
HAL Id: lirmm-00596338
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00596338

Submitted on 27 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supervising the Evolution of Web Service Orchestrations
using Quality Requirements
Chouki Tibermacine, Tarek Zernadji

To cite this version:
Chouki Tibermacine, Tarek Zernadji. Supervising the Evolution of Web Service Orchestrations using
Quality Requirements. ECSA’11: 5th European Conference on Software Architecture, Sep 2011,
Essen, Germany. pp.16. �lirmm-00596338�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00596338
https://hal.archives-ouvertes.fr


Supervising the Evolution of Web Service

Orchestrations using Quality Requirements

Chouki Tibermacine1 and Tarek Zernadji2

1 LIRMM, CNRS and Montpellier-II University, France
2 Computer Science Department, University of Biskra, Algeria

Chouki.Tibermacine@lirmm.fr , zernadji@yahoo.fr

Abstract. Since many years, Web services have confirmed their sta-
tus of one of the most pertinent solutions for a given service provider,
like Google, Amazon or FedEx, to open its solutions for third party
software development. New business logic can be implemented through
orchestrations of existing Web services. This helps development teams in
capitalizing resources held by the providers of these services. Nonethe-
less, these service-oriented software architectures, like any other software
artifact, are subject to changes during their lifecycle, and thus can un-
dergo an evolution phenomenon. In this phenomenon, it is argued that
quality can be weakened after successive changes (Lehman’s 7th law of
software evolution), and this is mainly due to the lack of architecture
documentation and tool support to supervise architecture changes. In
this paper, we present an approach to supervise the evolution of Web
service orchestrations, with quality requirements considered as a sup-
port documentation. First, we show how important design decisions, like
the choice of a service-oriented architecture pattern can be formalized as
a documentation for the quality they implement. Then, we detail how
this documentation can be used to supervise architecture changes. In this
way, the impact of changes made on a software architecture are analyzed
on-the-fly to determine which quality is affected.

1 Introduction: Context and Motivation

Building distributed software by orchestrating existing Web services is a new
paradigm, which has been proposed as a possible implementation for the service-
oriented architecture specification. It has been greatly influenced by the well-
known business process engineering field, where processes can be designed as
collaborations between a set of services published by some providers. New busi-
ness logic can thus be implemented, as an extension of existing Web services,
through these orchestrations. This helps development teams in capitalizing re-
sources held by the providers of these services. Indeed, Web service providers,
which hold some precious resources (like large databases of products to retail of
Amazon, or weather forecast data of Meteo France), offer third party developers
the opportunity (for free or not) to build new applications by extending their
public services, and thus capitalize on these resources.



Nonetheless, these service-oriented software architectures, like any other soft-
ware artifact, are subject to changes during their lifecycle, and thus can be af-
fected by the consequences of an evolution phenomenon [14]. In this phenomenon,
it is argued that quality can be weakened after successive changes (Lehman’s 7th
law of software evolution [14]). This is mainly due to: i) the lack of architecture
documentation that can be used by developers to better understand the de-
sign decisions made on the system, and ii) the lack of tool support to supervise
architecture changes.

In this paper, we present an approach to supervise the evolution of Web
service orchestrations, with quality requirements considered as a support docu-
mentation. First, we show how important design decisions, like the choice of a
service-oriented architecture pattern can be formalized as a documentation for
the quality they implement. Then, we detail how this documentation can be
used to supervise architecture changes. In this way, the impact of changes made
on a software architecture are analyzed on-the-fly to determine which quality is
affected.

In the following section, we show an example that illustrates the problems
which we tackle in this paper. In Section 3, we expose the overall approach that
we propose in this paper to solve the identified problems. Then, in Section 4,
we detail how the quality documentation is specified in our approach. This doc-
umentation is used by an evolution assistance algorithm, which is described in
Section 5. Section 6 illustrates the use of our approach through an example.
Before concluding this paper, we present in Section 7 the related work.

2 Illustrative Example

In this section we show, through an example of a Web service orchestration – a
BPEL (Business Process Execution Language [17]) process, how some evolution
scenarios can have consequences on quality requirements. Let us suppose that
we have an Appealed Assessments System [9] built using Web services. This
system is responsible for managing and enforcing policies that pertain to private
companies involved with the forestry and lumber trade. Briefly, this service is
dedicated to producing a range of reports related to already assessed claims that
have been successfully or unsuccessfully appealed.

The decisions made by the architects to design this service-oriented archi-
tecture involved the use of a Data Controler service. This one provides all the
logic required to fulfill the capabilities of the assessment reports service. It allows
access up to six different repositories in order to gather all of the required data
depending on the requested reports.

Furthermore, the architects observe that they may have to access additional
databases in the future and therefore the Data Controler service have to un-
dergo some changes. This results in a portability problem in the service archi-
tecture design. Consequently, the architects decide to design a facade service
(architecture decision AD1) using the service facade pattern [9], to ensure the
portability requirement (quality attribute QA1) into the service architecture.



The facade service is named Data Relayer, and its role is to receive ser-
vice consumer requests, relay them to the Data Controler service, and then
relay the responses back to the service consumer. The facade service ensures
the adaptation between the message format used by the Appealed Assessments
Service and the data format managed by the Data Controler service. Also, it
validates the reports received from the Data Controler service. The facade ser-
vice decouples then the consumers of the Appealed Assements Service from the
changes that may occur on the Data Controler, and compensates its behavior
modifications so that the consumers are not impacted.

Preventing from unauthorised access to the ressources of the Appealed As-
sessments service, the architects decide to establish a service account (based
on the Trusted Subsystem Pattern [9] (AD2)) to secure the service from direct
access to the databases. The security requirement (QA2) is thus defined and
implemented inside the whole service orchestration.

Let us assume now, that the maintenance team receives two changes requests.
The first concerns the performance enhancement of the overall service (Appealed
Assessments Service). So, the developer team proceeds by short-circuiting the
authentication service account in the orchestration (removing simply the invoke
activity). The architect performing this change, ignore that the usefulness of
that service was also (as imposed by the Trusted Subsystem pattern) to prevent
direct access to the service resources from malicious attackers. Therefore, this
change breaks AD2 and thus the quality requirement that it implements (QA2).

Over the years, the company providing these services has significantly ex-
panded, and consequently more users requested the Appealed Assessment Ser-
vice. In such a highly concurrent environment, the service may manage a large
amount of data and thus increasing resources consumption which may compro-
mise the overall service performance and availability. The architects realize that
the service-oriented architecture has to adapt to this scalability requirement
problem keeping the performance of the service unaffected. Hence, they examine
different kinds of data used by the service and find out that, the policy data re-
mains frequently unchanged during the working days. Therefore, the architects
decide (AD3) to use the Partial State Deferral Pattern [9] to temporarily hold a
copy of data on a local database server increasing the performance of the service
(QA3). This scenario implies some architectural changes: first, invoking directly
the Data Controler after an authentication through the service account service;
second, designing a new standardized contract for an archival service that takes
the responsibility of populating the data in the database server; finally, for per-
formance optimization purpose, moving the functionality of the Data Relayer
service into the Archival service which results in removing the later from the
architecture. This breaks the facade design pattern (AD1) and causes the loose
of the portability quality requirement.



3 Proposed Approach

Request for architecture evolution

Identification of architecture changes

New Business
Requirements Bug Reports

Quality Enhancement

Application of architecture changes

Quality-Related Regression testing

New Service-Oriented
Architecture

Failed
Tests

Architecture comprehension

Fig. 1. A Micro-Process of Architecture Evolution

Figure 1 shows a simple micro-process of service-oriented architecture evolu-
tion3. In this process, the triggers for requesting architecture evolution can be
either new business requirements (for perfective evolution), bug reports (for cor-
rective evolution) or quality enhancement (for perfective, adaptive or preventive
evolution). Then the developer has to go through multiple steps, ranging from
architecture comprehension to the proposition of a new architecture.

Among these steps, the developer perform some testing to check if there is
a “clean” progression (verify if the additional services, operations or activities
work correctly) and no regression (existing features are not negatively impacted
by the additions). In this paper, we address exclusively quality-related regression
testing. In practice there are few works that dealt with this aspect by proposing
some automatic support. Even with the existence of such approaches, if some
tests fail, the developer iterates (eventually many times) to fix the problems.
She/He is asked to look for the architecture changes to be applied, and sometimes
she/he is led to the step of “Architecture comprehension”.

The proposed approach aims at assisting this process by notifying the devel-
oper on-the-fly if there are some architecture changes that affect quality require-
ments. This is illustrated in Figure 2.

3 This micro-process addresses software evolution in general, and not service-oriented
architectures in particular. Adaptations to this specific context are detailed later.



Request for architecture evolution

Identification of architecture changes

New Business
Requirements Bug Reports

Quality Enhancement

Application of architecture changes

New Service-Oriented
Architecture

Architecture comprehension

Documentation of new decisions

Architecture
Documentation

Undo changesValidate changes

Validate changes

Assistance
Algorithm

Fig. 2. The Proposed Micro-Process of Architecture Evolution

The approach introduces two concepts: an architecture documentation (bot-
tom left of Figure 2) and an assistance algorithm. The assistance algorithm is
used when developers apply changes on an architecture to notify them with
the possible impact of their changes on quality requirements. Then, it is the
developer’s responsibility to validate or undo changes. If changes are validated
the developer is asked to document the new decisions taken while evolving the
service-oriented architecture. These two concepts are detailed in the following
two sections.

4 Architecture Decision Documentation

The concept of architecture decision documentation has been firstly introduced
in [19]. In this paper, we present an improvement to the old version of this docu-
mentation. It defines in a formal way the links between architecture decisions and
quality attributes implemented by these decisions. We consider thus architecture
decisions, which are entities that can be formalized, as a way to indirectly check
automatically quality requirements, which are properties that cannot generally
be formalized directly (or are very difficult to formalize4).

An architecture decision documentation abstracts the links between a given
quality attribute and an architecture decision associated to this attribute. Fig-
ure 3 shows how these links are organized. We associate to a link a degree of

4 By “formalization”, we simply mean here the specification of a given artifact in an
unambiguous and structured or semi-structured way using a language that can be
processed by tools (not using the natural language).



+ id
+ name
+ description
+ degreeOfCriticality:CriticalityDegree

ArchitectureDecision

+ id
+ name         

« enumeration »

CriticalityDegree

+ veryHigh
+ high
+ medium
+ low
+ veryLow

ArchitectureConstraint

+ language
+ description    
+ body         

Satisficing

+ degreeOfSatisficing : int  

Formalizing

+ degreeOfFormalizing : int  

QualityAttribute

enhances collidesWith

1..* *

1..*

Fig. 3. Links between Architecture Decisions and Quality Attributes

satisfaction. An architecture decision in collaboration with other decisions con-
tribute to the satisfaction of a given quality attribute. Each degree of satisfaction
represents a percentage. In the ideal situation (where the developers are confi-
dent in the pertinence of their design decisions), the sum of all degrees associated
to the same quality attribute (within the same architectural element) would be
equal to 100%. For example, a portability quality attribute can be concretized by
three different architecture decisions: the choice of the facade service pattern [9]5,
the choice of the MVC pattern [3] and the use of an API. If the developers con-
sider that the two first decisions contribute more, in the concretization of the
portability quality attribute, than the third one, because they are critical, they
can associate to them high scores (for example 40 % to each decision) and the
last architecture decision a lower score (20 % for example). This is done in the
same manner as in software requirements engineering where the project man-
ager assigns values like high, medium or low for the technical difficulty of the
realization of each requirement or for their functional priority. In our case, we
chose to give them numerical values voluntarily because of the complementarity
which exists between architecture decisions to reach a quality goal, as illustrated
in the example above.

We voluntarily simplify, in this documentation, the specification of architec-
ture decisions. An architecture decision is thus formalized by an architecture
constraint (see the “Related Work” section for richer specifications of architec-
ture decisions). Here again, a formalization degree is a percentage associated to
the link between an architecture decision and an architecture constraint. This
score represents the extent to which the constraint formalizes the design decision.
If we consider that several constraints formalize the same architecture decision,
it is possible for the developer to state how the different constraints share the

5 This pattern is originally inspired from [10].



formalization of the design decision. In some cases, a given constraint may have
a degree of formalization more important than others. In the ideal situation
(where the developers are sure of the completeness of their formalization), the
sum of all degrees associated to the same architecture decision would be equal
to 100%. The constraints written in a given documentation are defined with a
predefined constraint language.

A quality attribute in this documentation is a non-functional property repre-
senting an ISO 91266 characteristic or sub-characteristic (Reliability, Maintain-
ability, Portability, ...). It has a degree of criticality (inspired from Kazman’s
quality attribute scores and Clements’ quality attribute priorities [7]) which is
specified by developers and represents the importance of this quality attribute
in the architecture. Its possible values are: very high, high, medium, low and
very low.

Associated to a given architecture decision, a quality attribute can enhance
(affect positively) other quality attributes. For example, the choice of the pipeline
architecture style targets the maintainability quality attribute, which enhances
in this case the efficiency attribute of the system. Contrarily, a given quality at-
tribute can collide with (affect negatively) other quality attributes. For example,
the security quality attribute collides generally with the efficiency attribute. This
depends of course on the documented architecture decision and the application
context. It is on the responsibility of developers, fully aware of the application’s
context and the architecture decisions they made, to document these optional
parts (the other quality attributes that collide-with or enhance the documented
quality attribute) of an architecture contract.

A given quality attribute can be tightly- or weakly-coupled to another one.
In the first case, if a quality attribute A affects positively another attribute B, if
we enhance A, B will B enhanced; and if A is weakened, B will be weakened too.
In the second case (weakly-coupled attributes), if A affects positively another
attribute B, if we enhance A, B will be enhanced; and if A is weakened, B will not
be affected. Inversely, the same thing can be considered, if A affects negatively
B. This is illustrated in Figure 4.

For example, in a service orchestration, adding an invocation to an encryption
service before transmitting information to a remote server is a simple architecture
decision taken to enhance the security quality attribute. This makes less efficient
the whole orchestration (affects negatively the efficiency attribute). If we decide
in another context, to remove a binding to an authentication service which is
invoked before a given business service, this will obviously affect positively the
efficiency quality attribute (there is less time to execute the business service).
We conclude here that the two quality attributes, in the two contexts, are tightly
coupled.

In another illustrative example, designing a system using the facade service
design pattern aiming to enhance its portability affects negatively the reliability
quality characteristic (more precisely, the availability sub-characteristic). Indeed,

6 Software engineering – Product quality – Part 1: Quality model.
The International Organization for Standardization Website:
http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=22749



A B

A B

A B

A B

"Enhancing" Relationship "Colliding with" Relationship

Tightly related QAs

A B

A B =

A B

A B

"Enhancing" Relationship "Colliding with" Relationship

Weakly related QAs

=

A B

A B

= A B

A B

"Enhancing" Relationship "Colliding with" Relationship

=

Positive influence

Negative influence

Fig. 4. Relationships between Quality Attributes

in the presence of a unique service providing the business service to clients, if
this service crashes, the provided functionality will not be anymore available.
Let us suppose now that a given service is provided by a component within a
web application in order to abstract details of the different Internet browsers in
which the application is executed at the client side (portability purpose). The
removal of such a service will not affect in any way the reliability attribute. This
is an example of two quality attributes which are weakly coupled.

Between weakly coupled quality attributes, we identified two kinds of re-
lationships. There can be a positive or a negative influence. In the first case
(positive influence), it is the enhancement of the first attribute which influences
on the second one; however in the other case, it is its weakness which produces
an effect on the second. This is shown on Figure 4

In the current implementation of architecture decision documentation, archi-
tecture constraints are specified using a modified version of OMG’s OCL [18].
An architecture constraint in this language navigates in a metamodel of BPEL
Web service orchestrations, but apply to only one instance of that metamodel
(a model which represents a BPEL process). The evaluation of a given con-
straint tells the developer whether the architecture description conforms to the
constraint or not.

In addition to architecture decision documentation, we propose (as an op-
tional feature) to build a catalog of quality attribute relationships. Designing
such a catalog consists in :

1. Identifying the quality attributes defined in the quality model of the company
2. Identifying the attributes defined in the quality plan of the software project
3. Building a bi-dimensional table with all the quality attributes (one per line

and one per column)



4. Completing progressively the correlation between the quality attributes (on
the basis of information gathered from previous projects and the experience
of developers)

5. Each time, adapting the table to the service-oriented architecture context

Once this table validated by the project manager, the assistance algorithm
can exploit it in accompanying developers in the architecture change step.

5 Change Assistance Algorithm

During architecture change, the information encapsulated in the architecture
documentation is exploited by an assistance algorithm in order to assist devel-
opers. The main purpose is to drive software architecture evolution to a situation
where the initially required quality is minimally affected. This algorithm is pre-
sented throughout this section as several functions.

(01) algorithm ArchitectureChangeAssistance {

(02) let AE := Architectural Element

(03) and AD := Architectural Decision

(04) and AC := Architectural Constraint

(05) and QA := Quality Attribute

(06) and AT := Architecture Tactic //a couple composed of a QA and an AD

(07) and Doc := architecture documentation associated to changed AE

(08) and affectedQAs := { } //an empty set

(09) function main() {

(10) on RequestForAssistance {// an event listener

(11) for-each (AT in Doc) {

(12) QA := QA in AT

(13) AD := AD in AT

(14) checkArchitecturalConstraint (AD)

(15) }

(16) let newAD := ask for AD associated to the new architecture, if any

(17) if(newAD != null) let newQA := ask for the QA associated to newAD

(18) addNewArchitecturalTactic (newAD,newQA)

(19) }

(20) checkAffectedQAs ()

(21) }

(22) }

During the step of architecture change application (Figure 2) the developer
can ask for an assistance. This triggers the listener on Line 10 in the algorithm
above. The algorithm starts first by looking for the architecture documentation
associated to the architectural element (the orchestration or the Web service de-
scription) which has been changed. Then, the algorithm checks each constraint
in the documentation (by calling a function which is detailed in the following
paragraphs). After that, the developer is asked to pinpoint the architecture deci-
sion and the quality attribute associated to the changes, if any (Lines 16 and 17).
At last, if the changes generate a new architecture decision, the algorithm try to



add, to the documentation, the couple composed of this new decision associated
to its quality attribute, which is called in this work an architectural tactic (Line
18). In addition the algorithm tries to infer the quality attributes affected by
this new tactic (Line 20).

The function detailed in the listing below, checks the constraints associated
to a given architecture decision received as an argument. It starts by checking the
constraint expressions associated to the decision. If the checking does not succeed
for a given constraint, a set of warnings are displayed to the developer. The
displayed information includes the architecture decision, the precise architectural
element impacted by the change, the degree of formalization of the decision, the
quality attribute, its degree of satisficing and its criticality degree (Lines 11 to 14
in the algorithm below). In addition this function shows to the developer the list
of quality attributes which are eventually impacted by this change (Lines 15 and
16). For doing so, it uses the table of relationships between quality attributes
presented in the previous section. It limits the selected quality attributes to the
ones which are tightly coupled with an “enhacing” relationship. This ensures the
selection of the most pertinent quality attributes in this situation.

(01) function checkArchitecturalConstraint (AD) {

(02) for-each(AC associated to AD)

(03) let result := check AC

(04) if (result == false) {

(05) AE := AE in the context of AC

(06) QA := QA associated to AD

(07) warn "The following architecture decision " +AD+" is affected."

(08) warn "This concerns the architectural element: "+AE

(09) warn "The affected architecture decision is formalized

(10) by the constraint up to " + degreeOfFormalization (AD,AC)+ "%"

(11) warn "The affected architecture decision is satisficing "+QA

(12) + " up to " +degreeOfSatisficing(AD,QA)+"%"

(13) warn "The degree of criticality of this QA is: "

(14) + degreeOfCriticality(QA)

(15) warn "Other QAs may be affected. This concerns: " +

(16) QA_Relationships (QA,"enhances", "tight")

(17) ask to validate the new architecture or undo changes

(18) according to the warnings above

(19) if(new architecture maintained) {

(20) affectedQAs := affectedQAs + QA

(21) + QA_Relationships(QA, "enhances", "tight")

(22) warn "Architecture documentation will be changed ..."

(23) Doc := Doc - AT(AD,QA)

(24) ask to review satisficing degrees of ATs related to

(25) QA_Relationships(QA, "enhances", "tight")

(26) ask to review Non-Functional Requirements specification

(27) }

(28) }

(29) }

(30) }



Then, the developer is asked to validate the new architecture fully aware with
the possible consequences of her/his changes, or to undo changes. In this last
case, the architecture documentation should be updated by the algorithm (this
is the second important role of this assistance algorithm). The affected decisions
and their associated quality attributes are removed from the documentation
(Line 23 in the algorithm above). The developer is at last asked to review the
degrees in the documentation as some tactics are removed. In addition, she/he
is invited to review the non-functional (or quality) requirements specification.

The function addNewArchitecturalTactic(...) creates a new architectural
tactic and adds it to the documentation. Before that, if the quality attribute has
been voluntarily added by the developer, it is removed from the set of affected
quality attributes (Line 04 in the listing below). Else this attribute is considered
as a new quality and a checking is performed to alert the developer of the other
qualities that are possibly affected by this attribute (Lines 06 – 07). At last, the
algorithm asks the developer to change the quality requirements specification.

(01) function addNewArchitecturalTactic (AD,QA) {

(02) newAT := new AT(AD,QA)

(03) if (QA is in affectedQAs)

(04) affectedQAs := affectedQAs - QA

(05) else {

(06) warn "Other QAs may be in conflict with "+QA+": "

(07) + QA_Relationships (QA,"collidesWith","both")

(08) }

(09) warn "Architecture documentation will be changed ..."

(10) Doc := Doc + newAT

(11) ask to change Non-Functional Requirements specification

(12) }

The last function (see below) just recalls to the developer that there still
remain some affected quality attributes, if any. The developer is asked to review
the architecture documentation and the quality requirements specification.

(01) function checkAffectedQAs () {

(02) if (affectedQAs <> {} ) {

(03) for-each (QA in affectedQAs) {

(04) warn QA + "is still affected by your changes"

(05) ask to review satisficing degrees of ATs implying QA

(06) }

(07) ask to change Non-Functional Requirements specification

(08) }

(09) }

The overall goal of this algorithm is twofold. First, it assists developers dur-
ing architecture evolution with information about the impact of their changes on
architecture design decisions and on quality attributes. Second, it helps to main-
tain the documentation of non-functional (or quality) requirements up-to-date
in a semi-automatic fashion. This can be observed in updates made automati-
cally on the documentation, requests to review satisficing degrees of the affected
quality attributes, and requests to change or review NFRs specification.



6 The Proposed Approach in Practice

In this section, we show an example of an architecture documentation and its
use by the evolution assistance algorithm. Let us take the example of Section 2.
Its architecture documentation is presented in a synthetic way (in order to not
be too verbose with its original XML-based description) in the listing below:

Architecture-Documentation :

1. Architecture-Tactic :

This tactic guarantees the Portability quality requirement by using

a Service facade pattern

- Quality-Attribute name="Portability" degreeOfCriticality="high"

- Related-Quality name="Performance" relationship="CollidesWith"

relationType="tight"

- Architecture-Decision name="Service facade pattern"

degreeOfSatisficing="90"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="80"

2. Architecture-Tactic :

This tactic ensures the Security quality requirement by using

a Trusted subsystem pattern

- Quality-Attribute name="Security" degreeOfCriticality="very high"

- Related-Quality name="Availability" relationship="Enhances"

relationType="weak" influence="negative"

- Architecture-Decision name="Trusted subsystem pattern"

degreeOfSatisficing="70"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="90"

3. Architecture-Tactic :

This tactic ensures the Performance quality requirement by using

a Partial state deferral pattern

- Quality-Attribute name="Performance" degreeOfCriticality="high"

- Related-Quality name="Security" relationship="CollidesWith"

relationType="tight"

- Architecture-Decision name="Trusted subsystem pattern"

degreeOfSatisficing="60"

- Architecture-Constraint profile="BPEL" degreeOfFormalizing="70"

The architecture documentation contains three architectural tactics. They
document the links between architectural decisions (AD1, AD2, AD3) presented
in Section 2 and their corresponding quality attributes (QA1, QA2, QA3). In
this documentation we can see among others the different relations between
quality attributes (Related-Quality element in the listing above). For example,
in the first tactic7, the Related-Quality element shows that the portability and
performance quality attributes are colliding and are tightly coupled.

7 We recall that a tactic is the couple composed of an architecture decision and its
quality attribute.



Let us see now the use of the assistance algorithm, given the evolution sce-
nario described in the example of Section 2: short-circuiting the authentica-
tion service. The assistance algorithm checks the constraints8 formalizing the
architectural decisions for each architectural tactic, and detects that the con-
straint formalizing the decision AD2 (The Authentication service implementing
the Trusted subsystem pattern) was violated. Therefore, the security quality
attribute (QA2) is affected. It then notifies the developer that the violated con-
straint formalizes AD2 up to 90% (an important constraint in the formalization
of this decision), the affected architecture decision satisfies Security up to 70%
with a very high degree of criticality, and that the security is weakly coupled
to the availability quality attribute by an enhancement relation with a negative
effect. This means that the availability quality attribute is directly affected by
this change. Based on this notification, the developer decides to abort the change
she/he made, aware that short-circuiting the authentication service makes the
service not secured.

The second change to the orchestration consists of adding a new functional-
ity service namely the Archival service which leads to remove the Data Relayer
service. This change aims to improve the performance and the availability of the
service. The algorithm detects that the constraint representing the decision AD1
(service facade pattern) does not hold any more, which means that the portabil-
ity quality attribute (QA1) is affected. Hence, it informs the developer that the
violated constraint formalizes AD1 with a degree of 80%, satisfies QA1 up to 90%
which has a high degree of criticality, and that QA1 and QA3 (performance) are
colliding but tightly coupled. The developer concludes that wanting to improve
the performance of the service she/he will probably loose the portability quality
attribute, and therefore, decides that performance is more important than porta-
bility and validates the change. The corresponding tactic of the affected decision
is removed from the documentation and a new tactic is added. The developer is
invited to update the NFRs specification and to review the satisficing degrees
for the affected qualities. These information serve for possible changes that may
occur on the service architecture in the future.

7 Related Work

In the literature, there are many works on the documentation of architeure design
decisions. Clements et al. in [6] present an approach which provides a framework
for documenting different views of a software architecture. The authors pro-
pose a template for architecture description encompassing the documentation
of architectural decisions. In [20], Tyree and Akerman discuss the importance
of documenting architecture decisions and their specification as first-class enti-
ties in architecture description. They present a template specifically designed for
architecture decision documentation, which embeds interesting information char-
acterizing architecture design decisions (status, assumptions, implications,

8 For reasons of space limitations, constraints are not presented here. They are defined
using a modified version of OCL and navigate in a metamodel of BPEL.



related artifacts, constraints, ...). Philippe Kruchten introduced a taxon-
omy of design decisions [13]. He presents a model for describing architecture de-
cisions, including rationale, scope, state, history of changes, categories,
cost and risk. He identifies in this ontlogy the different possible relationships
between design decisions and links between design decisions and design artifacts.
In [11], Jansen and Bosch present a new way of building software architectures.
They propose to define these design models as a composition of architecture
design decisions. The authors introduce a model for architecture design deci-
sions, including a description, the rationale, the design rules, the design

constraints, the consequences, the pros and cons. In [4], the authors pro-
posed a way to characterize architectural decisions. They defined attributes to
describe architectural decisions by separating mandatory and optional attributes
according to their degree of importance. The first class introduces information
associated to architectural decisions that must be defined throughout the sys-
tem life cycle, including a decision name and description, the constraints,
the dependencies, the status, the rationale, the design patterns, the
architectural solution, and the requirements. The second class provides
additional information that can be choosen according to user preferences such
as, the alternative decisions, assumptions, pros and cons, category of

decision, or quality attributes. In addition to these attributes, they have
defined attributes to support the evolution of architectural decisions, includ-
ing the date and version, the obsolete decision, the validity, the reuse

times and rating, and the trace links.

As in these approaches, our work proposed a new way to document archi-
tecture decisions. But contrarily to these works, we focused on the use of this
documentation in the architecture change assistance. These works can comple-
ment our proposed documentation in order to make it richer.

Many works have been proposed on Non-Functional Requirements capture
and specification. One of the major works in the literature is that of Mylopoulos
et al. [16]. Following a process-oriented approach the authors propose a frame-
work for the representation and use of Non-functional requirements during the
development process. The framework includes five components allowing, follow-
ing a goal-oriented process, to justify and argue design choices made to satisfy
certain software quality requirements. The authors consider Non-functional re-
quirements as goals to be achieved by validating the right design decisions and
their rationale, considered in turn as goals. In [8] Cyneirios et al. propose an ap-
proach based on Mylopoulos’s framework for capturing and representing NFRS
and their interdependencies. Their approach shows the integration of NFRs in
functional requirements models. The authors were interested in conceptual mod-
els expressed in UML by incorporating NFRs descriptions in class, sequence, and
collaboration diagrams. Bass et al. [1], proposed ADD method (Attribute-Driven

Design) that follows an architectural design process guided by quality require-
ments. It uses the concept of attribute primitives, which are collections of com-
ponents and connectors collaborating to satisfy some quality attributes. These
attributes are documented as general scenarios. In [2], the authors proposed Ar-



chitectural tactics, in the same spirit as the primitive attributes to guarantee
quality characteristics in software architectural design. Kim et al. [12] presented
an approach for representing NFRs in software architecture using architectural
tactics as reusable architectural building blocks. The later and their relationship
are represented as Feature Models and their semantics is defined with the RBML
language (Role-Based Metamodeling Language). Architectural tactics satisfying
quality attributes are selected and composed into one tactic encompssing all the
desired qualities. The resulting tactic is then instantiated to create a software
architecture that incorporates NFRs for the system under development. In [15],
the authors present an approach inspired from [16, 5]. It aims at integrating
NFRs handling in analysis and design phases as with functional requirements to
fill the gap between the elicitation and implementation of NFRs.

All these approaches focus on the design stage of software development. Our
work is complementary to these approaches, since it addresses a stage which is
situated downstream in the development process, the evolution stage.

8 Conclusion and Future Work

Since some years, architecture decision and design rationale are two topics which
received a lot of attention from the software architecture research community. In
this paper, we proposed an approach which provides: i) a language to document a
basic form of architecture decisions as architecture constraints, and the rationale
of these decisions, which are quality attributes, together with some fine-grained
information about the relationships between these two concepts; ii) a method
which makes operational this documentation through its use during architecture
evolution; and iii) an algorithm which implements the supervision of architecture
evolution. This supervision aims at deducing on-the-fly the possible impact of
a given architectural change on design decisions and consequently identify the
affected quality requirements.

Our approach has been applied on a specific kind of software architectures,
which are service-oriented ones. A concrete implementation of this kind of soft-
ware architectures has been considered in our work, which are Web service or-
chestrations.

On the conceptual aspect, we plan in the near future to separate functional
from non-functional evolution in the assistance algorithm. Indeed, these two
imply different considerations. Non-functional (or quality) evolution have direct
impact on existing decisions and quality, and the developer has some knowledge
about the existing quality requirements. In the case of functional evolution, the
developer has a different profile, and should be assisted differently.

On the tool and experimental aspect, we will conduct the creation of a catalog
of predefined service-oriented architecture design decisions in order to help the
developers in the initial documentation of their architectures. This will be based
on existing works on patterns or quality models for service-oriented architectures,
among others.



References

1. L. Bass, F. Bachmann, and M. Klein. Quality attribute design primitives and the
attribute driven design method. In Proceedings of the 4th International Conference
on Product Family Engineering, pages 169–186. Springer-Verlag, 2001.

2. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, 2nd
Edition. Addison-Wesley, 2003.

3. F. Buschmann, M. R., H. Rohnert, P. Sommerlad, and M. Stal. Pattern Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

4. R. Capilla, F. Nava, and J. C. Duenas. Modeling and documenting the evolution
of architectural design decisions. In In Proceeding of the Second Workshop on
SHAring and Reusing architectural Knowledge Architecture, Rationale, and Design
Intent (SHARK-ADI’07). IEEE Computer Society, 2007.

5. L. Chung, B. A. Nixon, E. Yu, and M. J. Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 1999.

6. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford. Documenting Software Architectures, Views and Beyond. Addison-
Wesley, 2003.

7. P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures, Meth-
ods and Case Studies. Addison-Wesley, 2002.

8. L. M. Cysneiros and J. C. Sampaio do Prado Leite. Nonfunctional requirements:
From elicitation to conceptual models. IEEE TSE, 30(5):328–350, 2004.

9. T. Erl. SOA Design Patterns. Prentice Hall, 2009.
10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Sofware. Addison-Wesley Professional Computing Series.
Addison Wesley Longman, Inc., 1995.

11. A. Jansen and J. Bosch. Software architecture as a set of architectural design
decisions. In Proceedings of of the 5th IEEE/IFIP WICSA’05, 2005.

12. S. Kim, D.-K. Kim, L. Lu, and S. Park. Quality-driven architecture development
using architectural tactics. Elsevier JSS, 82(8):1211–1231, August 2009.

13. P. Kruchten. An ontology of architectural design decisions in software intensive
systems. In Proceedings of the 2nd Groningen Workshop Software Variability, pages
54–61, 2004.

14. M. Lehman and J. F. Ramil. Software evolution. Marciniak J. (ed.), Encyclopedia
of Software Engineering, 2nd Ed, Wiley, 2002.

15. T. Marew, J.-S. Lee, and D.-H. Bae. Tactics based approach for integrating non-
functional requirements in object-oriented analysis and design. Journal of Systems
and Software, 82(10):1642–1656, 2009.

16. J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional
requirements: A process-oriented approach. IEEE TSE, 18(6):483–497, June 1992.

17. OASIS. Web services business process execution language version 2.0. Website
of the Organization for the Advancement of Structured Information Standards:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html, 2006.

18. OMG. Object constraint language specification, version 2.0, doc-
ument formal/2006-05-01. Object Management Group Web Site:
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf, 2006.

19. C. Tibermacine, R. Fleurquin, and S. Sadou. Nfrs-aware architectural evolution of
component-based software. In Proceedings of the 20th IEEE/ACM ASE’05, pages
388–391, Long Beach, California, USA, November 2005. ACM Press.

20. J. Tyree and A. Akerman. Architecture decisions: Demystifying architecture. IEEE
Software, 22(2):19–27, March/April 2005.


