Anne Preller
email: preller@lirmm.frmehrs@comlab.ox.ac.uk

Mehrnoosh Sadrzadeh

Semantic Vector Models and Functional Models for Pregroup Grammars

Keywords: compositional semantics, quantum logic, pregroup grammars, semantic vector models, symmetric compact closed categories, two-sorted functional first order logic

We show that vector space semantics and functional semantics in twosorted first order logic are equivalent for pregroup grammars. An algorithm translates functional expressions to vector expressions and viceversa. The semantics is compositional, variable free and invariant under change of order or multiplicity. It includes the semantic vector models of Information Retrieval Systems and has an interior logic admitting a comprehension schema. A sentence is true in the interior logic if and only if the 'usual' first order formula translating the sentence holds. The examples include negation, universal quantifiers and relative pronouns.

Introduction

Pregroup grammars, [START_REF] Lambek | Type grammar revisited[END_REF], are based on compact bilinear logic, [START_REF] Lambek | Substructural Logics, chapter From categorial grammar to bilinear logic[END_REF], a simplification of the Syntactic Calculus, [START_REF] Lambek | The mathematics of sentence structure[END_REF]. Compact bilinear logic or Pregroup Calculus places pregroup grammars in the family of categorial grammars where 'the grammar is in the lexicon'. The pregroup grammars proposed so far cover a variety of languages, but most of them with no reference to semantics. Indeed, giving up Syntactic Calculus meant giving up higher order logic, i.e. the Montague semantics of traditional categorial grammars. The semantic structures appropriate for pregroup grammars had to be rediscovered.

To fill this gap, compact 2 -categories are proposed in [START_REF] Preller | Category theoretical semantics for pregroup grammars[END_REF], followed by functional models in two-sorted first order logic in [START_REF] Preller | Toward discourse representation via pregroup grammars[END_REF]. This semantics views verbs as predicates defined on individuals and sets of individuals.

On the other hand, [START_REF] Sadrzadeh | High-level quantum structures in linguistics and multiagent systems[END_REF] and [START_REF] Clark | A compositional distributional model of meaning[END_REF] consider the category of finite-dimensional real vector spaces and linear maps, with the explicit aim to add compositionality to distributive semantic vector models. They define the meaning of a transitive verb as a vector in the tensor product of three vector spaces. The basis vectors of two of the spaces are identified with nouns. The basis vectors of the third space are the pairs of these nouns. The value of a subject-object sentence formed by the verb and two nouns is computed with the help of the interior product. Later this method has been extended to negated sentences in [START_REF] Preller | Bell states and negated sentences in the distributed model of meaning[END_REF].

The starting point for this paper is the observation that the category of finitedimensional real vector spaces and the category of sets and two-sorted functions are compact closed symmetric monoidal categories, or equivalently, symmetric compact 2 -categories. We prove the equivalence of the two approaches relating two-sorted first order logic to the theory of compact 2 -categories and thus to quantum logic. Indeed, [START_REF] Abramsky | A categorical semantics of quantum protocols[END_REF] formulate quantum protocols in the theory of compact 2 -categories. The logic for Information Retrieval Systems of [START_REF] Van Rijsbergen | The Geometry of Information Retrieval[END_REF] uses the lattice of projectors in finitedimensional Hilbert spaces, also a compact 2 -category. A study by [START_REF] Clarke | Context-theoretic Semantics for Natural Language, an algebraic framework[END_REF] of context-theoretical semantics states that it is the lattice structure of real numbers that works best for semantic vector models. Here we show that the compact 2 -category of finite-dimensional semi-modules over a bounded lattice of real numbers handles both the quantum logic of semantic vector models and the functional models.

Section 2 introduces pregroup semantics in both the functional and the categorical versions. Section 3 presents an algorithm transforming one into the other. Section 4 gives an isomorphic embedding of the category of two-sorted functions into the category of semantic vector models over the lattice of real numbers. Follows in Section 5 a sketch of quantum logic in the category of semantic vector models over the lattice of real numbers. Section 6 motivates functions of two-sorted first order logic by their relevance to natural language and defines the structure of a symmetric compact 2 -category of the category of sets and two-sorted functions. In Section 7, we define the interior logic and show by examples that the vector of a sentence is true in the interior logic if and only if the 'usual' first order formula interpreting the sentence holds. The examples include universal quantifiers, negation and relative pronouns. In particular, the interpretation of the relative pronoun introduces a comprehension schema based on the interior truth of the sentence vectors, in accordance with an observation by [Benthem and Doets, 1983] that the comprehension schema holds in two-sorted first order logic for certain families of expressions.

The two semantics

Pregroup grammars are based on compact bilinear logic, also known as pregroup calculus. The set of pregroup types generated by a partially ordered set B = B, ≤ is the free monoid T B generated by the following set whose elements are called simple types

S B = a (z) : a ∈ B, z ∈ Z .
The notation a (z) designates the ordered pair formed by the element a of B and the integer z . A simple type of the form a (0) is identified with a ∈ B and called a basic type. Strings of simple types are called types. By convention, if a type T is given in the form T = t 1 . . . t n , the t i 's are simple types for 1 ≤ i ≤ n .

In the case where n = 0, the string t 1 . . . t n is empty, denoted ǫ . It is the unit for the binary operation of concatenation in the free monoid. Moreover, there are two unary operations () ℓ and () r , called left and right adjoints, defined by (a

(z1) 1 . . . a (zn) n) ℓ = a (zn-1) n . . . a (z1-1) 1 (a (z1) 1 . . . a (zn) k) r = a (zn+1) n . . . a (z1+1) 1 .
This definition includes the case where n = 0 . Hence the equalities ǫ ℓ = ǫ = ǫ r hold for the empty string. It follows that a ℓ = (a (0)) ℓ = a (-1) and a r = (a (0)) r = a (1) Finally, the binary derivability relation on types, denoted →, is the smallest reflexive and transitive relation satisfying

(Induced step) T x (z) T ′ → T y (z) T ′ (Generalised contraction) T x (z) y (z+1) T ′ → T T ′ (Generalised expansion) T T ′ → T x (z+1) y (z) T ′
where either z is even and x ≤ y or z is odd and y ≤ x. Capitals T , T ′ etc. designate arbitrary types, bold face letters x, y etc. basic types.

It follows that a type T ′ is derivable from type T , if either they are identical strings or there is a sequence T 1 , . . . , T n for which T 1 = T, T n = T ′ and T i → T i+1 is a deduction rule, i.e. an induced step, a generalised contraction or a generalised expansion.

A lexicon is a finite set of triples w : T :: m , where w is a word, T a type and m a meaning expression. The pairs w : T , called entries, are sufficient for syntactic analysis. Following [START_REF] Lambek | From word to sentence[END_REF], such a set of pairs is called a dictionary.

Intuitively, the basic types represent grammatically important notions. For example, the basic types s and n stand for sentences and noun phrases respectively.

A string of words w 1 , . . . , w n is a sentence, if there are entries w 1 : T 1 , . . . , w n :

T n such that T 1 . . . T n → s . Similarly, it is a noun phrase, if T 1 . . . T n → n .
For example, the sentences The boys left and The boys did not leave are recognised by a pregroup grammar with a dictionary containing, among others, the entries all /the : n

2 c 2 ℓ boys : c 2 left : n 2 r sn ℓ did : n 2 r si ℓ d not : d r ii ℓ d leave : d r in ℓ
The basic type c 1 stands for the singular and c 2 for the plural of count nouns, n 1 and n 2 for the singular and the plural of noun phrases. Moreover, n is the type of the noun phrase when the number does not matter, s is the sentence type 1 and i the type of the infinitive. The type d is a 'dummy' type. It incorporates the indices of phrase structure grammars into the syntactic types of pregroup grammars. Finally,

c 1 ≤ n 1 , c 2 ≤ n 2 and n 2 ≤ n so that c 2 n 2 r → ǫ, n ℓ c 2 → ǫ etc. are generalised contractions.
Derivations are presented in the form of a graph, for example

r 0 = all n 2 c 2 ℓ boys c 2 lef t n 2 r s a a d d s (1) r 1 = the n 2 c 2 ℓ boys c 2 did n r s i ℓ d not d r i i ℓ d leave d r i a a d d c c Y Y s (2)
The underlinks mark the generalised contractions. Derivations that use only generalised contractions are called reductions. It follows from a theorem in [START_REF] Lambek | Type grammar revisited[END_REF] that every derivation to a basic type is equivalent to a reduction.

Dictionary entries w : T are sufficient to recognise grammatical strings. To define semantics for pregroup grammars, a meaning expression has to be added to each dictionary entry.

The lexical entries below give two versions of the meaning expressions, namely vectors in the third column and functions in the fourth column. We recall that V and its dual space, V * , are isomorphic and that the basis vectors of W ⊗V * are the vectors b i ⊗a j , where the b i 's vary over the basis vectors of W and the a j 's over those of V . 2 Moreover, W ⊗ V * and V * ⊗ W are isomorphic. A vector v in space V is identified with a linear map v : I → V , where I is a fixed one-dimensional space. A linear map f : V → W is identified with a matrix, i.e. a vector

f ∈ W ⊗ V * . A linear map g : V 1 ⊗ V 2 → W is identified with the bilinear map (v 1 , v 2) → g(v 1 ⊗ v 2) ∈ W ,
which we also denote g . These identifications rewrite the vectors of the third column of (2) as vectors or maps in the fourth column. The isomorphism in Section 4 gives a more profound connection: The entries in the fourth column are two-sorted functions, namely functions that take elements and sets as arguments and return elements and 1 We ignore the tense here. 2 The 'tensor product' of two vectors is the same as the outer product of the vectors. sets as values. In particular, a 'function' with no arguments can be either an element or a set. The connection between the two versions and how to get from one to the other is the subject of the rest of this paper.

I leave ---→ E * ⊗ S leave(z) did : n 2 r si ℓ d :: I do -→ E * ⊗ S ⊗ S * ⊗ E do(y 2) id(y 1) not : d r ii ℓ d :: I not --→ E * ⊗ S ⊗ S * ⊗ E not Ω (z 2) id(z 1)
leave: d r in ℓ ::

I leave ---→ E * ⊗ S ⊗ E * leave(x 1 , x 2)
Here, E and S are distinguished vector spaces. The space E = V U is the finite dimensional space generated by the set U . The elements of U , i.e. the basis vectors of E, are called individuals. The space S = V Ω is two-dimensional. Its basis vectors, the elements of the set Ω = {⊤, ⊥}, are called truth-values. The vector ⊤ = (1, 0) stands for true, ⊥ = (0, 1) for false, -→ 0 = (0, 0) stands for no truth values and the vector -→ 1 = (1, 1) ∈ S for partly true and partly false. The syntactical type determines the space of the meaning vector. Each simple type corresponds to a factor of the tensor product and vice-versa. The basic types c i , n i , d correspond to the space E and the types s, i to S . Right and left adjoints of basic types correspond to the dual spaces, for example

n 2 c 2 ℓ E ⊗ E * n 2 r s i ℓ d E * ⊗ S ⊗ S * ⊗ E c 2 E n 2 r s E * ⊗ S
Suppose the meaning expressions of words are given as functions. The function symbols leave, all, not Ω , id and boy correspond to basic types, the variables to right or left adjoints of basic types

n 2 c 2 ℓ all x c 2 boy n 2 r s z leave .
In order to compute the meaning expression of a sentence replace every simple type in the reduction by the corresponding function symbol and substitute according to the links. For example, Apply the same method to the sentence The boys did not leave. Substitution according to the links results in the compound expression do(not Ω (leave(the(boy))) .

(3)

On the other hand, to construct the vector representing a sentence, form the tensor product of the word vectors and compose it with the reduction. 3 The composition is legitimate, because reductions define 2 -cells in the free compact 2 -category and in particular linear maps of vector spaces. The meaning expressions in vector notation identify with linear maps of domain I. Therefore they are morphisms of a compact closed category and as such are representable by graphs. Compute the meaning expression of a sentence by the following instructions

• replace the morphisms by their graphs

I all --→ E ⊗ E * I boy --→ E I leave ---→ E * ⊗ S I Ð Ð all E ⊗ E * I E boy I leave 1 1 E * ⊗ S
• join the graphs by the tensor product

Ð Ð all I 1 1 boy (E ⊗ E *) ⊗ (E) ⊗ (E * ⊗ S) leave
• compose this product with the linear map r ′ 0 defined by the reduction (1)

m(all boys lef t) = r ′ 0 • (all ⊗ boy ⊗ leave) = Ð Ð all W W d d S I 1 1 boy (E ⊗ E *) ⊗ (E) ⊗ (E * ⊗ S) leave = leave•all•boy I S = leave(all(boy))
The logical content of all is captured by the postulate all = id E , from which it follows that leave(all(boy)) = leave(boy) .

(4)

The graph of the is that of all except for the label. The graphical representation of the vectors do :

I → E * ⊗ S ⊗ S * ⊗ E and not : I → E * ⊗ S ⊗ S * ⊗ E are do = I 6 6 | | do E * ⊗ S ⊗ S * ⊗ E not = I 6 6 | | notΩ E * ⊗ S ⊗ S * ⊗ E
Again, we form the tensor product and compose it with the linear map corresponding to the reduction (2)

r ′ 1 • (the ⊗ boy ⊗ do ⊗ not ⊗ leave) = Ð Ð the X X 5 5 ~do S d d c c 5 5 Ð Ð I x x p p p p p p p p p p p p p p p p p p d d a a 2 2 boy E ⊗ E * ⊗ E ⊗ E * ⊗ S ⊗ S * ⊗ E ⊗ E * ⊗ S ⊗ S * ⊗ E ⊗ E * ⊗ S notΩ leave = do(not Ω (leave(the(boy)))
The righthand expression in the equality above coincides with the expression (3) computed by substitution, confirming the slogan 'substitution in logic is composition in categories'. The auxiliary do in the negated sentence has only a syntactic purpose, it does not influence the meaning. This is expressed by postulate do = id S .

(5) do(not Ω (leave(the(boy))) = not Ω (leave(the(boy))) .

Similarly, the logical content of the word not is captured by requiring that not Ω : S → S is the negation of truth-values

not Ω (⊤) = ⊥ not Ω (⊥) = ⊤ . (7
)
The semantics is clearly compositional in both versions. The vector approach does not require variables and is invariant under change of order. The latter is guaranteed by the following lemma Lemma 1. The meaning vector of a sentence is strictly invariant under permutation of the word meanings.

Proof. Indeed, the tensor product is symmetric up to isomorphism. If we compose the tensor product of the word vectors with the permutation σ, we must compose the inverse σ -1 with the reduction r to obtain a reduction of the permuted tensor product. Hence

r •(w 1 ⊗. . .⊗w n) = (r •σ -1)•(σ •(w 1 ⊗. . .⊗w n)) = (r •σ -1)•(w σ(1) ⊗. . .⊗w σ(n)) .
Variable-free functional expressions and invariance of the expression under change of order in the arguments are the first two postulates concerning compositional semantics formulated in [START_REF] Kracht | The emergence of syntactical structure[END_REF]. The third and last postulate, which says that arguments may not be repeated, is also satisfied. The example of the relative pronoun who in Section 7 illustrates how multiple occurrences are avoided.

Examples

The value of the meaning-expression of a sentence depends on the value of the meaning expressions of the words. Consider two examples and M 2 . The former represents a situation where all of the boys present in the room left, whereas in the latter, the boys did not leave. Let boy = {a 1 , . . . , a m } be the set of boys in question. The interpretations of leave differ in M 1 and M 2 , namely

M 1 M 2 leave 1 (a i) = ⊤ leave 2 (a i) = ⊥ 1 ≤ i ≤ m . (8)
We refer the reader to Section 7 to see that

leave 1 (boy) = ⊤ not Ω (leave 1 (boy)) = ⊥ leave 2 (boy) = ⊥ not Ω (leave 2 (boy)) = ⊤ .
In a third situation M 3 , only the boys a 1 and a 2 left and the others stayed behind.

M 3 leave 3 (a i) = ⊤ leave 3 (a i) = ⊥ 1 ≤ i ≤ 2 3 ≤ i ≤ m .
In this case, leave 3 (boy) = {⊤, ⊥} and not Ω (leave 3 (boy)) = {⊤, ⊥} .

3 An algorithm from functional semantics to vector semantics

The algorithm translates function expressions to vector expressions, preserving the meaning of grammatical strings of words. It decomposes into five routines, called 'Map', 'Glue', 'Diagonal', 'Name', 'Rearrange'. They are executed in that order, but the routines 'Glue', 'Diagonal' and 'Rearrange' do not always apply. The first example concerning sentence negation does not use the routine 'Diagonal'. The second example uses all five routines and concerns the relative pronoun.

3.1 The routines 'Map', 'Glue' , 'Name', 'Rearrange'

Recall the entries all : n 2 c 2 ℓ :: all(x) did : n r si ℓ d :: do(y 2) id(y 1)

not : d r ii ℓ d :: not Ω (z 2) id(z 1) leave : d r i :: leave(z)
and the correspondence of simple types and symbols

n 2 c 2 ℓ all x n 2 r s i ℓ d y 1 do y 2 id d r i i ℓ d z 1 not Ω z 2 id d r i z leave Routine 'Map'
-read each function as map with domain and codomain, respecting the correspondence of simple types and spaces

c 2 ℓ n 2 x all I all --→ E i ℓ s n 2 r d y 2 do y 1 id S do -→ S E id -→ E i ℓ i d r d z 2 not Ω z 1 id S notΩ ---→ S E id -→ E d r i x leave E leave ---→ S Routine 'Glue'
-glue the maps arising in the same lexical entry together with the help of the tensor product, recopying the correspondence of simple types and spaces

S ⊗ E do⊗id ----→ S ⊗ E S ⊗ E notΩ⊗id -----→ S ⊗ E i ℓ n 2 r s d i ℓ d r i d
Routine 'Name' -replace the linear maps by their names, that is to say the vector designating the matrix associated to a linear map. Keep track of the correspondence between factors and simple types

I boy =boy ------→ E I do⊗id -----→ E * ⊗ S * ⊗ S ⊗ E c 2 n 2 r i ℓ s d I leave -----→ E * ⊗ S I notΩ⊗id -------→ E * ⊗ S * ⊗ S ⊗ E d r i d r i ℓ i d
Routine 'Rearrange' -rearrange the factors in the order in which the simple types occur in the syntactical type. To do so, compose the name with the appropriate permutation

all = c • all : I → E * ⊗ E c 2 ℓ n 2 do = c ′ • do ⊗ id : I → E * ⊗ S ⊗ S * ⊗ E n 2 r s i ℓ d not = c ′ • not Ω ⊗ id : I → E * ⊗ S ⊗ S * ⊗ E d r i i ℓ d
where c : E ⊗ E * → E * ⊗ E permutes the two factors and c ′ :

E * ⊗ S * ⊗ S ⊗ E → E * ⊗ S ⊗ S * ⊗ E
switches the second and the third factor.

The routine 'Diagonal'

The next example involves the relative pronoun who and uses the routine 'Diagonal'. The lexical entries concerning the noun-phrase the boys who left are the : n 2 c 2 ℓ :: the(x) boys : c 2 :: boy

who : c 2 r c 2 s ℓ n 2 :: who(x 1 , x 2) id(x 1) left : n 2 r s :: leave(z) .
Note that the interpretation of who : c 2 r c 2 s ℓ n 2 has a property not encountered previously. A variable, namely x 1 , occurs in more than one functional expression. The algorithm constructs the corresponding vector

who : I → E * ⊗ E ⊗ S * ⊗ E
with the help of the new routine 'Diagonal' below.

The correspondence between symbols and simple types is

the x n 2 c 2 ℓ boy c 2 x 1 who id x 2 c 2 r c 2 n 2 s ℓ z leave n 2 r s .
using the reduction, compute the meaning expression of the noun-phrase the boys who left the(who(boy, leave(id(boy)))) = the(who(boy, leave(boy))) .

The translation algorithm first executes 'Map' 'Glue'

E ⊗ S who --→ E E id --→ E c 2 r s ℓ c 2 c 2 r n 2 E ⊗E ⊗S id E ⊗who -----→ E ⊗E c 2 r c 2 r s ℓ n 2 c 2 .
The simple type c 2 r occurs twice in the tensor product, whereas it has only one occurrence in the lexical entry. Equivalently, the variable x 1 'lives' in two different factors of the argument space where there should be only one. This is [START_REF] Kracht | The emergence of syntactical structure[END_REF]'s requirement that arguments may not be repeated. The solution here is the diagonal, i.e. the linear map d E : E → E ⊗ E that maps each basis vector a to a ⊗ a .

Routine 'Diagonal' -form the tensor product of the diagonal d E with the identity of the other factor(s) so that the 'adjusted' the diagonal can be composed with id E ⊗ who

E ⊗ S d E ⊗id S -----→ E ⊗ E ⊗ S c 2 r s ℓ c 2 r c 2 r s ℓ E ⊗ S (id E ⊗who)•(d E ⊗id S) -------------→ E ⊗ E c 2 r s ℓ c 2 n 2 .
The next two routines are 'Name' and 'Rearrange', namely

I (id⊗who)•(d E ⊗id S) --------------→ E * ⊗ S * ⊗ E ⊗ E c 2 r s ℓ n 2 c 2 and who = c • (id ⊗ who) • (d E ⊗ id S⊗E) : I → E * ⊗ E ⊗ S * ⊗ E , (9)
where c :

E * ⊗ S * ⊗ E ⊗ E → E * ⊗ E ⊗ S * ⊗ E c 2 r s ℓ n 2 c 2 c 2 r c 2 s ℓ n 2 .
makes two exchanges, namely first between the last two factors and then between the third and the second factor.

Noun-phrases formed with the relative pronoun

The strings boys who left and the boys who left have both a reduction to a basic type, namely

r 3 = a a c 2 d d boys who left (c 2) (c 2 r c 2 s ℓ n 2) (n 2 r s)
and

r 4 = (n 2 c 2 ℓ) (c 2) (c 2 r c 2 s ℓ n 2) (n 2 r s) n 2 d d ` b b the boys who left .
Finally, the equality (9) above defines the representation of who by the graph

who : I → E * ⊗ E ⊗ S * ⊗ E = I id 5 5 5 5 who E * ⊗ E ⊗ S * ⊗ E .
Compose the tensor product of the word vectors with the reduction to obtain

m(boys who left) = r ′ 3 • (boy ⊗ who ⊗ leave) = W W id 5 5 4 4 E Ð Ð d d `4 4 leave I boy } } | | | | | | | | | | | | who (E) ⊗ (E * ⊗ E ⊗ S * ⊗ E) ⊗ (E * ⊗ S
E ⊗ E * ⊗ E ⊗ E * ⊗ E ⊗ S * ⊗ E ⊗ E * ⊗ S
= the(who(boy, leave(boy))

The isomorphism

In Information Retrieval Systems, words are represented by vectors of some fixed finite dimensional space. The coordinates of the vector are in general obtained by a frequency count of occurrences of words in documents. Hence, without loss of generality, we may assume that the coordinates belong to the real interval I = [0, 1] . The linear order of real numbers induces a distributive and implication-complemented lattice structure on

I α ∨ β = max {α, β} α ∧ β = min {α, β} α → β = sup {γ ∈ I : α ∧ γ ≤ β} ¬α = α → 0 .
Clearly, α → β = 1 if and only if α ≤ β . I becomes a semi-ring with the operations

α + β = α ∨ β α • β = α ∧ β .
An I-space is an arbitrary finite-dimensional semi-module over I. The semi-ring I is identified with a one-dimensional space, also denoted I . The sum of vectors

v = α 1 a 1 +• • •+α n a n ∈ V and w = β 1 a 1 +• • •+β n a n ∈
V and the multiplication with a scalar α ∈ I are defined as usual, namely

v + w = (α 1 + β 1)a 1 + • • • + (α n + β n)a n αw = (α • β 1)a 1 + • • • + (α • β n)a n .
In particular, α(αv) = (α•α)v = αv = (α+α)v = αv+αv . An easy computation shows that every I-space V has a unique set A of basis vectors. We write V = V A . Orthogonality, inner and outer product of vectors are defined like in a vector space over the field of real numbers. As all coordinates are non-negative, vectors are orthogonal in the semi-module over I if and only if they are orthogonal in the vector space over the field of real numbers. The norm 4 of a vector is given by

α 1 a 1 + • • • + α n a n = sup {|α i |, 1 ≤ i ≤ n} = n i=1 α i .
The definitions of linear maps, matrix representation of linear maps and multiplication of matrices also remain unchanged. For example, a linear map f :

V A → V B satisfies f (- → 0) = - → 0 f (n i=1 α i a i) = n i=1 α i f (a i) .
Clearly, every linear map is defined by its values on the basis vectors. Its matrix is identified with a vector f ∈ V * A ⊗ V B , the tensor product of the dual space V * A of V A and V B . The coordinates of f , i.e. the entries of the matrix, are determined as usual. Indeed, let A = {a 1 , . . . , a n } and B = {b 1 , . . . , b m } . The dual space V * A is isomorphic to V A and therefore the vectors

a i ⊗ b j , 1 ≤ i ≤ n, 1 ≤ j ≤ m form a basis of V * A ⊗ V B . Then f = i,j γ i,j (a i ⊗ b j) ,
where γ i,j is the j-th coordinate of the vector f (a i).

Examples of linear maps are the identity id V A and the diagonal d V A : V A → V A ⊗ V A , namely the linear map that sends a basis vector to the outer product with itself

d V A (a) = a ⊗ a, for a ∈ A . Note that d V A (v) = v ⊗ v if v is not a basis vector. Indeed, d V A (n i=1 α i a i) = n i=1 α i (a i ⊗ a i) whereas (n i=1 α i a i) ⊗ (n i=1 α i a i) = 1≤i,j≤n (α i α j)(a i ⊗ a j) .
4 norm advocated for context-theoretical semantics in [START_REF] Clarke | Context-theoretic Semantics for Natural Language, an algebraic framework[END_REF] Linear maps of I-spaces are closely related to the functions interpreting lexical entries of pregroup grammars in two-sorted first order predicate logic. Definition 1. A function g : A → B is two-sorted if it maps elements and subsets of A to elements or subsets of B and satisfies Given an I-space V A , generated by a set of basis vectors A = {a 1 , . . . , a n }, define a map I A from V A to the set of subsets of A by

g({a}) = g(a) for a ∈ A g(∅) = ∅ g(X ∪ Y) = g(X) ∪ g(Y) for X, Y ⊆ A .
I A (β 1 a 1 + • • • + β n a n) = {a i ∈ A : β i = 0} .
From the definition follows that

I A (v + w) = I A (v) ∪ I A (w) I A (- → 0) = ∅ .
Conversely, given a set A = {a 1 , . . . , a m }, define a map J A from the set of subsets of A to the space V A thus

J A (X) = n i=1 α i a i , where α i = 1 if a i ∈ X and α i = 0 else . Clearly, for X, Y ⊆ A J A (X ∪ Y) = J A (X) + J A (Y) J A (∅) = - → 0 .
Finally, extend J A to elements by

J A (a) = J A ({a}) .
Given a set A and a two-sorted function g : A → B, let

J (A) = V A
and J (g) : J (A) → J (B) be the linear map defined on the basis A by

J (g)(a) = J B (g(a)
), for all a ∈ A .

Lemma 2. For every subset X ⊆ A and every two-sorted map g : A → B the following holds

I A • J A (X) = X (I • J)(g) = g .
Moreover, if the coordinates of v ∈ V A are 0 or 1 respectively the entries of the matrix of f : V A → V B are 0 or 1, then

J A • I A (v) = v (J • I)(f) = f .
Proof. To see the first equality, let J A (X) = n i=1 α i a i . By definition of I A , a i ∈ I A (J A (X)) if and only if α i = 0. By definition of J A , the latter holds if and only if a i ∈ X .

It suffices to show the second equality for elements, because its left and right hand expressions are two-sorted functions. Let a ∈ A. Then

(I • J)(g)(a) = I(J (g))(a) = I B (J (g)(a)) by (11) = I B (J B (g(a)) by (12) = (I B • J B)(g(a)) = g(a)
by the first equality .

The other equalities are proved similarly.

The equalities J A • I A (v) = v and (J • I)(f) = f do not hold in general. Vectors with coordinates different from 0 and 1 are 'lost' by the map J A • I A . Only the restriction of I A to vectors with coordinates in {0, 1} is a one-one map onto the set of subsets of A .

Theorem 1. J and I preserve identities, commute with composition, identify unions of sets with sums of spaces, products of sets with tensor products of spaces, the two-sorted diagonal with the linear diagonal and graphs of functions with matrices of linear maps.

The proof is straightforward, but notationally unpleasant, because there are only vectors in vector spaces, whereas the image of a space needs elements and subsets. The next section introduces a better notation for two-sorted functions and we come back to the proof then. In fact, natural language, where twosorted functions are ubiquitous, also uses them in a 'sloppy' way compared to set-theory.

5 Logic of concepts I-spaces accommodate both the functional logic of sentences and the propositional logic of semantic vector models. The link between the two is quantum logic of semi-modules over the lattice of real numbers. The point of view presented is taken from [START_REF] Preller | Quantum logic unites compositional functional semantics and distributional semantic models[END_REF].

According to [START_REF] Van Rijsbergen | The Geometry of Information Retrieval[END_REF], quantum logic for Information Retrieval Systems refers to the lattice structure of subspaces of a space over the field of real numbers. Every subspace is identified with a projector, namely the linear map that takes its values in the subspace and leaves every vector of the subspace invariant. Subspaces stand for words or combinations of words constructed with the help of the propositional connectives given by

¬E = E ⊥ , E ∨ F = E ⊕ F, E ∧ F = E • F, E → F = {v : F (E(v)) = E(v)} .
In general, the lattice structure is not distributive.

The same definitions in an I-space E = V A result in a distributive lattice of subspaces. Moreover, the order of the real interval I introduces a lattice structure on the vectors of V A , isomorphic to the lattice structure of subspaces of V A . The isomorphism J maps the Boolean algebra of subsets of A to the lattice of subspaces generated by subsets of A . Hence the lattice of subspaces for an arbitrary I-space includes a Boolean sublattice.

In a semantic vector model, words are represented by vectors of a finite dimensional space over the real numbers. One may assume without loss of generality that the coordinates belong to the interval I = [0, 1], because the number of words is finite. There are two kinds of semantic vector models. In one, the basis vectors are identified with words, in the other one with strings of words. In the first, the coordinates of the vectors result from a frequency count in context windows. In the second, they are given by a probability distribution on a set of strings. Both are used for detecting similarity of words or for choosing a particular meaning among the possible meanings of a word.

The string approach seems more appropriate for compositional semantics. In this case, arbitrary vectors can be viewed as concepts and the quantum connectives define the logic of concepts.

Indeed, the logical properties of quantum logic render faithfully the intuitive logical properties of words in the particular case where the I-space is a tensor product of two-dimensional spaces. Words are classified by a thesaurus, be it the mental thesaurus of the speaker or an explicit thesaurus. For a given set of key-words or basic concepts P = {p 1 , . . . , p n }, the vectors of the tensor product

C(P) = V {p 1⊤ , p 1⊥ } ⊗ . . . ⊗ V {p n⊤ , p n⊥ }
represent concepts. In particular, the words classified by the thesaurus are Boolean combinations of basic concepts. The sublattice of subspaces generated by basis vectors is isomorphic to the free Boolean algebra B(P) generated by P . The geometrical properties of C(P) reflect faithfully the logical properties of words. Concept spaces are the linguistic analogue to the tensor products of two-dimensional Hilbert spaces representing compound systems in quantum mechanics.

Note that V {p i⊤ , p i⊥ } is a notational variant of V Ω . Moreover, Ω is identified with the two-element Boolean algebra B(∅) of truth values. Hence the isomorphism transforms the Boolean connectives to linear maps. For example, the truth-value negation

J (¬) = not Ω : V Ω → V Ω , which satisfies not Ω (- → 0) = - → 0 , not Ω (⊤) = ⊥, not Ω (⊥) = ⊤, not Ω (⊤ + ⊥) = ⊥ + ⊤ .
Thus, the compact closed category of I-spaces includes both the functional models based on 2-sorted logic and the semantic vector models based on quantum logic.

6 Natural language in two-sorted first order logic It follows from Section 4 that the functional expressions in a pregroup lexicon are two-sorted functions. Functions in two-sorted first order logic were used in [START_REF] Preller | Toward discourse representation via pregroup grammars[END_REF] for pregroup semantics. Their relevance for natural language, however, goes back to the fact that two-sorted first order logic is equivalent to second order logic with general models, established in [Benthem and Doets, 1983].

Two-sorted first order logic, 2-FOL, has two sorts, one for elements and one for sets, a primitive relational symbol ∈ requiring elements on the left and sets on the right, and an equality symbol = accepting either sets on both sides or elements on both sides. Formulae are defined as usual, except that there are two sorts of quantifiers, namely ∃ x , ∀ x for elements and ∃ X , ∀ X for sets. The function(al symbol)s take elements and subsets as arguments and return elements or subsets. The two-sorts are reflect the fact that verbs may take singulars and plurals as arguments. 2-FOL provides a meta-language in which to define and prove the properties of the two-sorted functions interpreting words and grammatical expressions.

We introduce several operators on sets and elements and justify them by their use in natural language.

-The first operation is the two-sorted product defining both the ordered pair of elements and the Cartesian product of sets

prod(a, b) = a, b prod(a, B) = {a} × B prod(A, b) = A × {b} prod(A, B) = A × B
The two-sorted product is the counterpart of the tensor product, also a single operator defined both for vectors and spaces. The two-sorted product provides the argument set for transitive verbs.

-The second operator is the two-sorted union. It combines the set-theoretical operators 'unordered pair of elements' and 'union of sets' The single notation and stems from the meaning of the word and in Eva and Sue respectively boys and girls. It occurs in the lexical entries and : n 1 r n 2 n 1 ℓ :: and(x 1 , x 2), and : n 2 r n 2 n 2 ℓ :: and(x 1 , x 2) .

Note that and(a, a) = {a} and and(A, A) = A . Therefore and(A, A) = {A}. In fact, closure under the two-sorted union does not imply that a set exists which has the set A as element.

The operation of two-sorted union is the companion to the sum of vectors and spaces. Hence the property of commuting with two-sorted unions is the companion to the property of commuting the the sum in vector spaces. The established one-sorted set-theoretical notation is cumbersome when it comes to two-sorted logic. Here is an example what 'commuting with two-sorted unions' looks like in one-sorted notation.

Lemma 3. A function f that maps elements and sets to elements or sets commutes with the two-sorted union and if and only if it satisfies

f ({a}) = {f (a)} if f (a) is an element f ({a}) = f (a) if f (a) is a set f (A ∪ B) = f (A) ∪ f (B) if f (A) and f (B) are sets f (A ∪ B) = {f (A)} ∪ f (B) if f (A) is an element and f (B) a set f (A ∪ B) = f (A) ∪ {f (B)} if f (A) is a set and f (B) an element f (A ∪ B) = {f (A)} ∪ {f (B)} if f (A) and f (B) are elements
Proof. f (and(a, a)) = f ({a}) . On the other hand, and(f (a), f (a)) is equal to {f (a)} if f (a) is an element and to f (a) if it is a set. Hence, if f commutes with and the first two equalities hold. Similarly, f (and(A, B)) = f (A ∪ B) . Again, it suffices to express and(f (A), f (B)) in terms of union and unordered pair formation to see that the last four equalities hold if f commutes with and.

The problem is that f (a) can be an element or a set. Without the notational distinction between f (a) and {f (a)} the six equalities above are equivalent to the two equalities f ({a}) = f (a) and f (A ∪ B) = f (A) ∪ f (B) . We resolutely write f ({a}) = f (a) from now on, even if f (a) is an element. Hence the two-sorted functions of Definition (10) are exactly the functions which map the empty set to itself and commute with the two-sorted union.

The relative pronoun who is an example of a two-sorted function in natural language. The noun phrase the boys who entered the room may be refer to nobody, a single boy or several boys. Moreover, the boys and girls who entered the room is the union of the boys who entered the room and the girls who entered the room. We take the point of view that all meaning expressions in a pregroup lexicon refer either to elements or to sets or to two-sorted functions and illustrate this with some in particular, the quantifiers and determiners in the next section.

Before we can prove Theorem 4, we need an operation which transforms two-sorted function g : A → B into a set g , called the graph of g With the understanding that 'union' means 'two-sorted union' and 'product' means 'two-sorted product' in Theorem 1, its proof is indeed straight forward.

As an example, we show that I maps matrices to graphs:

Assume that f :

V A → V B is linear. Let f (a i) = m j=1 β ij b j . From I(f)(a i) = I B (f (a i)) follows that a i , b j ∈ I(f) if and only if β ij = 0 . Hence I A * ⊗B (f) = I(f) .
After identification of vectors in A * ⊗ B with linear maps from I to A * ⊗ B, this equality becomes

I(f) = I(f) .
Two-sorted functions are closed under composition. They include the constant functions, the unary functions obtained from the two-sorted union by making one argument equal to the empty set, and the projections of a product set onto the factors.

Remark : If A is finite every function that maps elements of A to elements of B extends uniquely into a two-sorted function from A to B. In particular, every relation of first order logic can be viewed as a two-sorted function that sends elements to truth-values, more precisely Definition 2. A predicate is a two-sorted function f : A → Ω such that

∀ x (x ∈ A =⇒ f (x) ∈ Ω) .
Note that the value of a predicate on a subset with more than two elements may be a set, namely {⊤, ⊥} . Moreover, predicates are closed under composition.

We conclude this section with a fundamental property of predicates. The interpretation of quantifiers by two-sorted functions is based on this property. Lemma 4. [Fundamental Lemma] Assume that f maps elements to elements. Then the following holds Fundamental Property For all finite X ⊆ A and all b ∈ f (A)

f (X) = b ⇔ (X = ∅ and f (a) = b for all a ∈ X) . (13)
Proof. If f (X) = b for some b ∈ f (A) then X is not the empty set, because two-sorted functions map the empty set to the empty set. Assume that

X = {a 1 , . . . , a n } . Then f (X) = f ({a 1 } ∪ • • • ∪ {a n }) = {f (a 1)} ∪ • • • ∪ {f (a n)},
because f commutes with finite unions. By assumption, no f (a i) is the empty set. Hence the equivalence follows.

7 The logic of sentences

The Fundamental Property provides the explanation how quantifiers can be captured by two-sorted functions. We explain this for universal quantifiers. A detailed development of the behaviour of quantifiers and determiners is beyond the scope of this paper. We use functional notation when discussing the meaning of sentences, vector notation when computing it. The first and second sentence have the same meaning and so do the third and fourth. Obviously, the meaning of the latter two sentences is not the logical negation of the meaning of the first two. Accordingly, the first order formulas rendering S 1 and S 2 are not equivalent.

S 1 ∀a(a ∈ boy =⇒ a ∈ leave) S 2 ∀a(a ∈ boy =⇒ a ∈ leave) .

In our formalisation, relations are represented by functions with values in Ω S 1 ∀a(a ∈ boy =⇒ leave(a)) = ⊤) S 2 ∀a(a ∈ boy =⇒ leave(a)) = ⊥) .

Recall the postulate all = id E . Similarly, we require the = id E .

Accordingly, the meaning expression m(All boys left) computes to leave(all(boy)) = leave(boy) = leave(the(boy)) .

Under the assumption that the set boy is not empty, the equivalence below is an instance of the Fundamental Property and therefore holds in 2-FOL leave(boy) = ⊤ ⇐⇒ ∀a(a ∈ boy =⇒ leave(a)) = ⊤) .

The assumption boy = ∅ cannot be proved. Telling someone that All/The boys left in a situation where there are no boys would provoke the question Which boys?. We ignore the problems arising when there is no obvious referent for the count-noun.

The sentences The boys do not leave and No boys left also have the same intuitive meaning. They are rendered by the first order formula ∀a(a ∈ boy =⇒ leave(a) = ⊥) .

The meaning expression of The boys did not leave is given by (6) in Section 2 as not Ω (leave(the(boy))) .

From (14) follows m(The boys did not leave) = not Ω (leave(boy)) .

The lexical entry for the word no also involves the universal quantifier id and the sentence negation not Ω no: ss ℓ n 1 c 1 ℓ ::

I no -→ S ⊗ S * ⊗ E ⊗ E * not Ω (z 1) id(z 2) no: ss ℓ n 2 c 2 ℓ :: I no -→ E * ⊗ S ⊗ S * ⊗ E not Ω (z 1) id(z 2) .
The graph of the vector no is

no : I → S ⊗ S * ⊗ E ⊗ E * = I Ò Ò notΩ Ñ Ñ S ⊗ S * ⊗ E ⊗ E *
The meaning expression of the sentence No boys left is computed by the following graph, where the underlinks are given by the reduction

m(No boys left) = r ′ 2 • (no ⊗ boy ⊗ leave) = S Ò Ò notΩ V V Ñ Ñ e e g g I Ø Ø)) (S ⊗ S * ⊗ E ⊗ E *) ⊗ (E) ⊗ (E * ⊗ S) boy leave
= not Ω (leave(boy)) .

We prove the equivalence not Ω (leave(boy)) = ⊤ ⇔ ∀a(a ∈ boy =⇒ leave(a) = ⊥) .

Consider the lefthand equality. It is equivalent to leave(boy)) = ⊥, because ⊤ is the only element or subset of Ω mapped by not Ω to ⊥ by (7). To conclude, it suffices to remark that the Fundamental Property (13) implies leave(boy)) = ⊥ ⇐⇒ ∀a(a ∈ boy =⇒ leave(a) = ⊥) .

Examples, continued

Return to the Examples (8) in Section 2. The statement All boys left holds in the interior logic of the model M 1 , whereas the statement The boys did not leave holds in M 2 . Indeed, leave 1 (boy) = leave 1 (

1≤i≤m a i) = ⊤ .
Similarly, leave 2 (boy) = ⊥ and therefore not Ω (leave 2 (boy) = ⊤ .

In the third example M 3 , only the boys a 1 and a 2 left. In this case, leave 3 (boy) = {⊤, ⊥} and not Ω (leave 3 (boy)) = {⊤, ⊥} .

Indeed, the two-sorted functions leave and not Ω commute with unions leave 3 (boy) = leave 3 (({a 1 , a 2 } ∪ {a 3 , . . . , a m }) = leave 3 ({a 1 , a 2 }) ∪ leave 3 ({a 3 , . . . , a m }) = {⊤, ⊥} .

Therefore not Ω (leave 3 (boy)) = not Ω ({⊤, ⊥}) = {not Ω (⊤)} , {not Ω (⊥)} = {⊥, ⊤} .

The equality partitions boy in two non-empty sets, namely the part for which leave 3 is true and another part for which it is false. In fact, these parts are constructed by the two-sorted function (linear map) that interprets the relative pronoun who.

Comprehension

The logical meaning of the relative pronoun who is captured by the axiom

who(a, b) = a if b = ⊤ ∅ if b = ⊥
which defines the two-sorted map who : E × S → E entirely.

Lemma 5. For every predicate f : E → S, the following equivalence holds ∀x (x ∈ who(A, f (A)) ⇐⇒ (x ∈ A and f (x) = ⊤)) .

(15)

Proof. The functions who and f commute with two-sorted unions and so does the composed function

x → who(x, f (x)) = (who

• (id E × f) • d E)(x).
By definition, who(a, f (a)) = a if f (a) = ⊤ who(a, f (a)) = ∅ else .

Let A = {a 1 , . . . , a n } = n i=1 {a i } . Then who(A, f (A)) = (who

• (id E × f) • d E)(n i=1 a i) = (who • (id E × f))(n i=1 a i , a i) = who(n i=1 a i , f (a i)) = n i=1 who(a i , f (a i)) .
It follows that x ∈ n i=1 who(a i , f (a i)) if and only if x = a i for some a i ∈ A such that f (a i) = ⊤.

For example in M 3 who(boy, leave 3 (boy)) = {a 1 , a 2 } who(boy, not Ω (leave 3 (boy))) = {a 3 , . . . , a m } .

The property expressed in (15) can be reformulated thus Theorem 2. The comprehension schema holds for predicates Proof. Indeed, who(A, f (A)) is a well defined set. Hence it suffices to put {x ∈ A : f (x) = ⊤} = who(A, f (A)) .

Conclusion

The semantics proposed here is compositional. Its vectorial version satisfies the postulates of [START_REF] Kracht | The emergence of syntactical structure[END_REF], namely meanings do not involve variables and are invariant under change of order or multiplicity. Moreover, the meaning of a statement is true in the interior logic if and only if the corresponding closed first-order formula holds in two-sorted first order logic.

Compact closed categories unite the distributional semantic vector models based on concepts and the functional semantics based on individuals in a common frame. Work on the relation between the vectors given by pregroup semantics and the vectors given by a probability distribution shows promising results in [START_REF] Clark | Concrete compositional sentence spaces[END_REF].

The algorithm that computes the meaning of a string of words from the meanings of the words is proportional to the length of the string. The reduction intervening in the computation is provided by the cubic parsing algorithm for pregroup grammars. Hence, pregroup lexicons that list not only the syntactic types of words, but also the meaning expressions provide an efficient tool for transforming text to formal semantical expressions commonly used in knowledge representation. Admittedly, the fragments of natural language covered so far are insufficient for applications. However, meta-rules in the style of [START_REF] Lambek | From word to sentence[END_REF] make the creation of comprehensive lexicons quite efficient.

 [z| all(x)] and [x| boy]. The expression obtained is leave(z)[z|all(x)][x|boy] = leave(all(boy)) .

=

 who • (boy ⊗ (leave • boy)) = who(boy, leave(boy)) and m(the boys who left) = r ′ 4 • (the ⊗ boy ⊗ who ⊗ leave) =

 two-sorted function defined on a finite set is determined by the values on elements. Examples are two-sorted diagonal two-sorted identity d(a) = a, a d(A) = { a, a : a ∈ A} id(a) = a, id(A) = A .

 every linear map f : V A → V B , the two-sorted function I(f) : I(V A) → I(V B) determined by I(f)(a) = I B (f (a)), for all a ∈ A .

 and(a, b) = {a, b} and(a, B) = {a} ∪ B and(A, b) = A ∪ {b} and(A, B) = A ∪ B .

g

 = { a, b ∈ A × B : a ∈ A, b ∈ B and either b = g(a) or b ∈ g(a)} .

 Definition 3. A sentence w 1 . . . w n is true in the interior logic if its meaning expression m(w1 . . . w n) satisfies m(w 1 . . . w n) = ⊤ holds in 2-FOL.Note that leave(boy) = ⊤ is not equivalent to leave(boy) = ⊥, because {⊤, ⊥} is another possible value. For all elements a ∈ boy, however, leave(a) = ⊤ is equivalent to leave(a) = ⊥ . Consider the sentences

	S 1	All boys left The boys left	S 2	The boys did not leave No boys left .

† Support by TALN/LIRMM is gratefully acknowledged ‡ Support by EPSRC is gratefully acknowledged

In a first approach, we could take the meaning of a sentence to be the tensor product of the meanings. But then every string of words would have a meaning.

Acknowledgement

The authors would like to thank two anonymous referees for constructive comments.