
HAL Id: lirmm-00595693
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00595693

Submitted on 25 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isolation Levels for Data Sharing in Large-Scale
Scientific Workflows

Miguel Liroz-Gistau, Hinde Lilia Bouziane, Esther Pacitti

To cite this version:
Miguel Liroz-Gistau, Hinde Lilia Bouziane, Esther Pacitti. Isolation Levels for Data Sharing in Large-
Scale Scientific Workflows. RR-11018, 2011, pp.7. �lirmm-00595693�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00595693
https://hal.archives-ouvertes.fr


Research Report RR-11018

Isolation levels for data sharing in large-scale
scientific workflows

Miguel Liroz-Gistau
Miguel.Liroz_Gistau@inria.fr

Hinde Lilia Bouziane
Hinde.Bouziane@lirmm.fr

Esther Pacitti
Esther.Pacitti@lirmm.fr

May 2011

Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
UMR 5506 - CC 477

161 rue Ada, 34392 Montpellier, Cedex 5



Isolation levels for data sharing in large-scale scientificworkflows

Miguel Liroz-Gistau Hinde Lilia Bouziane Esther Pacitti

Abstract

Scientists can benefit from Grid and Cloud infrastructures to face the increasing need to share scien-
tific data and execute data-intensive workflows at a large scale. However, these workflows are creating
more and more challenging problems in the automation of datamanagement during execution. Existing
workflow management systems focus on how data is stored, transfered and on data provenance. How-
ever they lack in managing isolation during the execution oftasks of the same or different workflows
that read/update shared data. In this scope, we propose three isolation levels taking into account data
provenance and multiversioning. In the best of our knowledge this is the first proposal in such context.

Keywords: Scientific workflows, Isolation levels, Data sharing, Provenance

Résumé

Les infrastructures, comme le nuage ou la grille, sont de plus en plus sollicitées par les scientifiques
pour répondre aux besoins croissants de stockage et de partage de données à grande échelle par les
applications d’analyse et de simulation numérique. Dans cecadre, des recherches intensives sont me-
nées pour étudier des solutions de gestion automatique des données dans ces applications. Les systèmes
de workflows, permettant de concevoir et d’exécuter ce type d’application, offrent un support pour le
stockage, le transfert et la provenance. Toutefois, dans les systèmes existants, nous constatons l’absence
de traitement de l’isolation des tâches au sein d’un ou de plusieurs workflows, qui pendant l’exécu-
tion partagent des données en lecture et écriture. Nous proposons trois niveaux d’isolations dédiés aux
workflows scientifiques. Ces niveaux prennent en compte la provenance et le multi-versionning pour le
stockage et le contrôle de l’évolution des données partagées. A notre connaissance, il n’existe pas encore
de solution traitant la même problématique.

Mots-clefs :Workflows scientifiques, Niveaux d´isolation, Partage de données, Provenance

1



1 Introduction

Scientists increasingly tend to share scientific data and computational services at a large scale [3, 4].
Shared infrastructures like the Cloud or the Grid are more and more requested to publish large amounts
of data, reuse data published by other scientists and execute large scale workflows. As an attempt
to simplify the usage of these complex infrastructures, many scientific workflow management sys-
tems (WFMS) [9] have been proposed. Through such systems, a scientist should be able to simply
query data to use, deploy workflows on computational resources for efficient runs, analyze intermediate
results or change parameters on the fly, capture necessary meta-data allowing the results to be understood
and reproduced, etc. This ideal vision requires a system to be able to automatically manage the execu-
tion of workflows, including scheduling, data movement and storage, data sharing, data provenance,
fault tolerance, security, interactions with the users, etc. However, to reach this ideal vision, significant
challenges still have to be addressed.

For data-centric workflows, intrinsic to scientific applications, data-oriented approaches for execution
management are primordial. Current systems focus on how data are transfered, stored, replicated and
shared [7, 10]. However, they lack in managing isolation among tasks of the same or different workflows
for data sharing.

Isolation management must take into account the past execution history of each involved workflow.
Notice that the evolution of shared data provided by different workflow updates requires also the ability
to efficiently store and manage differentversionsof the samelogical data to avoid data redundancy. This
situation may correspond to an experiment processing on a given data after a cleaning step, for instance
in sequencing applications.

The history of the workflow execution with respect to the tasks dependencies and consumed and
produced data, is normally represented by a provenance graph. Therefore, each task or service invocation
reading or writing shared data, requires the choice of the appropriate data version taking into account
the provenance data. Otherwise workflows may produce unpredictable data. To handle coherent data
sharing, we propose specific isolation levels. The originality of our research lies in the usage of data
provenance [5] to enforce our proposed isolation levels.

Several efforts have been done in the development of data management services for grids [1] and
clouds [10, 4] in the context of scientific workflows. Such services already offer support for storing large
volumes of data, sharing at a large scale and for replicationmanagement and retrieval. However, current
systems have a limited support for multiversion managementin provenance and they often focus on read-
only data access. For the target isolation purpose, we need to propose new solutions to overcome these
limitations. In addition in the best of our knowledge none ofthe existing solutions addresses isolation
as we propose.

Considering the fact that the storage in scientific workflowsis often done by means of files, a file
versioning system seems to be adequate to manage data versions. The version management (naming,
selection for usage) is a low level concern that should be transparent for the users. Shared data may
comprise experiment inputs, final results as well as intermediate results, avoiding their recomputation.
Finally, the proposed isolation levels aims at enabling theautomatic choice of appropriate file versions
required by one or multiple concurrent workflow runs.

The rest of this paper is organized as follow: Section 2 describes the workflow model we assume in
our work. This model is used in Section 3 to define three isolation levels and illustrate their semantic
through examples. Finally, Section 4 discusses our research directions.

2



2 Workflow model

A workflow can be represented through a directed graph of tasks and dependencies constraining the order
of their invocations. There are two classical formalisms for designing workflows: data flows and control
flows [9]. In data flows, the dependencies represent the stream of data that takes place between the
outputs of one task and the inputs of another. Provided that data flows are specially suited for scientific
workflows, which make use of data-intensive applications, we use this formalism in the rest of the paper.

A workflow has a life cycle, from its design to its execution, by which it is represented by three
levels of abstraction [9]. The cycle starts with the composition of a workflow template, which simply
represents the tasks that have to be executed and the flow of data between them. Then, this workflow has
to be parametrized with its input data to be transformed intoa workflow instance. Finally, the instance
is refined to introduce management processes, e.g., data-transfer, and deployed on the target resources.
The result is called anexecutable workflow. As mentioned in Section 1, data is stored in files. In a
workflow instance (user view), referenced data is associated to logical files. An executable workflow, on
the other hand, references file versions storing the specificused data.

Workflow instance. A workflow instance is defined as a DAG, where nodes are both tasks and files
and the connections between them represent data dependencies. Formally, aworkflow instanceis a
directed acyclic bipartite graphw = (T ∪ F,D) whereT is the set of the workflow tasks,F the set of
input and output files of the tasks andD the dependencies between files and tasks. In this way, given a
file f ∈ F and a taskt ∈ T , f → t ∈ D indicates thatf is assigned as one thet’s inputs andt → f ∈ D

denotes thatf is the file generated for one oft’s outputs.

Executable Workflow. As mentioned above, data is associated to files and as the theyare updated, new
versions are generated. The implication is that a task effectively uses/produces a specific file version.
When multiple versions of the same file are stored in the system, a choice needs to be made. This choice
is reflected in the executable workflow.

Let w = (T ∪ F,D) be a workflow instance. An associatedexecutable workflowis defined as the
directed acyclic bipartite graphexec(w) = (T ∪ FV,D′), whereFV corresponds to the file versions
used by the execution andD′ is the set of dependencies between file versions and tasks. The assignation
must satisfy that1) for each filef ∈ F , there exists a file versionf v ∈ FV and that2) for each
dependencyf → t or t → f in D there is a versionf v ∈ FV such thatf v → t ∈ D′ or t → f v ∈ D′

respectively, i.e., files are replaced by file versions in thedependencies

3 Isolation management

The coexistence of multiple versions of the same data in a shared workflow execution environment
may lead to unexpected behaviors. For instance, if a workfloww accesses a file concurrently updated
by other workflows, a non controlled access may allow the usage of different versions in aw’s run.
Such a possibility may produce non coherent results. In order to avoid such a situation, we propose
three isolation levels that define the semantics by which data is accessed and modified when executing
scientific workflows. These levels are explained through motivating examples.

3



w1

f1

t1 t2

f2 f3

?

tim
e

Storage Actions
byw1 external

f
v1
1

f
v1
1 = read(f1)

exec(w1.t1)
f
v1
1 , f

v1
2 update(f2) = f

v1
2

f
v1
1 , f

v1
2 , f

v2
1 update(f1) = f

v2
1

f
v2
1 = read(f1)

exec(w1.t2)
f
v1
1 , f

v1
2 , f

v2
1 , f

v1
3 update(f3) = f

v1
3

Figure 1. Violation of the 1W-isolation level. On the left, the executed workflow. On the right, the files versions used and
produced along the workflow execution (actions).

3.1 One workflow instance isolation

The first level applies to individual workflows instances. For a given instance, the same version of
each file should be used consistently throughout its execution. Figure 1 illustrates a scenario which
motivates the use of this level. As it can be seen,f1 is updated between the execution oft1 andt2, after
what different versions may be used. A reasonable requirement could be that the outputsf2 andf3 be
produced from the same version off1. Nevertheless, without special measures, that condition does not
always hold. To avoid similar scenarios, we propose the following rule:

1W-isolation: Let w = (T ∪ F,D) be a workflow instance, an executionexec(w) = (T ∪ FV,D′)
respects the 1W-isolation level iff for eachf ∈ F , the same versionf v ∈ FV is always used.

3.2 Provenance isolation

Scientific workflows are usually part of series of experiments. Therefore, more advanced semantics may
be required in order to preserve the consistency among related executions. We address this issue by
imposing some requirements in the creation of related files.To illustrate the problem, let consider the
scenario presented in Figure 2. The example includes two workflow instancesw1 andw2 sharing a same
input f1. w2 also usesf2, which is generated byw1. That situation may correspond to an experiment
processing on a given data after a cleaning step, for instance in sequencing applications. The problem
arises when a user or another workflow instance updatesf1 between the execution ofw1 andw2, andw2

uses the new versionf v2
1 . In this case,w2 uses results produced by two different versions of the same

dataf1. Although that situation may be admissible in some cases, itcan lead to inconsistent results.
To detect situations like the present example, informationabout the provenance relations between file

versions is needed. We capture it within thefile dependency graph, denoted bydg(H), which consists
of a DAG containing all the file version dependencies produced by the execution of a set of workflows
H = {w1, ..., wn}. Formally,f vi

1 → f
vj
2 ∈ dg(H) iff there exists a workflow instancew ∈ H whose

executionexec(w) = (T ∪ FV,D′) contains a taskt ∈ T satisfying(f vi
1 → t), (t → f

vj
2 ) ∈ D′. Now,

we can describe the isolation level as follows:
PR-isolation: Let H be a history of workflow instances.w ∈ H respects the PR-isolation level if on

its executionexec(w) = (T ∪ FV,D), for eachf v ∈ FV , only one version of each file appears on its
predecessors in the file dependency graphdg(H).

4



f1

t1

f2

w1

f1 f2

t1

f3

w2

f
v1
1
- f

v1
2

f
v2
1

?

f
v1
3

R

A correct dependency graph
?

tim
e

Storage Actions Dependency Graph
byw1 external byw2

f
v1
1 f

v1
1

f
v1
1 = read(f1)

f
v1
1
- f

v1
2exec(w1.t1)

f
v1
1 , f

v1
2 update(f2) = f

v1
2

f
v1
1 , f

v1
2 , f

v2
1 update(f1) = f

v2
1

f
v1
1
- f

v1
2

f
v2
1

f
v2
1 = read(f1) f

v1
1
- f

v1
2

f
v2
1
- f

v1
3

?
f
v1
2 = read(f2)

exec(w2.t1)
f
v1
1 , f

v1
2 , f

v2
1 , f

v1
3 update(f3) = f

v1
3

Figure 2. Violation of the PR-isolation level. On the left, the executed workflow and a correct file dependency graph. On the
right, the files versions used and produced along the workflowexecution and a corresponding file dependency graph.

3.3 Group isolation

There may be other situations where the previous levels are not enough to ensure consistent execu-
tions. To illustrate this, Figure 3 represents a parameter sweep performed by instantiating several times
a workflow template with two inputs and one output. The inputfc is a common constant data, while
fvari represents a different parameter used by instancewi, i = 1, ..., n. This is a study of how a pa-
rameter (fvari) variation affects the result for a given value (fc). The illustrated inconsistency situation
appears iffc is updated during the parameter sweep and before a set of workflow instances are executed
(wk+1, ..., wn). Provided that the constant parameterfc does not actually remain constant during the
execution, the usage of the new versionf v2

c produces a non coherent result.
To avoid such a problem, the idea is to enable dependent workflows instances to be join together to

satisfy a common consistency condition. For that, we introduce the concept ofworkflow group, allowing
a user to define a set of such workflows instances. Finally, we can describe the Group-isolation level:

G-isolation: Let wi be a workflow belonging to a groupg = {w1, ..., wi, ..., wn}. wi respects the G-
isolation level if the same version of each input/output fileis used in the execution ofw1, ..., wi, ..., wn.

3.4 Discussion

The proposed isolation levels specify the way a WFMS is expected to select files versions to be used
by a workflow execution and to ensure the production of consistent data. Even if the three levels are
suitable in many situations, their relaxation may be desirable. In fact, their enforcement may require the
usage of old file versions, which is not suited if the user is aiming at exploiting fresh data. To overcome
this issue, one possibility is to allow the user to specify a limit on the data freshness or to ignore some
isolation levels. Then, if the available file versions do notsatisfy the user constraint, some of them
should be recomputed. Both indications about isolation relaxation and data freshness could be included
in metadata, often associated to a workflow instance to specify some execution constraints.

4 Challenges and future work

In this paper we introduced the concept of isolation levels for scientific workflows infrastructures such as
clouds and grids, to manage consistently data sharing, taking into account data provenance. In the best

5



fc

fvar1

w1 fout1

...
fc

fvarn

wn foutn

-

6out

var

w1

wk

wk+1

wn

?

update(fc)
f
v1
c f

v2
c

expected
obtained

Figure 3. Violation of the G-isolation level on a parameter sweep. On the left the executed instances. On the right, the
obtained and expected output.

of our knowledge this is the first proposal in such context. Inour research, we plan to investigate several
aspects, mainly three: provenance tied with version management, efficient execution management and
the binding with a storage system. This section gives more details about our directions for each aspect.

First, the isolation levels rely on dependency graphs, which may be well represented using a data
provenance model. Several provenance management systems [2] already offer the possibility of au-
tomatically capturing and storing provenance for later querying. The challenge is to be able to reuse
such systems, introducing new functionalities for isolation management as we propose. This involves
research on provenance data models, storing strategies, querying expressiveness and performance.

Second, one of the fundamental aspects on execution management (scheduling in particular) is to be
able to efficiently select the files to be used and to move the computation near to them. The isolation
levels would notably affect this aspect by imposing conditions on the file selection. As a consequence,
we need to propose new scheduling algorithms that incorporate these new requirements.

Last, several systems have been suggested for the management of files in the context of workflow exe-
cution both in the Grid [1] and in the Cloud [10]. In the same way, numerous versioning file systems have
been presented [6, 8]. Nevertheless, to the best of our knowledge, there is no integral solution. Hence,
our challenge is twofold: first, we should study the optimization of the file versions’ storage by taking
into account the strategies offered by those systems, e.g. compression and pruning for versioning, data
placement or replication; and second, we have to combine a versioning system with a file management
system. At a long term, the result have to be integrated with aWFMS for data management.

References

[1] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P. Kunszt, M. Ri-
peanu, B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tierney. Giggle: a framework for constructing
scalable replica location services. InProceedings of the 2002 ACM/IEEE conference on Supercomputing,
SC’ 02, pages 1–17, Baltimore, Maryland, 2002. IEEE Computer Society Press.

[2] S. B. Davidson and J. Freire. Provenance and scientific workflows: challenges and opportunities. InPro-
ceedings of the 2008 ACM SIGMOD international conference onManagement of data, SIGMOD ’08, pages
1345–1350, Vancouver, Canada, 2008. ACM.

[3] D. De Roure, C. Goble, and R. Stevens. The design and realisation of the myExperiment Virtual Research
Environment for social sharing of workflows.Future Generation Computer Systems, 25(5), May 2009.

[4] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, and P. Maechling. Data sharing options
for scientific workflows on amazon ec2. InProceedings of the 2010 ACM/IEEE International Conference

6



for High Performance Computing, Networking, Storage and Analysis, SC’10, pages 1–9, Washington, DC,
USA, 2010. IEEE Computer Society.

[5] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. Myers, and P. Paulson. The open provenance model. TR
14979, ECS, Univ. of Southampton, 2007.

[6] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie. BlobSeer: Next generation data
management for large scale infrastructures.Journal of Parallel and Distributed Computing, Aug. 2010.

[7] O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, and D. Epema. Performance analysis of dynamic work-
flow scheduling in multicluster grids. InProceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC’10, pages 49–60, New York, NY, USA, 2010. ACM.

[8] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger. Metadata Efficiency in Versioning File
Systems. InProceedings of the 2nd USENIX Conference on File and StorageTechnologies, FAST ’03, 2003.

[9] I. Taylor, E. Deelman, D. Gannon, and M. Shields, editors. Workflows for e-Science : Scientific Workflows
for Grids. Springer, New York, 2007.

[10] D. Yuan, Y. Yang, X. Liu, G. Zhang, and J. Chen. A data dependency based strategy for intermediate data
storage in scientific cloud workflow systems.Concurrency and Computation: Practice and Experience,
2010.

7


