
HAL Id: lirmm-00599690
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00599690

Submitted on 10 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Security Threats Against Chips Containing Scan
Chain Structures

Jean da Rolt, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre

To cite this version:
Jean da Rolt, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre. New Security Threats Against
Chips Containing Scan Chain Structures. HOST’11: IEEE International Symposium on Hardware-
Oriented Security and Trust, San Diego, CA, United States. pp.105-110. �lirmm-00599690�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00599690
https://hal.archives-ouvertes.fr

New security threats against chips
containing scan chain structures
Jean Da Rolt, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre

LIRMM (Université Montpellier II /CNRS UMR 5506)
Montpellier, France

{darolt, dinatale, flottes, rouzeyre}@lirmm.fr

Abstract—Insertion of scan chains is the most common technique
to ensure observability and controllability of sequential elements
in an IC. However, when the chip deals with secret information,
the scan chain can be used as back door for accessing secret (or
hidden) information, and thus jeopardize the overall security.
Several scan-based attacks on cryptographic functions have been
described and showed the need for secure scan implementations.
These attacks assume a single scan chain. However the
conception of large designs and restrictions in terms of test costs
may require the implementation of many scan chains and
additional test infrastructures for test response compaction. In
this paper, we present a new generic scan attack that covers a
wide range of industrial test infrastructures, including spatial
response compressors.

Keywords – security, testability, scan-based attack

I. INTRODUCTION

While scan insertion is one of the most popular Design for
Testability (DfT) methods, its use for secure devices, smart
cards for instance, opens a backdoor for security threats. “Scan
attacks” (e.g. [1], [2]) exploit facilities offered by scan chains
to retrieve embedded secret data, e.g. secret encryption keys.
These attacks rely on the possibility for hackers to shift out the
scan chain content while the circuit contains data correlated
with the secret. More precisely, they rely on the possibility to
switch the device from mission mode to test mode in order to
observe intermediate states of the circuit by means of scan-out
operations.

Several counter-measures have been proposed to face out
these scan attacks. A common industrial practice consists in
letting the scan pins unbound, or adding anti-fuses on scan pins
and blowing them after manufacturing test. The DfT flow is not
affected in this case. However, these solutions present several
drawbacks, the maintenance in the field is compromised and
the scan chain can still be controlled and observed with
probing. Other counter-measures aim to provide secure scan-
based DfT flows, they can be classified into methods that
secure the control of the chip [1][3], they involve power-off or
reset of scan flip-flops when switching from mission to test
mode, methods that detect unauthorized scan shifts by mean of
scan pattern watermarking [4][5][6], scan-enable tree
monitoring [7], or insertion of spy FFs into the scan chains [8],
and methods that provide confusion in the stream shifted out
from the scan chain [9][10][11][12].

While these techniques initially address single scan chain
circuits, other test architectures must be considered as well, for
instance, multiple scan chains with decompression of test

vectors and spatial compaction of test responses, which are
proven to not affect fault detection and diagnosis [13][14].
Since the compaction reduces the observation of scan-out
responses, it could be thought that it sufficiently increases the
complexity of the scan attack for preventing such practice. In
[13], the authors claim that embedded vector decompression
and response compaction lead to security improvements, and
that the attack proposed in [1] is not valid anymore. However
the increase in the security is based on two assumptions. First,
the attacker does not know the vector decompression structure
and thus he has to work around. Secondly, it is not possible to
retrieve the secret after the response compaction. The first
assumption is weak from a security point of view, being based
on the obfuscation principle. Moreover, scan attacks do not
necessarily rely on controlling the internal state of the circuit
by means of the scan chain, but conversely, rely on observing
the internal state. In other words, the control through the scan
chain is not a must for attacking the circuit.

This paper aims at showing that, conversely to the second
assumption, it is possible to retrieve the secret from compacted
responses, even if the amount of information related to the
secret key is extremely decreased. For instance this is the case
when the responses are compressed into a single parity bit
before observation, as in most of the current industrial test
solutions. Still, the attack proposed in Section III also proves to
be useful in the case where almost any FF containing
information related to the secret data is observable. The
proposed method for attacking the circuit is of low complexity
and the attack time may be negligible.

This paper is organized as follows: Section II reviews the
Advanced Encryption Standard (AES) implementations on
which experiments will be presented and lays the foundations
of scan attacks. Section III presents the proposed attack and
discusses optimizations in terms of number of input messages
to be loaded on the target circuit. Several attack scenarios are
presented in the Section IV covering up most of the industrial
test schemes. Finally, we draw some conclusions in section V.

II. SCAN-BASED ATTACKS ON THE ADVANCED ENCRYPTION

STANDARD

As a support secure circuit example thorough this paper,
we consider the case of a circuit including a crypto-core
implementing the Advanced Encryption Standard (AES).

A. Advanced Ecryption Standard

The AES was adopted by the US government (FIPS-197,
2001) as a standard for symmetric encryption. The AES

This work is supported by Région Languedoc-Roussillon under the
project "Prosecure"

105978-1-4577-1057-5/11/$26.00 c©2011 IEEE

algorithm is a symmetric block cipher that can encrypt and
decrypt information by 128-bits data blocks. Encryption
converts a plaintext to an unintelligible form called cipher text;
while decryption converts the cipher text back to its original
form. Encryption and decryption use the same cryptographic
secret key of 128, 192, or 256 bits. We focus here on the
encryption algorithm with 128-bits cryptographic keys (details
are fully described in [16]).

The basic unit for processing in the AES algorithm is the
byte. Input, output and secret key bit sequences are internally
processed on a two-dimensional array of bytes called the State.
The State consists of four rows of four bytes.

Figure 1. AES Algorithm

Figure 2. AES’ first round

Fig.1 summarizes the AES algorithm. The plaintext is first
copied to the State array then xored with the secret key. Then,
the State array is transformed by implementing a round
function that is repeated 10 times, with the final round slightly
differing from the first 9 rounds. The final State is then copied
to the output. The round function is parameterized using a Key
Expansion function that generates a variation of the original

secret key for each round. Round function is composed of 4
operations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. These functions operate and modify the value
of the State. The round-keys are processed in similar way. A
schematic view of the round function is shown in Fig.2 in
which each wire is one byte wide.

Pipelined and non-pipelined, as well as 8, 32 or 128 bits
datapath implementations have been proposed. In any case, the
result of a round is stored within a register, called round-
register hereafter, which is the target of scan-based attacks.

B. Scan-Based Attack

The general principle of the scan attacks consists in
observing the data stored in the round-register after the
execution of the first round for several known plaintexts by
means of scan-out operations, and then, from these
observations, to derive the secret key. For this purpose we
recall hereafter the principle of the attack proposed in [1] since
it will serve as a basis for the proposed attacks.

The attack relies on three requirements:
1) the possibility to switch from mission mode to test mode,

which allows the attacker to “stop” the cipher operation at
any moment (typically after the first round);

2) the possibility to control somehow the input plaintext (e.g.
as a primary input of the circuit) and to observe
intermediate states by means of scan out;

3) reseting the circuit and performing one AES round with a
first plaintext and doing the same operations with another
plaintext only affect the FFs belonging to the round-
register. In other words only the round-register FFs
depends on he plaintext value after the first round.

If these requirements are fulfilled, then the procedure to
retrieve the information is performed by the following steps: 1)
reset the circuit and process a plaintext for a single round, 2)
switch to test mode and scan out the response F, 3) reset the
circuit and encrypt another plaintext, 4/ switch to test mode and
scan out the response F’. Since only FFs belonging to the
round-register may have their value changed between step 2
and 4 (due to third requirement), one can determine for
instance some of the FFs of the round-register amongst all the
FFs of the design by comparing the two scan responses. For
example, if the first scan-out sequence is 01001100011001...
and the second one is 00011101011000..., one can infer that the
2nd, 4th, 8th and the 14th FFs belong to the round-register.

Actually, for the attack described in [1] and the ones
presented in this paper, there is no need to locate the FFs
belonging to the round-register, because key retrieval is
performed by examining the difference (Hamming distance)
between the two scan-out contents F and F’. Since the FFs that
do not belong to the round-register are not supposed to flip
between two plaintexts, they do not affect the Hamming
distance value. This feature permits the attacker to calculate the
Hamming distance without caring about which FFs correspond
to the AES ones.

 It must be noticed that the Hamming distance is the same
as before the AddRoundKey operation (shown in Fig. 2), i.e.
the dependence on the round-key is thus eliminated from the

106 2011 IEEE International Symposium on Hardware-Oriented Security and Trust

observation when the attack is differential. Besides of
removing the effects of the round-key, working in differential
mode also permits the division of the AES round in 16
independent datapaths, since when changing an AES input
corresponding to one MixColumns and keeping the inputs
corresponding to the other MixColumns constant will lead to
changes only in the 32 output bits of the MixColumns which
input has changed, thus the 96 bits from the other MixColumns
outputs keep constant and are eliminated by the Hamming
distance. Indeed each byte of the main key may be retrieved
while analyzing the output of its respective MixColumns block,
and thus for the 16 bytes of the key the attack may be
performed independently. This is the main aspect responsible
for the reduction of the complexity of the AES round, allowing
the scan attacker to quickly retrieve the secret.

The attack described in [1] uses the same base previously
described, however it relies on an analysis of the distribution of
the Hamming distances between F and F’. In order to have the

Hamming distances the input pairs are chosen as a and a’=a⊕1
(one pair element differs from the other just at the least
significant bit). Since the attack is performed for each byte of
the key the length of a is a byte, and so the total number of
pairs is 128 (256 input vectors). Then the attacker must find
one Hamming distance between 9, 12, 23 or 24, which are
generated by only one input pair. Each one of these special
hamming distances has a constant pair of b (shown in Fig. 2),
thus the subkey is K1s=a⊕b or K2s=a⊕b⊕1. The same process
is performed on the other 15 bytes of the input for retrieving
the other 15 bytes of K. The final choice between the K1s and
K2s can be done by checking an encryption result with respect
to the 216 possibilities.

The target of this attack is the single or multiple chain
schemes, however other industrial test schemes exist (e.g.
response compaction) where this attack is not valid anymore.
For this purpose the attack proposed in the following section
may be used instead, since it may be applied to a wide range of
scenarios as single and multiple chains (Subsection IV.A),
partially protected circuits (Subsection IV.B) and many spatial
compaction schemes (Subsection IV.C).

III. SIGNATURE ATTACK

The previously described attack imposes the need to access
the whole round-register in order to calculate the hamming
distance between two values. However, it is possible that the
attacker is not able to observe directly all 128 bits of the round-
register. For instance, in presence of test response compaction,
only a digest of the round-register is available out of the chip
bounds and the previous attack can no longer be carried out.
The goal of this paper is to present a new attack that aims at
recovering the secret key while observing a digest or part of the
information contained in the FFs related to the secret,. By
repeating this procedure the whole secret key is recovered.
Another improvement provided by this new attack is that the
number of input messages required for successfully retrieving
the key is reduced in comparison to the other attack.

The attack is divided in three parts: the pre-attack phase
where the circuit is modeled and the observable responses are
stored in a table; the practical part where the input messages

are actually loaded in the chip and the observed output
information is collected; and finally the signatures of the
collected information are compared to the pre-phase tables
revealing thus the secret key.

In the first phase the device implementing the crypto
algorithm is modeled and logic simulation is used to predict its
behavior. In this pre-attack phase the attacker must know
specifically which information can be observed, for instance it
may usually be the whole round-register value, as the attack
described in [1], or it may be the parity of the round-register,
which is the case of response compaction schemes. In the
Section III, we show that the observed value is not necessarily
obtained from the scan chain, Other side-channels (as chip
probing) may be used as well with this attack.

Fig. 3 shows a generic crypto block model and the signature
table built in the pre-attack phase. For each secret key value K,
all the M possible input data D are simulated and the observed
signal S is stored in the table at the right side, creating
signatures for all N keys. This procedure is complete when all
possible values of both key and input data are covered. It must
be noticed that the width of the S elements is exactly the
number of observed bits.

Figure 3. Pre-attack phase

Considering the AES as the targeted crypto block, it is
known that, when differential attacks are used (when the used
output is actually the difference between two measured
outputs), the first round can be decomposed in 16 independent
datapaths of 8-bit inputs, where each 8 bits of key affects 32
bits of the round-register. In this case, the pre-attack phase
consists on generating 16 signature tables, where for all the 256
possibilities of sub-key there is one signature. Concerning the
input data range, one can choose all the possible pairs that
differ just at the less significant bit, so there will be 128 pairs. It
should be noticed that as in the attack described in Section II,
this attack considers that the signature is composed of
differential information (e.g. hamming code), once this mode
allows us to eliminate the dependency of round key added by
the AddKey layer. For the DES, the situation is even easier
since each round-register bit depends on 6 key bits only and 7
plaintext bits after one round.

After the simulation is over and the signature table is
complete, the attacker may start to load the vectors D at the
input of the real circuit. This procedure is the very same of the
attack described in the Section II: first, the circuit is reset,
secondly a message is loaded at the input of the crypto chip,
then the cipher encrypts (just for one round) the message using

2011 IEEE International Symposium on Hardware-Oriented Security and Trust 107

the secret key (while in normal mode), and finally the attacker
force the circuit to enter in test mode and scan out all the data
stored in the scan chains. Since we suppose that the circuit is
reset after each step and only the AES input message is
changed, it implies that only the round-register bits may
change. Thus calculating the hamming distance between two
scan chains leads to the hamming distance of the desired signal.

Finally, the unauthorized user will proceed by loading at the
input of the crypto circuit the messages corresponding to the
first row in the signature table. If the collected signal does not
correspond to the value stored in one line at the first row, the
key respective to that line cannot be the secret key. In doing so,
after all pairs are finished there will be only one key left, which
is the correct one.

A. Finding the minimum number of input vectors

One important aspect of the proposed signature analysis is
that it is not necessary to simulate all the possible values for the
input message. With a reduced number of input vectors it is
possible to find a unique signature for each key. By unique, it
means that there are no two keys in the table with the same
signature. This characteristic may be better illustrated on the
example of the AES in the case where only one bit is
observable. The signature is therefore composed by the
concatenation of one bit values (for each input vector there is a
bit of output). In this case one may imagine that it would be
possible to represent 256 different signatures (each signature
composed by 8 bits) with only 8 pairs. In practice is not easy to
find these 8 pairs, however randomly choosing tens of pairs
normally results in unique signatures (at the cost of negligible
simulation time).

If the design implementing the crypto algorithm is not
protected at all, loading tens of pairs at its input is completely
feasible. However, some counter-measures that restrict the
number of scan-out operations related to one secret key (and
thus the quantity of observable information) may be
implemented in the chip. For instance, we can imagine that the
circuit contains a block that reset all the information related to
the secret key if the scan-out operation has been used for some
rounds. In this case, having a reduced number of input vectors
is a must for the attacker and so alternative methods to find the
required input vectors may be used.

In order to find the minimum number of needed vectors for
a particular observed signal, we used two different state space
search algorithms: random and simulated annealing. The first
one chooses randomly an initial number P of input pairs and
then verifies whether these pairs generate unique signatures. If
so, the number P is decremented by one unit and we restart the
algorithm. If not, we repeat the random choice and verification
T (trials) times. If after T trials there is no set of input vectors
able to generate a unique signature then the minimum number
of needed vectors is the current value of P.

Simulations show that randomly searching the vectors
usually results in tens input vectors. However in order to
reduce the search time and reduce even more the set of pairs,
simulated annealing may be used. This algorithm initially
chooses a random set of pairs, with P pairs. Then the signature
table is generated and the number of repeated signatures is

counted to perform an evaluation of the current set of pairs. If
there are no repeated signatures then the P value is reduced and
we restart the search with P-1. If not, one pair between the set
will be modified randomly and the new signature table is
evaluated. If the evaluation gets better (the number of repeated
signatures decrease) then this is the new best state. This step is
repeated N times for each pair position (for example, the first
pair will be changed 10 times and then the best candidate
remains), and the whole procedure is repeated T trials.

In addition to using simulated annealing to perform the
state space search, the form of the pairs is also chosen in such a
way that the number of total vectors is the minimum for that
number of pairs. For instance we choose the vectors in the form
(D1, D2), (D2, D3), (D3, D4) and etc, so one vector is used in
two pairs, except for the first and last pairs that contain one
unique vector. In other words, for N pairs there are N+1
vectors.

IV. SCENARI

The attack model presented in the previous section may be
applied to several different scenarios, depending on which
information the attacker is able to observe. It is important to
notice that all the most common industrial test schemes are
covered by this attack: single chain, multiple chains and
especially different response compaction schemes. In
Subsection A, the signature attack is used in the same scenari
as [1], meaning that the attacker has access to all 128 bits of
the round-register. Then in Subsection B, circuits which are
partially protected or where the attacker has access to a
reduced number of round-register bits are proved to be
attackable by the proposed technique. In addition to these
cases, in Subsection C it is shown how to use the signature
attack against response compaction schemes.

A. Observing the 32 bits

In the usual single chain scenario the whole round register
is inserted in the scan chain (as shown in Fig. 1), meaning that
the attacker may access all the 128 bits. So in the pre-attack
phase, the signature table is built using the hamming distance
over all the FFs in the scan chain (similarly to the existent
attack of Section II). Since the attacker normally changes a
reduced set of bits of the AES input message, only the 32
round-register bits affected by the correspondent MixColumns
could change between two different input messages. So the
hamming distance over all flip-flops is exactly the distance
over the targeted 32 bits.

As remarked, the AES attack may be split in 16 parts where
the data length is 8 bits and the sub-key length is also 8 bits. In
this case, the signature table is composed of 256 keys, and the
signature is represented by a series of hamming distances (from
0 to 32). Using the algorithm for finding the least number of
input vectors results that with only 4 input vectors we can
determine the value of a sub-key (8 bits of the secret key), by
means of generating 256 different signatures for all the keys.
For instance, the input pairs of vectors used for the first byte of
the secret key are (105, 223), (223, 143) and (143, 112). It must
be noticed that for each byte there is a different set of 4 input
vectors and each table contains different signatures. At least,

108 2011 IEEE International Symposium on Hardware-Oriented Security and Trust

repeating the procedure 16 times lead the attacker to the 128
bits of the secret key.

This instance of the attack is specially indicated for single
and multiple chain scenarios, where the attacker has access to
the round-register, and then he/she can retrieve the secret key
with 4 (complexity for each subkey) times 16 (number of
subkeys) input vectors at worst case.

B. Observing a particular FF

There are many scenarios where the user may have access
only to partial information on the round-register:
1) It is possible that some of the FFs from the round-register

are not inserted in the scan chain (partial scan design);
2) Some FFs may be masked with the intention to protect the

circuit against the attack described in [1] (while some are
not masked);

3) The attacker has no access via test and then he/she may use
a side-channel other than test to probe the signal from one
round-register FF;

In all these cases the attack described in [1] may not be
appropriated because it requires the access to the whole round-
register. Considering the attack model where at least 4 bits of
the round-register are observable, one per block of 32 bits
(MixColumns), the signature attack may be used. Each one of
these FFs depends on 32 input bits (due to the MixColumn
layer, see Fig. 2) and 32 key bits of key. It must be noticed that
the AddRoundKey layer is not considered because it is
eliminated when in differential mode.

Unlike the case shown in Subsection A, the signature in
these scenarios will contain one bit per pair (the observed bit)
instead of 32 bits. However the principle remains the same, for
each subkey (byte) the attacker must create a signature table in
the pre-attack simulation. Each table has 256 lines
(corresponding to the sub key possible value). For each
simulated pair, the Hamming distance of the observed bit is
stored in the table.

Table 1 shows the vectors that generate 256 unique
signatures for the bit number 0 of the round-register, it may be
noticed that it contains 13 vectors (12 pairs). Simulations
showed that for all the 128 round-register bits there is always a
set of 13 vectors able to ensure the uniqueness of the
signatures.

In summary, this instance of the signature attack
demonstrates that observing only one bit per MixColums, 4 bits
at all, allow the attacker to retrieve all the 128 bits of the secret
key. However, it imposes the need of knowing exactly which
register bit is being observed. Actually, this is not tricky since
the same attack may be used to retrieve which observed bit
corresponds to each round-register bit: since only 32 bits may
be affected by a change in one of the sub keys corresponding
input, the attacker knows which are the 32 candidates for the
unknown bit, in other words he/she knows to which
MixColumns block the observed output correspond. At worst,
he/she may generate 32 signature tables for each of the
candidates. In this case, the number of pairs should be
increased because the goal is to find unique signatures between
different tables, in such a way that all lines in the 32 tables

have no repeated signature. This increases the complexity of
the attack, however, it allows the identification of the round-
register bits in the scan-chain.

If the attacker already knows the position of the 4 bits he/
she is observing, than this attack has a complexity of 16 times
13 (number of subkeys times complexity of retrieving one sub
key). Regarding this low complexity, we conclude that all bits
in the round-register must be protected, otherwise the signature
attack may be used by an attacker to retrieve the key.

C. Attacking response compaction schemes: observing the
parity

In the current state-of-art, there is no attack that considers a
very common test practice: the response compaction. In
presence of a XOR-tree compactor as shown in Fig. 4, the
hamming distance between two output bitstreams is not
anymore the same as the hamming distance between two states
of the round register. The work proposed in [15] tends to
demonstrate that a decompression/compaction structure
naturally protects the circuit against scan-attacks. Anyway, the
signature attack described above is able to reveal the secret key
even in the presence of those response compactors.

This paper concentrates on the 1-bit output compactors
such as the XOR-tree depicted in Fig. 4, this case being the
worst situation for an attacker. The extension to other kinds of
spatial compactors is straightforward.

Figure 4. Response Compaction Scheme

As said in the Section III, the signature attack requires the
observation of a signal that is related to a reduced number of
secret key bits. The parity of the round-register may be used for
this purpose. It is straightforward to measure if the parity of the
round-register has changed or not (equivalent to the hamming
bit over only one bit), once the output bitstream is completely
unloaded, its parity is calculated and then if the resulting parity
has changed from the previous bitstream, then the parity of the
round-register has changed.

The pre-attack phase consists of the simulation of the AES
round, where at each step one byte at the input message is
changed and the parity over all round-register is stored in the
signature table. This procedure generates 16 tables with 256
lines each. In the practical phase, the attacker reads two output
bitstreams and calculates the difference of the parity, then he/

2011 IEEE International Symposium on Hardware-Oriented Security and Trust 109

she searches for the measured signature in the simulation table
till the good signature is found and thus the sub key.

In the same way that this instance of the signature attack
works for a generic compressor, it is susceptible to be used
against other proposed test structures whose parity is
observable. For example, the solution proposed in [17] as well
as the one proposed in [18] provides the parity as test response.
Simulations using the algorithm described in Section III show
that 13 vectors are enough for assuring the uniqueness of the
signatures, as shown in Table 2.

Moreover, this attack also offers the advantage of being
applicable for both single and multiple chain(s) scenarios. The
attacker only needs to calculate the parity of the state scanned
out from the scan chains. In other words, if the attacker does
not know which test structure is implemented in the chip, he/
she may try this technique, as long as the parity difference can
be observed.

V. CONCLUSION

This paper proposes a generic scan attack that is applicable
to several industrial DfT scenarios: single and multiple chains,
with or without response compaction structures. Besides, it is
shown that state space search algorithms may be used together
with this attack to find the minimum number of vectors needed
to retrieve the secret key, reducing the time spent when
interacting with the targeted circuit.

Considering the single or multiple chains without
compaction, this attack on AES is optimized so that only 4
vectors have to be applied on the circuit to retrieve one byte of
the secret key. The whole key is thus obtained with 26 inputs.
Aside from the fact that observing only 4 bits of the round-
register results in revealing the secret key, it is shown that all
bits of the round-register have to be protected. Conversely, only
one bit unprotected leads to divide the brute force attack
complexity by a factor 232.

We have shown that the supposed protection offered by test
response compaction structures has been overestimated in the
literature.

Moreover the attack proposed in the presence of response
compaction can be used as well for circuits without
compaction. Furthermore, no special knowledge about the
implemented DfT (number of scan chains, presence of response
compactor) is mandatory to an attacker to succeed.

Future works will analyze the security of other kinds of
compressors such as signature analyzers or convolutional
compactors.

REFERENCES

[1] Bo Y.; Kaijie W.; Karri R., "Secure Scan: A Design-for-Test Architecture
for Crypto Chips", IEEE Transactions on CAD, vol.25, no.10, pp.
2287-2293, Oct. 2006

[2] Bo Y.; Kaijie W.; Karri R.; "Scan based side channel attack on dedicated
hardware implementations of Data Encryption Standard," Proc. ITC
2004, pp. 339- 344.

[3] Hély D., Bancel F., Flottes M.-L., Rouzeyre B.. “Securing Scan Control
in Crypto Chips”. J. Electron. Test. 23, 5 (October 2007), pp. 457-464

[4] Hély D.et al., “Scan Pattern Watermarking”, LATW 2006

[5] Lee J., Tebranipoor M., Plusquellic, J. "A low-cost solution for
protecting IPs against scan-based side-channel attacks," Proc. VTS 2006,
pp.93-99

[6] Paul S., Chakraborty R.S., Bhunia, S., "VIm-Scan: A Low Overhead
Scan Design Approach for Protection of Secret Key in Scan-Based
Secure Chips," Proc VTS 2007. pp.455-460.

[7] Hely D., Bancel F.; Flottes M.L., Rouzeyre, B., "Test control for secure
scan designs," Proc. ETS 2005, pp. 190- 195.

[8] Hély D., “Testability of Secure ICs”, PhD report University of
Montpellier 2, 2005

[9] Mukhopadhyay D., Banerjee S., RoyChowdhury D.; Bhattacharya,
B.B.; , "CryptoScan: A Secured Scan Chain Architecture", Proc. 14th
ATS 2005, pp. 348- 353.

[10] Hely D., Flottes M.-L., Bancel, F., Rouzeyre B., Berard, N., Renovell
M., "Scan design and secure chip [secure IC testing]," Proc. IOLTS
2004. pp. 219- 224.

[11] Lee, J.; Tehranipoor, M.; Patel, C.; Plusquellic, J.; "Securing Designs
against Scan-Based Side-Channel Attacks," IEEE Trans. on Dependable
and Secure Computing, vol.4, no.4, pp.325-336.

[12] Sengar G., Mukhopadhyay D., Chowdhury D.R., "Secured Flipped
Scan-Chain Model for Crypto-Architecture," IEEE Trans. on CAD , vol.
26, no.11, pp.2080-2084, Nov. 2007

[13] Elm M., Wunderlich H.-J.; "Scan Chain Organization for Embedded
Diagnosis", Proc. DATE 2008, pp.468-473.

[14] Vranken H., Kumar Goel S., Glowatz A., Schloeffel J., Hapke, F.; "Fault
detection and diagnosis with parity trees for space compaction of test
responses", Proc. DAC 2006, pp.1095-1098.

[15] Liu C., Huang Y.; "Effects of Embedded Decompression and
Compaction Architectures on Side-Channel Attack Resistance," Proc.
VTS, 2007. pp. 461-468.

[16] http://csrc.nist.gov/publications/PubsFIPS.html

[17] J. Rajski, et al., Embedded Deterministic Test for Low Cost
Manufacturing Test. Proc. Int. Test Conf., pp. 301-310, 2002.

[18] S. Mitra and K. S. Kim, X-Compact: An Efficient Response Compaction
Technique. IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 23, pp. 421-432, 2004

(238,198) (198,44) (44,86) (86,222) (222,60) (60,231) (231,4) (4,3) (3,175) (175,73) (73,144) (144,187)

Table 1: Input vectors which create an unique signature table when a single FF is observable

(94,79) (79,227) (227,166) (166,21) (21,141) (141,233) (233,252) (252,171) (171,41) (41,117) (117,82) (82,218)

Table 2: Input vectors which create an unique signature table when observing the response compression output

110 2011 IEEE International Symposium on Hardware-Oriented Security and Trust

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

