
HAL Id: lirmm-00597923
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00597923v1

Submitted on 2 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Vector Models and Functional Models for
Pregroup Grammars

Anne Preller, Mehrnoosh Sadrzadeh

To cite this version:
Anne Preller, Mehrnoosh Sadrzadeh. Semantic Vector Models and Functional Models for Pregroup
Grammars. Journal of Logic, Language and Information, 2011, 21, pp.01-25. �10.1007/s10849-011-
9132-2�. �lirmm-00597923�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00597923v1
https://hal.archives-ouvertes.fr

Semantic Vector Models and Functional Models

for Pregroup Grammars

Anne Preller ∗† Mehrnoosh Sadrzadeh ‡

LIRMM-CNRS, Montpellier, France Computing Laboratory, Oxford, U.K.

preller@lirmm.fr mehrs@comlab.ox.ac.uk

Abstract

We show that vector space semantics and functional semantics in two-

sorted first order logic are equivalent for pregroup grammars. An algo-

rithm translates functional expressions to vector expressions and vice-

versa. The semantics is compositional, variable free and invariant under

change of order or multiplicity. It includes the semantic vector models

of Information Retrieval Systems and has an interior logic admitting a

comprehension schema. A sentence is true in the interior logic if and

only if the ‘usual’ first order formula translating the sentence holds. The

examples include negation, universal quantifiers and relative pronouns.

Keywords: compositional semantics, quantum logic, pregroup grammars, semantic vector

models, symmetric compact closed categories, two-sorted functional first order logic

1 Introduction

Pregroup grammars, [Lambek, 1999], are based on compact bilinear logic,
[Lambek, 1993], a simplification of the Syntactic Calculus, [Lambek, 1958].
Compact bilinear logic or Pregroup Calculus places pregroup grammars in the
family of categorial grammars where ‘the grammar is in the lexicon’. The pre-
group grammars proposed so far cover a variety of languages, but most of them
with no reference to semantics. Indeed, giving up Syntactic Calculus meant giv-
ing up higher order logic, i.e. the Montague semantics of traditional categorial
grammars. The semantic structures appropriate for pregroup grammars had to
be rediscovered.

To fill this gap, compact 2 -categories are proposed in [Preller, 2005], followed
by functional models in two-sorted first order logic in [Preller, 2007]. This se-
mantics views verbs as predicates defined on individuals and sets of individuals.

∗published in JoLLI, 2011
†Support by TALN/LIRMM is gratefully acknowledged
‡Support by EPSRC is gratefully acknowledged

1

Vector Models and Functional Models 2

On the other hand, [Sadrzadeh, 2007] and [Clark et al., 2008] consider the cat-
egory of finite-dimensional real vector spaces and linear maps, with the explicit
aim to add compositionality to distributive semantic vector models. They de-
fine the meaning of a transitive verb as a vector in the tensor product of three
vector spaces. The basis vectors of two of the spaces are identified with nouns.
The basis vectors of the third space are the pairs of these nouns. The value of a
subject-object sentence formed by the verb and two nouns is computed with the
help of the interior product. Later this method has been extended to negated
sentences in [Preller and Sadrzadeh, 2011].

The starting point for this paper is the observation that the category of finite-
dimensional real vector spaces and the category of sets and two-sorted functions
are compact closed symmetric monoidal categories, or equivalently, symmetric
compact 2 -categories. We prove the equivalence of the two approaches relating
two-sorted first order logic to the theory of compact 2 -categories and thus
to quantum logic. Indeed, [Abramsky and Coecke, 2004] formulate quantum
protocols in the theory of compact 2 -categories. The logic for Information
Retrieval Systems of [Rijsbergen, 2004] uses the lattice of projectors in finite-
dimensional Hilbert spaces, also a compact 2 -category. A study by [Clarke,
2007] of context-theoretical semantics states that it is the lattice structure of
real numbers that works best for semantic vector models. Here we show that the
compact 2 -category of finite-dimensional semi-modules over a bounded lattice
of real numbers handles both the quantum logic of semantic vector models and
the functional models.

Section 2 introduces pregroup semantics in both the functional and the cat-
egorical versions. Section 3 presents an algorithm transforming one into the
other. Section 4 gives an isomorphic embedding of the category of two-sorted
functions into the category of semantic vector models over the lattice of real
numbers. Follows in Section 5 a sketch of quantum logic in the category of
semantic vector models over the lattice of real numbers. Section 6 motivates
functions of two-sorted first order logic by their relevance to natural language
and defines the structure of a symmetric compact 2 -category of the category
of sets and two-sorted functions. In Section 7, we define the interior logic and
show by examples that the vector of a sentence is true in the interior logic if
and only if the ‘usual’ first order formula interpreting the sentence holds. The
examples include universal quantifiers, negation and relative pronouns. In par-
ticular, the interpretation of the relative pronoun introduces a comprehension
schema based on the interior truth of the sentence vectors, in accordance with
an observation by [Benthem and Doets, 1983] that the comprehension schema
holds in two-sorted first order logic for certain families of expressions.

2 The two semantics

Pregroup grammars are based on compact bilinear logic, also known as pregroup
calculus. The set of pregroup types generated by a partially ordered set B =
〈B,≤〉 is the free monoid TB generated by the following set whose elements are

Vector Models and Functional Models 3

called simple types

SB =
{

a(z) : a ∈ B, z ∈ Z

}

.

The notation a(z) designates the ordered pair formed by the element a of B
and the integer z . A simple type of the form a(0) is identified with a ∈ B and
called a basic type. Strings of simple types are called types. By convention, if a
type T is given in the form T = t1 . . . tn, the ti’s are simple types for 1 ≤ i ≤ n .
In the case where n = 0, the string t1 . . . tn is empty, denoted ǫ . It is the unit
for the binary operation of concatenation in the free monoid.

Moreover, there are two unary operations ()ℓ and ()r, called left and right
adjoints, defined by

(a
(z1)
1 . . .a

(zn)
n)ℓ = a

(zn−1)
n . . .a

(z1−1)
1

(a
(z1)
1 . . .a

(zn)
k)r = a

(zn+1)
n . . .a

(z1+1)
1 .

This definition includes the case where n = 0 . Hence the equalities ǫℓ = ǫ = ǫr

hold for the empty string. It follows that aℓ = (a(0))ℓ = a(−1) and ar =
(a(0))r = a(1)

Finally, the binary derivability relation on types, denoted →, is the smallest
reflexive and transitive relation satisfying

(Induced step) Tx(z)T ′ → Ty(z)T ′

(Generalised contraction) Tx(z)y(z+1)T ′ → TT ′

(Generalised expansion) TT ′ → Tx(z+1)y(z)T ′

where either z is even and x ≤ y or z is odd and y ≤ x. Capitals T , T ′ etc.
designate arbitrary types, bold face letters x, y etc. basic types.

It follows that a type T ′ is derivable from type T , if either they are identical
strings or there is a sequence T1, . . . , Tn for which T1 = T, Tn = T ′ and Ti →
Ti+1 is a deduction rule, i.e. an induced step, a generalised contraction or a
generalised expansion.

A lexicon is a finite set of triples w : T :: m , where w is a word, T a type
and m a meaning expression. The pairs w : T , called entries, are sufficient
for syntactic analysis. Following [Lambek, 2008], such a set of pairs is called a
dictionary.

Intuitively, the basic types represent grammatically important notions. For
example, the basic types s and n stand for sentences and noun phrases respec-
tively.

A string of words w1, . . . , wn is a sentence, if there are entries w1 : T1, . . . , wn :
Tn such that T1 . . . Tn → s . Similarly, it is a noun phrase, if T1 . . . Tn → n .

For example, the sentences The boys left and The boys did not leave are
recognised by a pregroup grammar with a dictionary containing, among others,

Vector Models and Functional Models 4

the entries
all/the : n2c2

ℓ

boys : c2
left : n2

rsnℓ

did : n2
rsiℓd

not : driiℓd

leave : drinℓ

The basic type c1 stands for the singular and c2 for the plural of count nouns, n1

and n2 for the singular and the plural of noun phrases. Moreover, n is the type
of the noun phrase when the number does not matter, s is the sentence type1

and i the type of the infinitive. The type d is a ‘dummy’ type. It incorporates
the indices of phrase structure grammars into the syntactic types of pregroup
grammars. Finally, c1 ≤ n1, c2 ≤ n2 and n2 ≤ n so that c2n2

r → ǫ, nℓc2 → ǫ
etc. are generalised contractions.

Derivations are presented in the form of a graph, for example

r0 =

all
n2 c2

ℓ

boys
c2

left
n2

r s==dd

s
��

(1)

r1 =

the
n2 c2

ℓ

boys
c2

did
nr s iℓ d

not
dr i iℓ d

leave
dr i==dd aa ?? aa ;;

s
��

(2)

The underlinks mark the generalised contractions. Derivations that use only
generalised contractions are called reductions. It follows from a theorem in
[Lambek, 1999] that every derivation to a basic type is equivalent to a reduction.

Dictionary entries w : T are sufficient to recognise grammatical strings. To
define semantics for pregroup grammars, a meaning expression has to be added
to each dictionary entry.

The lexical entries below give two versions of the meaning expressions,
namely vectors in the third column and functions in the fourth column. We
recall that V and its dual space, V ∗, are isomorphic and that the basis vectors
of W ⊗V ∗ are the vectors bi⊗aj , where the bi’s vary over the basis vectors of W
and the aj ’s over those of V .2 Moreover, W ⊗ V ∗ and V ∗ ⊗W are isomorphic.
A vector v in space V is identified with a linear map v : I → V , where I is
a fixed one-dimensional space. A linear map f : V → W is identified with a
matrix, i.e. a vector pfq ∈ W ⊗V ∗ . A linear map g : V1⊗V2 → W is identified
with the bilinear map (v1, v2) 7→ g(v1⊗v2) ∈ W , which we also denote g . These
identifications rewrite the vectors of the third column of (2) as vectors or maps
in the fourth column. The isomorphism in Section 4 gives a more profound
connection: The entries in the fourth column are two-sorted functions, namely
functions that take elements and sets as arguments and return elements and

1We ignore the tense here.
2The ‘tensor product’ of two vectors is the same as the outer product of the vectors.

Vector Models and Functional Models 5

sets as values. In particular, a ‘function’ with no arguments can be either an
element or a set. The connection between the two versions and how to get from
one to the other is the subject of the rest of this paper.

all : n2 c2
ℓ :: I

all
−−→ E ⊗ E∗ all(x)

boys : c2 :: I
boy
−−→ E boy

left : n2
rs :: I

leave
−−−→ E∗ ⊗ S leave(z)

did : n2
rsiℓd :: I

do
−→ E∗ ⊗ S ⊗ S∗ ⊗ E do(y2) id(y1)

not : driiℓd :: I
not
−−→ E∗ ⊗ S ⊗ S∗ ⊗ E notΩ(z2) id(z1)

leave: drinℓ :: I
leave
−−−→ E∗ ⊗ S ⊗ E∗ leave(x1, x2)

Here, E and S are distinguished vector spaces. The space E = VU is the
finite dimensional space generated by the set U . The elements of U , i.e. the
basis vectors of E, are called individuals. The space S = VΩ is two-dimensional.
Its basis vectors, the elements of the set Ω = {⊤,⊥}, are called truth-values.

The vector ⊤ = (1, 0) stands for true, ⊥ = (0, 1) for false,
−→
0 = (0, 0) stands for

no truth values and the vector
−→
1 = (1, 1) ∈ S for partly true and partly false.

The syntactical type determines the space of the meaning vector. Each
simple type corresponds to a factor of the tensor product and vice-versa. The
basic types ci,ni,d correspond to the space E and the types s, i to S . Right
and left adjoints of basic types correspond to the dual spaces, for example

n2 c2
ℓ

E ⊗ E∗
n2

r s iℓ d

E∗ ⊗ S ⊗ S∗ ⊗ E
c2
E

n2
r s

E∗ ⊗ S

Suppose the meaning expressions of words are given as functions. The func-
tion symbols leave, all, notΩ, id and boy correspond to basic types, the vari-
ables to right or left adjoints of basic types

n2 c2
ℓ

all x
c2
boy

n2
r s

z leave .

In order to compute the meaning expression of a sentence replace every sim-
ple type in the reduction by the corresponding function symbol and substitute
according to the links. For example,

all
allx

boys
boy

left
z leave>>dd

s
��

defines the substitutions [z| all(x)] and [x| boy]. The expression obtained is

leave(z)[z|all(x)][x|boy] = leave(all(boy)) .

Vector Models and Functional Models 6

Apply the same method to the sentence The boys did not leave. Substitution
according to the links results in the compound expression

do(notΩ(leave(the(boy))) . (3)

On the other hand, to construct the vector representing a sentence, form the
tensor product of the word vectors and compose it with the reduction.3 The
composition is legitimate, because reductions define 2 -cells in the free compact
2 -category and in particular linear maps of vector spaces. The meaning ex-
pressions in vector notation identify with linear maps of domain I. Therefore
they are morphisms of a compact closed category and as such are representable
by graphs. Compute the meaning expression of a sentence by the following
instructions

• replace the morphisms by their graphs

I
all
−−→ E ⊗ E∗ I

boy
−−→ E I

leave
−−−→ E∗ ⊗ S

I

��
all

E ⊗ E∗

I

E

boy

��

I

leave

��
E∗ ⊗ S

• join the graphs by the tensor product

��
all

I

�� ��
boy

(E ⊗ E∗)⊗ (E)⊗ (E∗ ⊗ S)

leave

• compose this product with the linear map r′0 defined by the reduction (1)

m(all boys left) = r′0 ◦ (all⊗ boy⊗ leave)

=
��
all

99dd

S
��

I

�� ��
boy

(E ⊗ E∗)⊗ (E)⊗ (E∗ ⊗ S)

leave

= leave◦all◦boy

I

S
�� = leave(all(boy))

The logical content of all is captured by the postulate

all = idE ,

3In a first approach, we could take the meaning of a sentence to be the tensor product of
the meanings. But then every string of words would have a meaning.

Vector Models and Functional Models 7

from which it follows that

leave(all(boy)) = leave(boy) . (4)

The graph of the is that of all except for the label. The graphical represen-
tation of the vectors do : I → E∗ ⊗ S ⊗ S∗ ⊗E and not : I → E∗ ⊗ S ⊗ S∗ ⊗E
are

do =

I

$$|| do

E∗ ⊗ S ⊗ S∗ ⊗ E

not =

I

$$|| notΩ

E∗ ⊗ S ⊗ S∗ ⊗ E

Again, we form the tensor product and compose it with the linear map
corresponding to the reduction (2)

r′1 ◦ (the⊗ boy⊗ do⊗ not⊗ leave) =

��
the

::bb
##~~

do

S
��

dd ??
##��

I

xxpppppppppppppppppp

dd ==

boy

E ⊗ E∗ ⊗ E ⊗ E∗ ⊗ S ⊗ S∗ ⊗ E ⊗ E∗ ⊗ S ⊗ S∗ ⊗ E ⊗ E∗ ⊗ S

notΩ
leave

= do(notΩ(leave(the(boy)))

The righthand expression in the equality above coincides with the expression
(3) computed by substitution, confirming the slogan ‘substitution in logic is
composition in categories’.

The auxiliary do in the negated sentence has only a syntactic purpose, it
does not influence the meaning. This is expressed by postulate

do = idS . (5)

do(notΩ(leave(the(boy))) = notΩ(leave(the(boy))) . (6)

Similarly, the logical content of the word not is captured by requiring that
notΩ : S → S is the negation of truth-values

notΩ(⊤) = ⊥ notΩ(⊥) = ⊤ . (7)

The semantics is clearly compositional in both versions. The vector approach
does not require variables and is invariant under change of order. The latter is
guaranteed by the following lemma

Lemma 1. The meaning vector of a sentence is strictly invariant under per-
mutation of the word meanings.

Vector Models and Functional Models 8

Proof. Indeed, the tensor product is symmetric up to isomorphism. If we com-
pose the tensor product of the word vectors with the permutation σ, we must
compose the inverse σ−1 with the reduction r to obtain a reduction of the per-
muted tensor product. Hence

r◦(w1⊗. . .⊗wn) = (r◦σ−1)◦(σ◦(w1⊗. . .⊗wn)) = (r◦σ−1)◦(wσ(1)⊗. . .⊗wσ(n)) .

Variable-free functional expressions and invariance of the expression under
change of order in the arguments are the first two postulates concerning com-
positional semantics formulated in [Kracht, 2007]. The third and last postulate,
which says that arguments may not be repeated, is also satisfied. The example
of the relative pronoun who in Section 7 illustrates how multiple occurrences
are avoided.

Examples

The value of the meaning-expression of a sentence depends on the value of the
meaning expressions of the words. Consider two examples and M2. The former
represents a situation where all of the boys present in the room left, whereas in
the latter, the boys did not leave. Let boy = {a1, . . . , am} be the set of boys in
question. The interpretations of leave differ in M1 and M2, namely

M1 M2

leave1(ai) = ⊤ leave2(ai) = ⊥ 1 ≤ i ≤ m.
(8)

We refer the reader to Section 7 to see that

leave1(boy) = ⊤ notΩ(leave1(boy)) = ⊥
leave2(boy) = ⊥ notΩ(leave2(boy)) = ⊤ .

In a third situation M3, only the boys a1 and a2 left and the others stayed
behind.

M3

leave3(ai) = ⊤ leave3(ai) = ⊥
1 ≤ i ≤ 2 3 ≤ i ≤ m.

In this case,

leave3(boy) = {⊤,⊥} and notΩ(leave3(boy)) = {⊤,⊥} .

3 An algorithm from functional semantics to vec-

tor semantics

The algorithm translates function expressions to vector expressions, preserving
the meaning of grammatical strings of words. It decomposes into five routines,
called ‘Map’, ‘Glue’, ‘Diagonal’, ‘Name’, ‘Rearrange’. They are executed in

Vector Models and Functional Models 9

that order, but the routines ‘Glue’, ‘Diagonal’ and ‘Rearrange’ do not always
apply. The first example concerning sentence negation does not use the routine
‘Diagonal’. The second example uses all five routines and concerns the relative
pronoun.

3.1 The routines ‘Map’, ‘Glue’ , ‘Name’, ‘Rearrange’

Recall the entries

all : n2c2
ℓ :: all(x)

did : nrsiℓd :: do(y2) id(y1)
not : driiℓd :: notΩ(z2) id(z1)
leave : dri :: leave(z)

and the correspondence of simple types and symbols

n2 c2
ℓ

all x
n2

r s iℓ d

y1 do y2 id
dr i iℓ d

z1 notΩ z2 id
dr i

z leave

Routine ‘Map’
- read each function as map with domain and codomain, respecting the

correspondence of simple types and spaces

c2
ℓ n2

x all

I
all
−−→ E

iℓ s n2
r d

y2 do y1 id

S
do
−→ S E

id
−→ E

iℓ i dr d

z2 notΩ z1 id

S
notΩ−−−→ S E

id
−→ E

dr i

x leave

E
leave
−−−→ S

Routine ‘Glue’
- glue the maps arising in the same lexical entry together with the help of

the tensor product, recopying the correspondence of simple types and spaces

S ⊗ E
do⊗id
−−−−→ S ⊗ E S ⊗ E

notΩ⊗id
−−−−−→ S ⊗ E

iℓ n2
r s d iℓ dr i d

Routine ‘Name’
- replace the linear maps by their names, that is to say the vector desig-

nating the matrix associated to a linear map. Keep track of the correspondence
between factors and simple types

I
pboyq=boy
−−−−−−→ E I

pdo⊗idq
−−−−−→ E∗ ⊗ S∗ ⊗ S ⊗ E

c2 n2
r iℓ s d

I
pleaveq
−−−−−→ E∗ ⊗ S I

pnotΩ⊗idq
−−−−−−−→ E∗ ⊗ S∗ ⊗ S ⊗ E

dr i dr iℓ i d

Vector Models and Functional Models 10

Routine ‘Rearrange’
- rearrange the factors in the order in which the simple types occur in the

syntactical type. To do so, compose the name with the appropriate permutation

all = c ◦ pallq : I → E∗ ⊗ E
c2

ℓ n2

do = c′ ◦ pdo⊗ idq : I → E∗ ⊗ S ⊗ S∗ ⊗ E
n2

r s iℓ d

not = c′ ◦ pnotΩ ⊗ idq : I → E∗ ⊗ S ⊗ S∗ ⊗ E
dr i iℓ d

where c : E⊗E∗ → E∗⊗E permutes the two factors and c′ : E∗⊗S∗⊗S⊗E →
E∗ ⊗ S ⊗ S∗ ⊗ E switches the second and the third factor.

3.2 The routine ‘Diagonal’

The next example involves the relative pronoun who and uses the routine ‘Di-
agonal’. The lexical entries concerning the noun-phrase the boys who left are

the : n2c2
ℓ :: the(x)

boys : c2 :: boy
who : c2

rc2 s
ℓn2 :: who(x1, x2) id(x1)

left : n2
rs :: leave(z)

.

Note that the interpretation of who : c2
rc2 s

ℓn2 has a property not encoun-
tered previously. A variable, namely x1, occurs in more than one functional
expression. The algorithm constructs the corresponding vector

who : I → E∗ ⊗ E ⊗ S∗ ⊗ E

with the help of the new routine ‘Diagonal’ below.
The correspondence between symbols and simple types is

the x
n2 c2

ℓ

boy

c2

x1 who id x2

c2
r c2 n2 sℓ

z leave

n2
r s .

using the reduction, compute the meaning expression of the noun-phrase the
boys who left

the(who(boy, leave(id(boy)))) = the(who(boy, leave(boy))) .

The translation algorithm first executes

‘Map’ ‘Glue’

E ⊗ S
who
−−→ E E

id
−−→ E

c2
r sℓ c2 c2

r n2

E ⊗E ⊗S
idE⊗who
−−−−−→ E ⊗E

c2
r c2

r sℓ n2 c2

.

The simple type c2
r occurs twice in the tensor product, whereas it has only

one occurrence in the lexical entry. Equivalently, the variable x1 ‘lives’ in two
different factors of the argument space where there should be only one. This is

Vector Models and Functional Models 11

[Kracht, 2007]’s requirement that arguments may not be repeated. The solution
here is the diagonal, i.e. the linear map dE : E → E ⊗ E that maps each basis
vector a to a⊗ a .

Routine ‘Diagonal’
- form the tensor product of the diagonal dE with the identity of the other
factor(s) so that the ‘adjusted’ the diagonal can be composed with idE ⊗ who

E ⊗ S
dE⊗idS−−−−−→ E ⊗ E ⊗ S

c2
r sℓ c2

r c2
r sℓ

E ⊗ S
(idE⊗who)◦(dE⊗idS)
−−−−−−−−−−−−−→ E ⊗ E

c2
r sℓ c2 n2

.

The next two routines are ‘Name’ and ‘Rearrange’, namely

I
p(id⊗who)◦(dE⊗idS)q
−−−−−−−−−−−−−−→ E∗ ⊗ S∗ ⊗ E ⊗ E

c2
r sℓ n2 c2

and

who = c ◦ p(id⊗ who) ◦ (dE ⊗ idS⊗E)q : I → E∗ ⊗ E ⊗ S∗ ⊗ E , (9)

where
c : E∗ ⊗ S∗ ⊗ E ⊗ E → E∗ ⊗ E ⊗ S∗ ⊗ E
c2

r sℓ n2 c2 c2
r c2 sℓ n2

.

makes two exchanges, namely first between the last two factors and then between
the third and the second factor.

3.3 Noun-phrases formed with the relative pronoun

The strings boys who left and the boys who left have both a reduction to a basic
type, namely

r3 =
==

c2
��

dd <<

boys who left

(c2) (c2
r c2 sℓ n2) (n2

r s)

and

r4 =
(n2 c2

ℓ) (c2) (c2
r c2 s

ℓ n2) (n2
r s)

n2

��

dd << aa >>

the boys who left

.

Finally, the equality (9) above defines the representation of who by the graph

who : I → E∗ ⊗ E ⊗ S∗ ⊗ E =

I

id

~~who
E∗ ⊗ E ⊗ S∗ ⊗ E

.

Vector Models and Functional Models 12

Compose the tensor product of the word vectors with the reduction to obtain

m(boys who left) = r′3 ◦ (boy⊗ who⊗ leave) =

99

id

##""

E
��

��
dd <<

""
leave

I

boy

}}||
||

||
||

||
||

who

(E) ⊗ (E∗ ⊗ E ⊗ S∗ ⊗ E)⊗ (E∗ ⊗ S) =

I

boy

��0
00

00
0

E
leave

����
��

I

boy
��
��
�

���
��
�

E

who

��

(E ⊗ S)

= who ◦ (boy⊗ (leave ◦ boy)) = who(boy, leave(boy))

and
m(the boys who left) = r′4 ◦ (the⊗ boy⊗ who⊗ leave) =

��
the

ee >>
 ~~

who

E
��

ee ??

I

{{wwwwwwwwwwwwww

leave

boy

E ⊗ E∗ ⊗ E ⊗ E∗ ⊗ E ⊗ S∗ ⊗ E ⊗ E∗ ⊗ S

= the(who(boy, leave(boy))

4 The isomorphism

In Information Retrieval Systems, words are represented by vectors of some
fixed finite dimensional space. The coordinates of the vector are in general
obtained by a frequency count of occurrences of words in documents. Hence,
without loss of generality, we may assume that the coordinates belong to the
real interval I = [0, 1] . The linear order of real numbers induces a distributive
and implication-complemented lattice structure on I

α ∨ β = max {α, β}
α ∧ β = min {α, β}

α → β = sup {γ ∈ I : α ∧ γ ≤ β}
¬α = α → 0 .

Clearly, α → β = 1 if and only if α ≤ β . I becomes a semi-ring with the
operations

α+ β = α ∨ β
α · β = α ∧ β .

An I-space is an arbitrary finite-dimensional semi-module over I. The semi-ring
I is identified with a one-dimensional space, also denoted I . The sum of vectors

Vector Models and Functional Models 13

v = α1a1+· · ·+αnan ∈ V and w = β1a1+· · ·+βnan ∈ V and the multiplication
with a scalar α ∈ I are defined as usual, namely

v + w = (α1 + β1)a1 + · · ·+ (αn + βn)an
αw = (α · β1)a1 + · · ·+ (α · βn)an .

In particular, α(αv) = (α·α)v = αv = (α+α)v = αv+αv . An easy computation
shows that every I-space V has a unique set A of basis vectors. We write
V = VA .

Orthogonality, inner and outer product of vectors are defined like in a vector
space over the field of real numbers. As all coordinates are non-negative, vectors
are orthogonal in the semi-module over I if and only if they are orthogonal in
the vector space over the field of real numbers. The norm4 of a vector is given
by

‖α1a1 + · · ·+ αnan‖ = sup {|αi|, 1 ≤ i ≤ n} =

n
∑

i=1

αi .

The definitions of linear maps, matrix representation of linear maps and
multiplication of matrices also remain unchanged. For example, a linear map
f : VA → VB satisfies

f(
−→
0) =

−→
0

f(
∑n

i=1 αiai) =
∑n

i=1 αif(ai) .

Clearly, every linear map is defined by its values on the basis vectors. Its matrix
is identified with a vector pfq ∈ V ∗

A ⊗ VB , the tensor product of the dual space
V ∗
A of VA and VB . The coordinates of pfq, i.e. the entries of the matrix, are

determined as usual. Indeed, let A = {a1, . . . , an} and B = {b1, . . . , bm} . The
dual space V ∗

A is isomorphic to VA and therefore the vectors ai ⊗ bj , 1 ≤ i ≤
n, 1 ≤ j ≤ m form a basis of V ∗

A ⊗ VB . Then

pfq =
∑

i,j

γi,j(ai ⊗ bj) ,

where γi,j is the j-th coordinate of the vector f(ai).
Examples of linear maps are the identity idVA

and the diagonal dVA
: VA →

VA ⊗ VA, namely the linear map that sends a basis vector to the outer product
with itself

dVA
(a) = a⊗ a, for a ∈ A .

Note that dVA
(v) 6= v ⊗ v if v is not a basis vector. Indeed,

dVA
(

n
∑

i=1

αiai) =

n
∑

i=1

αi(ai ⊗ ai)

whereas

(

n
∑

i=1

αiai)⊗ (

n
∑

i=1

αiai) =
∑

1≤i,j≤n

(αiαj)(ai ⊗ aj) .

4norm advocated for context-theoretical semantics in [Clarke, 2007]

Vector Models and Functional Models 14

Linear maps of I-spaces are closely related to the functions interpreting
lexical entries of pregroup grammars in two-sorted first order predicate logic.

Definition 1. A function g : A → B is two-sorted if it maps elements and
subsets of A to elements or subsets of B and satisfies

g({a}) = g(a) for a ∈ A
g(∅) = ∅

g(X ∪ Y) = g(X) ∪ g(Y) for X,Y ⊆ A .
(10)

Obviously, a two-sorted function defined on a finite set is determined by the
values on elements. Examples are

two-sorted diagonal two-sorted identity
d(a) = 〈a, a〉
d(A) = {〈a, a〉 : a ∈ A}

id(a) = a,
id(A) = A .

Given an I-space VA, generated by a set of basis vectors A = {a1, . . . , an},
define a map IA from VA to the set of subsets of A by

IA(β1a1 + · · ·+ βnan) = {ai ∈ A : βi 6= 0} .

From the definition follows that

IA(v + w) = IA(v) ∪ IA(w)

IA(
−→
0) = ∅ .

Moreover, define
I(VA) = A

and, for every linear map f : VA → VB , the two-sorted function I(f) : I(VA) →
I(VB) determined by

I(f)(a) = IB(f(a)), for all a ∈ A . (11)

Conversely, given a set A = {a1, . . . , am}, define a map JA from the set of
subsets of A to the space VA thus

JA(X) =

n
∑

i=1

αiai, where αi = 1 if ai ∈ X and αi = 0 else .

Clearly, for X,Y ⊆ A

JA(X ∪ Y) = JA(X) + JA(Y)

JA(∅) =
−→
0 .

Finally, extend JA to elements by

JA(a) = JA({a}) .

Vector Models and Functional Models 15

Given a set A and a two-sorted function g : A → B, let

J (A) = VA

and J (g) : J (A) → J (B) be the linear map defined on the basis A by

J (g)(a) = JB(g(a)), for all a ∈ A . (12)

Lemma 2. For every subset X ⊆ A and every two-sorted map g : A → B the
following holds

IA ◦ JA(X) = X
(I ◦ J)(g) = g .

Moreover, if the coordinates of v ∈ VA are 0 or 1 respectively the entries of the
matrix of f : VA → VB are 0 or 1, then

JA ◦ IA(v) = v
(J ◦ I)(f) = f .

Proof. To see the first equality, let JA(X) =
∑n

i=1 αiai. By definition of IA,
ai ∈ IA(JA(X)) if and only if αi 6= 0. By definition of JA, the latter holds if
and only if ai ∈ X .

It suffices to show the second equality for elements, because its left and right
hand expressions are two-sorted functions. Let a ∈ A. Then

(I ◦ J)(g)(a) = I(J (g))(a)
= IB(J (g)(a)) by (11)
= IB(JB(g(a)) by (12)
= (IB ◦ JB)(g(a))
= g(a) by the first equality .

The other equalities are proved similarly.

The equalities JA ◦ IA(v) = v and (J ◦ I)(f) = f do not hold in general.
Vectors with coordinates different from 0 and 1 are ‘lost’ by the map JA ◦ IA .
Only the restriction of IA to vectors with coordinates in {0, 1} is a one-one map
onto the set of subsets of A .

Theorem 1. J and I preserve identities, commute with composition, identify
unions of sets with sums of spaces, products of sets with tensor products of
spaces, the two-sorted diagonal with the linear diagonal and graphs of functions
with matrices of linear maps.

The proof is straightforward, but notationally unpleasant, because there are
only vectors in vector spaces, whereas the image of a space needs elements and
subsets. The next section introduces a better notation for two-sorted functions
and we come back to the proof then. In fact, natural language, where two-
sorted functions are ubiquitous, also uses them in a ‘sloppy’ way compared to
set-theory.

Vector Models and Functional Models 16

5 Logic of concepts

I-spaces accommodate both the functional logic of sentences and the proposi-
tional logic of semantic vector models. The link between the two is quantum
logic of semi-modules over the lattice of real numbers. The point of view pre-
sented is taken from [Preller and Prince, 2010].

According to [Rijsbergen, 2004], quantum logic for Information Retrieval
Systems refers to the lattice structure of subspaces of a space over the field of
real numbers. Every subspace is identified with a projector, namely the linear
map that takes its values in the subspace and leaves every vector of the subspace
invariant. Subspaces stand for words or combinations of words constructed with
the help of the propositional connectives given by

¬E = E⊥, E ∨ F = E ⊕ F, E ∧ F = E ◦ F, E → F = {v : F (E(v)) = E(v)} .

In general, the lattice structure is not distributive.
The same definitions in an I-space E = VA result in a distributive lattice

of subspaces. Moreover, the order of the real interval I introduces a lattice
structure on the vectors of VA, isomorphic to the lattice structure of subspaces
of VA . The isomorphism J maps the Boolean algebra of subsets of A to the
lattice of subspaces generated by subsets of A . Hence the lattice of subspaces
for an arbitrary I-space includes a Boolean sublattice.

In a semantic vector model, words are represented by vectors of a finite
dimensional space over the real numbers. One may assume without loss of
generality that the coordinates belong to the interval I = [0, 1], because the
number of words is finite. There are two kinds of semantic vector models. In
one, the basis vectors are identified with words, in the other one with strings of
words. In the first, the coordinates of the vectors result from a frequency count
in context windows. In the second, they are given by a probability distribution
on a set of strings. Both are used for detecting similarity of words or for choosing
a particular meaning among the possible meanings of a word.

The string approach seems more appropriate for compositional semantics.
In this case, arbitrary vectors can be viewed as concepts and the quantum
connectives define the logic of concepts.

Indeed, the logical properties of quantum logic render faithfully the intuitive
logical properties of words in the particular case where the I-space is a tensor
product of two-dimensional spaces. Words are classified by a thesaurus, be it
the mental thesaurus of the speaker or an explicit thesaurus. For a given set of
key-words or basic concepts P = {p1, . . . , pn}, the vectors of the tensor product

C(P) = V{p1⊤, p1⊥} ⊗ . . .⊗ V{pn⊤, pn⊥}

represent concepts. In particular, the words classified by the thesaurus are
Boolean combinations of basic concepts. The sublattice of subspaces generated
by basis vectors is isomorphic to the free Boolean algebra B(P) generated by
P . The geometrical properties of C(P) reflect faithfully the logical properties
of words. Concept spaces are the linguistic analogue to the tensor products

Vector Models and Functional Models 17

of two-dimensional Hilbert spaces representing compound systems in quantum
mechanics.

Note that V{pi⊤, pi⊥} is a notational variant of VΩ. Moreover, Ω is identified
with the two-element Boolean algebra B(∅) of truth values. Hence the isomor-
phism transforms the Boolean connectives to linear maps. For example, the
truth-value negation

J (¬) = notΩ : VΩ → VΩ ,

which satisfies

notΩ(
−→
0) =

−→
0 , notΩ(⊤) = ⊥, notΩ(⊥) = ⊤, notΩ(⊤+⊥) = ⊥+⊤ .

Thus, the compact closed category of I-spaces includes both the functional
models based on 2-sorted logic and the semantic vector models based on quan-
tum logic.

6 Natural language in two-sorted first order logic

It follows from Section 4 that the functional expressions in a pregroup lexicon
are two-sorted functions. Functions in two-sorted first order logic were used
in [Preller, 2007] for pregroup semantics. Their relevance for natural language,
however, goes back to the fact that two-sorted first order logic is equivalent
to second order logic with general models, established in [Benthem and Doets,
1983].

Two-sorted first order logic, 2-FOL, has two sorts, one for elements and
one for sets, a primitive relational symbol ∈ requiring elements on the left and
sets on the right, and an equality symbol = accepting either sets on both sides
or elements on both sides. Formulae are defined as usual, except that there
are two sorts of quantifiers, namely ∃x, ∀x for elements and ∃X , ∀X for sets.
The function(al symbol)s take elements and subsets as arguments and return
elements or subsets. The two-sorts are reflect the fact that verbs may take
singulars and plurals as arguments. 2-FOL provides a meta-language in which
to define and prove the properties of the two-sorted functions interpreting words
and grammatical expressions.

We introduce several operators on sets and elements and justify them by
their use in natural language.

- The first operation is the two-sorted product defining both the ordered pair
of elements and the Cartesian product of sets

prod(a, b) = 〈a, b〉
prod(a,B) = {a} ×B
prod(A, b) = A× {b}
prod(A,B) = A×B

The two-sorted product is the counterpart of the tensor product, also a single
operator defined both for vectors and spaces. The two-sorted product provides
the argument set for transitive verbs.

Vector Models and Functional Models 18

- The second operator is the two-sorted union. It combines the set-theoretical
operators ‘unordered pair of elements’ and ‘union of sets’

and(a, b) = {a, b}
and(a,B) = {a} ∪B
and(A, b) = A ∪ {b}
and(A,B) = A ∪B .

The single notation and stems from the meaning of the word and in Eva and
Sue respectively boys and girls. It occurs in the lexical entries

and : n1
rn2n1

ℓ :: and(x1, x2), and : n2
rn2n2

ℓ :: and(x1, x2) .

Note that and(a, a) = {a} and and(A,A) = A . Therefore and(A,A) 6= {A}. In
fact, closure under the two-sorted union does not imply that a set exists which
has the set A as element.

The operation of two-sorted union is the companion to the sum of vectors
and spaces. Hence the property of commuting with two-sorted unions is the
companion to the property of commuting the the sum in vector spaces. The
established one-sorted set-theoretical notation is cumbersome when it comes to
two-sorted logic. Here is an example what ‘commuting with two-sorted unions’
looks like in one-sorted notation.

Lemma 3. A function f that maps elements and sets to elements or sets com-
mutes with the two-sorted union and if and only if it satisfies

f({a}) = {f(a)} if f(a) is an element
f({a}) = f(a) if f(a) is a set
f(A ∪B) = f(A) ∪ f(B) if f(A) and f(B) are sets
f(A ∪B) = {f(A)} ∪ f(B) if f(A) is an element and f(B) a set
f(A ∪B) = f(A) ∪ {f(B)} if f(A) is a set and f(B) an element
f(A ∪B) = {f(A)} ∪ {f(B)} if f(A) and f(B) are elements

Proof. f(and(a, a)) = f({a}) . On the other hand, and(f(a), f(a)) is equal to
{f(a)} if f(a) is an element and to f(a) if it is a set. Hence, if f commutes with
and the first two equalities hold. Similarly, f(and(A,B)) = f(A ∪ B) . Again,
it suffices to express and(f(A), f(B)) in terms of union and unordered pair
formation to see that the last four equalities hold if f commutes with and.

The problem is that f(a) can be an element or a set. Without the notational
distinction between f(a) and {f(a)} the six equalities above are equivalent to the
two equalities f({a}) = f(a) and f(A∪B) = f(A)∪ f(B) . We resolutely write
f({a}) = f(a) from now on, even if f(a) is an element. Hence the two-sorted
functions of Definition (10) are exactly the functions which map the empty set
to itself and commute with the two-sorted union.

The relative pronoun who is an example of a two-sorted function in natural
language. The noun phrase the boys who entered the room may be refer to
nobody, a single boy or several boys. Moreover, the boys and girls who entered

Vector Models and Functional Models 19

the room is the union of the boys who entered the room and the girls who entered
the room. We take the point of view that all meaning expressions in a pregroup
lexicon refer either to elements or to sets or to two-sorted functions and illustrate
this with some in particular, the quantifiers and determiners in the next section.

Before we can prove Theorem 4, we need an operation which transforms
two-sorted function g : A → B into a set pgq, called the graph of g

pgq = {〈a, b〉 ∈ A×B : a ∈ A, b ∈ B and either b = g(a) or b ∈ g(a)} .

With the understanding that ‘union’ means ‘two-sorted union’ and ‘product’
means ‘two-sorted product’ in Theorem 1, its proof is indeed straight forward.
As an example, we show that I maps matrices to graphs:

Assume that f : VA → VB is linear. Let f(ai) =
∑m

j=1 βijbj . From
I(f)(ai) = IB(f(ai)) follows that 〈ai, bj〉 ∈ pI(f)q if and only if βij 6= 0 .
Hence IA∗⊗B(pfq) = pI(f)q . After identification of vectors in A∗ ⊗ B with
linear maps from I to A∗ ⊗B, this equality becomes

I(pfq) = pI(f)q .

Two-sorted functions are closed under composition. They include the con-
stant functions, the unary functions obtained from the two-sorted union by
making one argument equal to the empty set, and the projections of a product
set onto the factors.

Remark : If A is finite every function that maps elements of A to elements
of B extends uniquely into a two-sorted function from A to B. In particular,
every relation of first order logic can be viewed as a two-sorted function that
sends elements to truth-values, more precisely

Definition 2. A predicate is a two-sorted function f : A → Ω such that

∀x(x ∈ A =⇒ f(x) ∈ Ω) .

Note that the value of a predicate on a subset with more than two elements
may be a set, namely {⊤,⊥} . Moreover, predicates are closed under composi-
tion.

We conclude this section with a fundamental property of predicates. The
interpretation of quantifiers by two-sorted functions is based on this property.

Lemma 4. [Fundamental Lemma] Assume that f maps elements to ele-
ments. Then the following holds
Fundamental Property
For all finite X ⊆ A and all b ∈ f(A)

f(X) = b ⇔ (X 6= ∅ and f(a) = b for all a ∈ X) . (13)

Proof. If f(X) = b for some b ∈ f(A) then X is not the empty set, because
two-sorted functions map the empty set to the empty set. Assume that X =
{a1, . . . , an} . Then f(X) = f({a1} ∪ · · · ∪ {an}) = {f(a1)} ∪ · · · ∪ {f(an)},
because f commutes with finite unions. By assumption, no f(ai) is the empty
set. Hence the equivalence follows.

Vector Models and Functional Models 20

7 The logic of sentences

The Fundamental Property provides the explanation how quantifiers can be
captured by two-sorted functions. We explain this for universal quantifiers. A
detailed development of the behaviour of quantifiers and determiners is beyond
the scope of this paper. We use functional notation when discussing the meaning
of sentences, vector notation when computing it.

Definition 3. A sentence w1 . . . wn is true in the interior logic if its meaning
expression m(w1 . . . wn) satisfies

m(w1 . . . wn) = ⊤ holds in 2-FOL.

Note that leave(boy) 6= ⊤ is not equivalent to leave(boy) = ⊥, because
{⊤,⊥} is another possible value. For all elements a ∈ boy, however, leave(a) 6=
⊤ is equivalent to leave(a) = ⊥ . Consider the sentences

S1
All boys left
The boys left

S2
The boys did not leave
No boys left .

The first and second sentence have the same meaning and so do the third and
fourth. Obviously, the meaning of the latter two sentences is not the logical
negation of the meaning of the first two. Accordingly, the first order formulas
rendering S1 and S2 are not equivalent.

S1 ∀a(a ∈ boy =⇒ a ∈ leave)
S2 ∀a(a ∈ boy =⇒ a 6∈ leave) .

In our formalisation, relations are represented by functions with values in Ω

S1 ∀a(a ∈ boy =⇒ leave(a)) = ⊤)
S2 ∀a(a ∈ boy =⇒ leave(a)) = ⊥) .

Recall the postulate all = idE . Similarly, we require

the = idE . (14)

Accordingly, the meaning expression m(All boys left) computes to

leave(all(boy)) = leave(boy) = leave(the(boy)) .

Under the assumption that the set boy is not empty, the equivalence below
is an instance of the Fundamental Property and therefore holds in 2-FOL

leave(boy) = ⊤ ⇐⇒ ∀a(a ∈ boy =⇒ leave(a)) = ⊤) .

The assumption boy 6= ∅ cannot be proved. Telling someone that All/The boys
left in a situation where there are no boys would provoke the question Which
boys?. We ignore the problems arising when there is no obvious referent for the
count-noun.

Vector Models and Functional Models 21

The sentences The boys do not leave and No boys left also have the same
intuitive meaning. They are rendered by the first order formula

∀a(a ∈ boy =⇒ leave(a) = ⊥) .

The meaning expression of The boys did not leave is given by (6) in Section 2
as

notΩ(leave(the(boy))) .

From (14) follows

m(The boys did not leave) = notΩ(leave(boy)) .

The lexical entry for the word no also involves the universal quantifier id
and the sentence negation notΩ

no: ssℓn1c1
ℓ :: I

no
−→ S ⊗ S∗ ⊗ E ⊗ E∗ notΩ(z1) id(z2)

no: ssℓn2c2
ℓ :: I

no
−→ E∗ ⊗ S ⊗ S∗ ⊗ E notΩ(z1) id(z2) .

The graph of the vector no is

no : I → S ⊗ S∗ ⊗ E ⊗ E∗ =

I

��
notΩ

��
S ⊗ S∗ ⊗ E ⊗ E∗

The meaning expression of the sentence No boys left is computed by the
following graph, where the underlinks are given by the reduction

m(No boys left) = r′2 ◦ (no⊗ boy⊗ leave) =

S
��

��
notΩ

88
��

eegg

I

����
��
��
��

��
(S ⊗ S∗ ⊗ E ⊗ E∗)⊗ (E)⊗ (E∗ ⊗ S)

boy
leave

= notΩ(leave(boy)) .

We prove the equivalence

notΩ(leave(boy)) = ⊤ ⇔ ∀a(a ∈ boy =⇒ leave(a) = ⊥) .

Consider the lefthand equality. It is equivalent to leave(boy)) = ⊥, because ⊤
is the only element or subset of Ω mapped by notΩ to ⊥ by (7). To conclude,
it suffices to remark that the Fundamental Property (13) implies

leave(boy)) = ⊥ ⇐⇒ ∀a(a ∈ boy =⇒ leave(a) = ⊥) .

Vector Models and Functional Models 22

Examples, continued

Return to the Examples (8) in Section 2. The statement All boys left holds in
the interior logic of the model M1, whereas the statement The boys did not leave
holds in M2. Indeed,

leave1(boy) = leave1(
∑

1≤i≤m

ai) = ⊤ .

Similarly,
leave2(boy) = ⊥

and therefore
notΩ(leave2(boy) = ⊤ .

In the third example M3, only the boys a1 and a2 left. In this case,

leave3(boy) = {⊤,⊥} and notΩ(leave3(boy)) = {⊤,⊥} .

Indeed, the two-sorted functions leave and notΩ commute with unions

leave3(boy) = leave3(({a1, a2} ∪ {a3, . . . , am})
= leave3({a1, a2}) ∪ leave3({a3, . . . , am})
= {⊤,⊥} .

Therefore

notΩ(leave3(boy)) = notΩ({⊤,⊥}) = {notΩ(⊤)} , {notΩ(⊥)} = {⊥,⊤} .

The equality partitions boy in two non-empty sets, namely the part for which
leave3 is true and another part for which it is false. In fact, these parts are
constructed by the two-sorted function (linear map) that interprets the relative
pronoun who.

Comprehension

The logical meaning of the relative pronoun who is captured by the axiom

who(a, b) =

{

a if b = ⊤

∅ if b = ⊥

which defines the two-sorted map who : E × S → E entirely.

Lemma 5. For every predicate f : E → S, the following equivalence holds

∀x (x ∈ who(A, f(A)) ⇐⇒ (x ∈ A and f(x) = ⊤)) . (15)

Proof. The functions who and f commute with two-sorted unions and so does
the composed function

x 7→ who(x, f(x)) = (who ◦ (idE × f) ◦ dE)(x).

Vector Models and Functional Models 23

By definition,
who(a, f(a)) = a if f(a) = ⊤
who(a, f(a)) = ∅ else

.

Let A = {a1, . . . , an} =
⋃n

i=1 {ai} . Then

who(A, f(A)) = (who ◦ (idE × f) ◦ dE)(
⋃n

i=1 ai)
= (who ◦ (idE × f))(

⋃n

i=1〈ai, ai〉)
= who(

⋃n

i=1〈ai, f(ai)〉)
=

⋃n

i=1 who(ai, f(ai)) .

It follows that x ∈
⋃n

i=1 who(ai, f(ai)) if and only if x = ai for some ai ∈ A such
that f(ai) = ⊤.

For example in M3

who(boy, leave3(boy)) = {a1, a2}
who(boy, notΩ(leave3(boy))) = {a3, . . . , am} .

The property expressed in (15) can be reformulated thus

Theorem 2. The comprehension schema holds for predicates

Proof. Indeed, who(A, f(A)) is a well defined set. Hence it suffices to put

{x ∈ A : f(x) = ⊤} = who(A, f(A)) .

8 Conclusion

The semantics proposed here is compositional. Its vectorial version satisfies the
postulates of [Kracht, 2007], namely meanings do not involve variables and are
invariant under change of order or multiplicity. Moreover, the meaning of a
statement is true in the interior logic if and only if the corresponding closed
first-order formula holds in two-sorted first order logic.

Compact closed categories unite the distributional semantic vector mod-
els based on concepts and the functional semantics based on individuals in a
common frame. Work on the relation between the vectors given by pregroup
semantics and the vectors given by a probability distribution shows promising
results in [Clark et al., 2010].

The algorithm that computes the meaning of a string of words from the
meanings of the words is proportional to the length of the string. The reduction
intervening in the computation is provided by the cubic parsing algorithm for
pregroup grammars. Hence, pregroup lexicons that list not only the syntactic
types of words, but also the meaning expressions provide an efficient tool for
transforming text to formal semantical expressions commonly used in knowledge
representation. Admittedly, the fragments of natural language covered so far
are insufficient for applications. However, meta-rules in the style of [Lambek,
2008] make the creation of comprehensive lexicons quite efficient.

Vector Models and Functional Models 24

9 Acknowledgement

The authors would like to thank two anonymous referees for constructive com-
ments.

References

Samson Abramsky and Bob Coecke. A categorical semantics of quantum proto-
cols. In Proceedings of the 19th Annual IEEE Symposium on Logic in Com-
puter Science, pages 415–425, 2004.

Johan van Benthem and Kees Doets. Handbook of Philosophical Logic, chapter
Higher-Order Logic, pages 275–329. Reidel Publishing Company, Dordrecht,
1983.

Stephen Clark, Bob Coecke, and Mehrnoosh Sadrzadeh. A compositional dis-
tributional model of meaning. In W. Lawless P. Bruza and J. van Rijsbergen,
editors, Proceedings of Conference on Quantum Interactions. University of
Oxford, College Publications, 2008.

Stephen Clark, B. Coecke, E. Grefenstette, S. Pulman, and M. Sadrzadeh. Con-
crete compositional sentence spaces. In Compositionality and Distributional
Semantic Models, ESSLLI 2010, 2010.

Daoud Clarke. Context-theoretic Semantics for Natural Language, an algebraic
framework. PhD thesis, University of Sussex U.K., 2007.

Marcus Kracht. The emergence of syntactical structure. Linguist. Philos., 30:
47–95, 2007.

Joachim Lambek. The mathematics of sentence structure. American Mathe-
matical Monthly, 65:154–170, 1958.

Joachim Lambek. Substructural Logics, chapter From categorial grammar to
bilinear logic, pages 207–237. Oxford University Press, 1993.

Joachim Lambek. Type grammar revisited. In Alain et al. Lecomte, editor,
Logical Aspects of Computational Linguistics, volume 1582 of LNAI, pages
1–27, Heidelberg, 1999. Springer.

Joachim Lambek. From word to sentence. Polimetrica, Milano, Italia, 2008.

Anne Preller. Category theoretical semantics for pregroup grammars. In
Philippe Blache and Edward Stabler, editors, Logical Aspects of Computa-
tional Linguistics, volume 3492 of Lecture Notes in Artificial Intelligence,
pages 254–270, 2005.

Anne Preller. Toward discourse representation via pregroup grammars. JoLLI,
16:173–194, 2007. doi: http://dx.doi.org/10.1007/s10849-006-9033-y.

Vector Models and Functional Models 25

Anne Preller and Violaine Prince. Quantum logic unites compositional
functional semantics and distributional semantic models. In Composi-
tionality and Distributional Semantic Models, ESSLLI 2010, 2010. URL
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00495559.

Anne Preller and Mehrnoosh Sadrzadeh. Bell states and negated sentences in the
distributed model of meaning. Electronic Notes in Theoretical Computer Sci-
ence, 270:141–153, 2011. doi: http://dx.doi.org/10.1016/j.entcs.2011.01.028.

C.J. van Rijsbergen. The Geometry of Information Retrieval. Cambridge Uni-
versity Press, 2004.

Mehrnoosh Sadrzadeh. High-level quantum structures in linguistics and multi-
agent systems. In AAAI spring symposium on quantum interactions, 2007.

