anok? message to its successors (and therefore M is not the
last one). Similarly, if the nogood message is discarded,Ai have to re−send anok?
message toAk (and therefore M is not the last one). So the state of quiescence implies
thatAk knows botho andvi. Thus, the state of quiescence implies that the current
value ofAk is consistent withvi, otherwiseAk would send at least a message and our
quiescence assumption would be broken. �

Theorem 3 The algorithm Agile-ABT is complete.

Proof. 3 All nogoods are generated by logical inferences from existing constraints.
Therefore, an empty nogood cannot be inferred if a solution exists. �

In order to prove that Agile-ABT terminates, we first establish two facts by proving
lemmas1 and2.

Lemma 1 For any agentAi, while a solution is not found and the inconsistency of
the problem is not proved, the termination value stored byAi decreases after a finite
amount of time.

Proof. 4 Let TVi = [tv1, . . . , tvn] be the current termination value ofAi. Assume
thatAi reaches a state where it cannot improve its termination value. If another agent
succeeds in generating a termination value smaller thanTVi, lemma1 holds sinceAi

will receive the new termination value. Now assume that Agile-ABT reaches a state
σ where no agent can generate a termination value smaller thanTVi. We show that
Agile-ABT will exit σ after a finite amount of time. Lett be the time when Agile-
ABT reaches the stateσ. After a finite timeδt, the termination value of each agent
Aj∈{1,...,n} will be equal toTVi, either becauseAj has generated itself a termination
value equal toTVi or becauseAj has receivedTVi in an order message. Leto be the
lexicographically smallest order among the current ordersof all agents at timet + δt.
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The termination value associated witho is equal toTVi. While Agile-ABT is getting
stuck inσ, no agent will be able to propose an order stronger thano because no agent
is allowed to generate a new order with the same termination value as the one stored
(Figure2, line 68). Thus, after a finite timeδ′t, all agents will receiveo. They will
take it as their current order and Agile-ABT will behave as ABT, which is known to be
complete and to terminate.

We know thatd0
o(1) − tv1 values have been removed once and for all from the

domain of the variablexo(1) (i.e.,d0
o(1) − tv1 nogoods with emptylhs have been sent

to Ao(1)). Otherwise, the generator ofo could not have putAo(1) in the first position.
Thus, the domain size ofxo(1) cannot be greater thantv1 (do(1) ≤ tv1). After a finite
amount of time, if a solution is not found and the inconsistency of the problem is not
proved, a nogood –with an emptylhs– will be sent toAo(1) which will cause it to
replace its assignment and to reduce its current domain size(d′

o(1) = do(1) − 1). The
new assignment and the new current domain size ofAo(1) will be sent to the (n − 1)
lower priority agents. After receiving this message, we aresure that any generator of a
new nogood (sayAk) will improve the termination value. Indeed, whenAk resolves its
nogoods, it computes a new order such that its termination value is minimal. At worst,
Ak can propose a new order whereAo(1) keeps its position. Even in this case the new
termination valueTV ′

k = [d′
o(1), . . . ] is lexicographically smaller thanTVi = [tv1, . . . ]

becaused′
o(1) = do(1) − 1 ≤ tv1 − 1. After a finite amount of time, all agents (Ai

included) will receiveTV ′
k. This will causeAi to update its termination value and to

exit the stateσ. This completes the proof. �

Lemma 2 LetTV = [tv1, . . . , tvn] be the termination value associated with the cur-
rent order of any agent. We havetvj ≥ 0, ∀j ∈ 1..n

Proof. 5 LetAi be the agent that generatedTV . We first prove thatAi never stores an
explanation with arhs smaller than 1. An explanationek stored byAi was either sent
by Ak or generated when callingchooseVariableOrder. If ek was sent byAk,
we haverhs(ek) ≥ 1 because the size of the current domain of any agent is always
greater than or equal to1. If ek was computed bychooseVariableOrder, the only
case whererhs(ek) is made smaller than the right hand side of the previous explanation
stored forAk by Ai is in line 9 of updateExplanations. This happens whenxk is
selected to be the backtracking target (lines22and29of chooseVariableOrder)
and in such a case, the explanationek is removed just after sending the nogood message
to Ak (Figure2, line 72 of Backtrack). Hence,Ai never stores an explanation with a
rhs equal to zero.

We now prove that it is impossible thatAi generatedTV with tvj < 0 for
some j. From the point of view ofAi, tvj is the size of the current domain
of Ao(j). If Ai does not store any explanation forAo(j) at the time it computes
TV , Ai assumes thattvj is equal tod0

o(j) ≥ 1. Otherwise, tvj is equal to
rhs(eo(j)), whereeo(j) was either already stored byAi or generated when calling
chooseVariableOrder. Now, we know that every explanationek stored byAi

hasrhs(ek) ≥ 1 and we know thatchooseVariableOrder cannot generate an
explanatione′k with rhs(e′k) < rhs(ek) − 1, whereek was the explanation stored by
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Ai (line 9 of updateExplanations). Therefore, we are guaranteed thatTV is such
thattvj ≥ 0, ∀j ∈ 1..n. �

Theorem 4 The algorithm Agile-ABT terminates.

Proof. 6 The termination value of any agent decreases lexicographically and does not
stay infinitely unchanged (lemma1). A termination value[tv1, . . . , tvn] cannot de-
crease infinitely because∀i ∈ {1, . . . , n}, we havetvi ≥ 0 (lemma2). Hence the
theorem. �

6 Experimental Results

We compared Agile-ABT to ABT, ABTDO, and ABTDO with retroactive heuristics.
All experiments were performed on the DisChoco 2.0 [3] platform, 1 in which agents
are simulated by Java threads that communicate only throughmessage passing. We
evaluate the performance of the algorithms by communication load and computation
effort. Communication load is measured by the total number of messages exchanged
among agents during algorithm execution (#msg), including termination detection
(system messages). Computation effort is measured by an adaptation of the number of
non-concurrent constraint checks (#nccc) [11] where we also count nogood checks to
be closer to the actual computational effort.

For ABT, we implemented the standard version where we use counters for tagging
assignments. For ABTDO [12], we implemented the best version, using thenogood-
triggeredheuristic where the receiver of a nogood moves the sender to be in front of
all other lower priority agents (denoted by ABTDO-ng). For ABTDO with retroactive
heuristics [13], we implemented the best version, in which a nogood generator moves
itself to be in a higher position between the last and the second last agents in the gener-
ated nogood.2 However, it moves before an agent only if its current domain is smaller
than the domain of that agent (denoted by ABTDO-Retro).

Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs that are characterized by
〈n, d, p1, p2〉, wheren is the number of agents/variables,d the number of values per
variable,p1 the network connectivity defined as the ratio of existing binary constraints,
andp2 the constraint tightness defined as the ratio of forbidden value pairs. We solved
instances of two classes of problems: sparse problems〈20, 10, 0.2,p2〉 and dense prob-
lems〈20, 10, 0.7,p2〉. We vary the tightnessp2 from 0.1 to 0.9 by steps of0.1. For
each pair of fixed density and tightness (p1, p2) we generated 25 instances, solved 4
times each. We report average over the 100 runs.

1http://www.lirmm.fr/coconut/dischoco/
2 There are some discrepancies between the results reported in [13] and our version. This could be due

to a bug that we fixed to ensure that ABTDO-ng and ABTDO-Retro actually terminate.
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Figure 3: Total#msg exchanged and#ncccs performed on sparse problems (p1 =
0.2).

Figure3 presents the results on the sparse instances (p1 = 0.2). In terms of compu-
tational effort (#ncccs) (left of Figure3), ABT is the less efficient algorithm. ABTDO-
ng improves ABT by a large scale and ABTDO-Retro is more efficient than ABTDO-
ng. These findings are similar to those reported in [13]. Agile-ABT outperforms all
these algorithms, suggesting that on sparse problems, the more sophisticated the algo-
rithm is, the better it is. Regarding the number of exchangedmessages (#msg) (right
of Figure3), the faster resolution may not translate in an overall communication load
reduction. ABT requires less messages than ABTDO-ng and ABTDO-Retro. On the
contrary, Agile-ABT is the algorithm that requires the smallest number of messages
despite its extra messages sent by agents to notify the others of a new ordering. This is
not only because Agile-ABT terminates faster than the otheralgorithms (see#ncccs).
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A second reason is that Agile-ABT is more parsimonious than ABTDO algorithms in
proposing new orders. Termination values seem to focus changes on those which will
pay off.
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Figure 4: Total#msg exchanged and#ncccs performed on dense problems (p1 =
0.7).

Figure 4 presents the results on the dense instances (p1 = 0.7). Some differ-
ences appear compared to sparse problems. Concerning#ncccs (left of Figure4),
ABTDO algorithms deteriorate compared to ABT. However, Agile-ABT still outper-
forms all these algorithms. Regarding communication load (#msg) (right of Figure4),
ABTDO-ng and ABTDO-Retro show the same bad performance as insparse problems.
Agile-ABT shows similar communication load as ABT. This confirms its good behav-
ior observed on sparse problems.
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Distributed sensor-mobile problems

The distributed sensor-mobile problem [1] is a benchmark based on a real distributed
problem. It consists ofn sensors that trackm mobiles. Each mobile must be tracked by
3 sensors. Each sensor can track at most one mobile. A solution must satisfy visibility
and compatibility constraints. The visibility constraintdefines the set of sensors that are
visible to each mobile. The compatibility constraint defines the compatibility among
sensors. We encode SensorDCSP in DisCSP as follows. Each agent represents one
mobile. There are three different variables per agent, one for each sensor that we need
to allocate to the corresponding mobile. The value domain ofeach variable is the
set of sensors that can detect the corresponding mobile. Theintra-agent constraints
between the variables of one agent (mobile) specify that thethree sensors assigned
to the mobile must be distinct and pair-wise compatible. Theinter-agent constraints
between the variables of different agents specify that a given sensor can be selected
by at most one agent. In our implementation of the DisCSP algorithms, this encoding
is translated to an equivalent formulation where we have three virtual agents for every
real agent, each virtual agent handling a single variable. Problems are characterized by
〈n, m, pc, pv〉, wheren is the number of sensors,m is the number of mobiles,pc is
the probability that two sensors are compatible andpv is the probability that a sensor is
visible to a mobile. We present results for class〈25, 5, 0.4,pv〉 where we varypv from
0.1 to 0.9 by steps of0.1 Again, for eachpv we generated 25 instances, solved 4 times
each one and averaged over the 100 runs. The results are shownin Figure5.

When comparing the speed-up of algorithms (left of Figure5), Agile-ABT is
slightly dominated by ABT and ABTDO-ng in the interval[0.3 0.5], while outside of
this interval, Agile-ABT outperforms all the algorithms. Nonetheless, the performance
of ABT and ABTDO-ng dramatically deteriorate in the interval [0.1 0.3]. Concerning
communication load (right of Figure5), as opposed to other dynamic ordering algo-
rithm, Agile-ABT is always better than or as good as standardABT.

Discussion

From the experiments above we can conclude that Agile-ABT outperforms other algo-
rithms in terms of computation effort (#ncccs) when solving random DisCSP prob-
lem. On structured problems (SensorDCSP), our results suggest that Agile-ABT is
more robust than other algorithms whose performance is sensitive to the type of prob-
lems solved. Concerning communication load (#msg), Agile-ABT is more robust
than other versions of ABT with dynamic agent ordering. As opposed to them, it is
always better than or as good as standard ABT on difficult problems.

At first sight, Agile-ABT seems to need less messages than other algorithms but
these messages are longer than messages sent by other algorithms. One could object
that for Agile-ABT, counting the number of exchanged messages is biased. How-
ever, counting the number of exchanged messages would be biased only if#msg was
smaller than the number ofphysicallyexchanged messages (going out from the network
card). Now, in our experiments, they are the same. The International Organization for
Standardization (ISO) has designed the Open Systems Interconnection (OSI) model
to standardize networking. TCP and UDP are the principal Transport Layer protocols
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Figure 5: Total#msg exchanged and#ncccs performed on sensor-mobile problems.

using OSI model. The internet protocols IPv4 (http://tools.ietf.org/html/rfc791) and
IPv6 (http://tools.ietf.org/html/rfc2460) specify the minimum datagram size that we
are guaranteed to send without fragmentation of a message (in one physical message).
This is 568 bytes for IPv4 and 1,272 bytes for IPv6 when using either TCP or UDP
(UDP is8 bytes less than TCP, see RFC-768 –http://tools.ietf.org/html/rfc768).

Figure6 shows the size of the longest message sent by each algorithm on our ran-
dom and sensor problems. It is clear that Agile-ABT requireslengthy messages com-
pared to other algorithms. However, the longest message sent is always less than 568
bytes (in the worst case it is less than 350, see Figure6(b)). In our implementation
we do not proceed any message compression that would be a solution if the number
of variables (n) was very large. Still, ifn was so large that even the compression pro-
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(a) sparse problems (p1 = 0.2)
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(b) dense problems (p1 = 0.7)
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Figure 6: Maximum message size in bytes.
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tocol in the OSI model is not sufficient to fit one Agile-ABT message in one physical
message, we believe that on such large problems, the exponential trend of the improve-
ment of Agile-ABT would compensate by far for the linear overhead due to message
splitting.

7 Conclusion

We have proposed Agile-ABT, an algorithm that is able to change the ordering of
agents more agilely than all previous approaches. Thanks tothe original concept of
termination value, Agile-ABT is able to choose a backtracking target that is not neces-
sarily the agent with the current lowest priority within theconflicting agents. Further-
more, the ordering of agents appearing before the backtracking target can be changed.
These interesting features are unusual for an algorithm with polynomial space com-
plexity. Our experiments confirm the significance of these features.
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