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Abstract—Insertion of scan chains is the most common technique 
to ensure observability and controllability of  sequential elements 
in an IC. However, when the chip deals with secret information, 
the scan chain can be used as back door for accessing secret (or
hidden) information, and thus jeopardize the overall security. 
Several scan-based attacks on cryptographic functions have been 
described and showed the need for secure scan implementations. 
These attacks assume a single scan chain. However the 
conception of  large designs and restrictions in terms of test costs 
may require the implementation of  many scan chains and 
additional  test infrastructures for test response compaction. In 
this  paper, we present a new generic scan attack that covers a 
wide range of  industrial test infrastructures, including spatial
response compressors.

Keywords – security, testability, scan-based attack

I. INTRODUCTION

While scan insertion is one of the most popular Design for 
Testability (DfT) methods, its use for secure devices, smart 
cards for instance, opens a backdoor for security threats. “Scan 
attacks” (e.g. [1], [2]) exploit facilities offered by scan chains 
to retrieve embedded secret data, e.g. secret encryption keys. 
These attacks rely on the possibility for hackers to shift out the 
scan chain content while the circuit contains data correlated 
with the secret.  More precisely,  they rely on the possibility to 
switch the device from mission mode to test mode in order to 
observe intermediate states of the circuit by means of scan-out 
operations.

Several counter-measures have been proposed to face out 
these scan attacks. A common industrial practice consists in 
letting the scan pins unbound, or adding anti-fuses on scan pins 
and blowing them after manufacturing test. The DfT  flow is not 
affected in this case. However, these solutions present several 
drawbacks, the maintenance in the field is compromised and 
the scan chain can still be controlled and observed with 
probing. Other counter-measures aim to provide secure scan-
based DfT flows, they can be classified into methods that 
secure the control of the chip [1][3], they involve power-off or 
reset of scan flip-flops when switching from mission to test 
mode, methods that detect unauthorized scan shifts by mean of 
scan pattern watermarking [4][5][6], scan-enable tree 
monitoring [7], or insertion of spy FFs into the scan chains [8],  
and methods that provide confusion in the stream shifted out 
from the scan chain [9][10][11][12].

While these techniques initially address single scan chain 
circuits, other test architectures must be considered as well, for 
instance, multiple scan chains with decompression of test 

vectors and spatial compaction of test responses, which are 
proven to not affect fault detection and diagnosis [13][14]. 
Since the compaction reduces the observation of scan-out 
responses, it could be thought that it sufficiently increases the 
complexity of the scan attack for preventing such practice. In 
[13], the authors claim that embedded vector decompression 
and response compaction lead to security improvements, and 
that the attack proposed in [1] is not valid anymore. However 
the increase in the security is based on two assumptions. First, 
the attacker does not know the vector decompression structure 
and thus he has to work around. Secondly, it is not possible to 
retrieve the secret after the response compaction. The first 
assumption is weak from a security point of view, being based 
on the obfuscation principle. Moreover, scan attacks do not 
necessarily rely on controlling the internal state of the circuit 
by means of the scan chain, but conversely, rely on observing 
the internal state. In other words, the control through the scan 
chain is not a must for attacking the circuit.

This paper aims at showing that, conversely to the second 
assumption, it is possible to retrieve the secret from compacted 
responses, even if the amount of information related to the 
secret key is extremely decreased. For instance this is the case 
when the responses are compressed into a single parity bit 
before observation, as in most of the current industrial test 
solutions. Still, the attack proposed in Section III also proves to 
be useful in the case where almost any FF containing
information related to the secret data is observable. The 
proposed method for attacking the circuit is of low complexity 
and the attack time may be negligible.

This paper is organized as follows: Section II reviews the 
Advanced Encryption Standard (AES) implementations on 
which experiments will be presented and lays the foundations 
of scan attacks. Section III presents the proposed attack and 
discusses optimizations in terms of number of input messages 
to be loaded on the target circuit.   Several attack scenarios are 
presented in the Section IV covering up most of the industrial 
test schemes. Finally, we draw some conclusions in section V.

II. SCAN-BASED ATTACKS ON THE ADVANCED ENCRYPTION 

STANDARD

As a support secure circuit example thorough this paper, 
we consider the case of a circuit including a crypto-core 
implementing the Advanced Encryption Standard (AES).

A. Advanced Ecryption Standard

The AES was adopted by the US government (FIPS-197, 
2001) as a standard for symmetric encryption. The AES 
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algorithm is a symmetric block cipher that can encrypt and 
decrypt information by 128-bits data blocks. Encryption 
converts a plaintext to an unintelligible form called cipher text; 
while decryption converts the cipher text back to its original 
form. Encryption and decryption use the same cryptographic 
secret key of 128, 192, or 256 bits. We focus here on the 
encryption algorithm with 128-bits cryptographic keys (details 
are fully described in [16]).

The basic unit for processing in the AES algorithm is the 
byte. Input, output and secret key bit sequences are internally 
processed on a two-dimensional array of bytes called the State. 
The State consists of four rows of four bytes. 

Figure 1. AES Algorithm

Figure 2. AES’ first round

Fig.1 summarizes the AES algorithm. The plaintext is first 
copied to the State array then xored with the secret key. Then, 
the State array is transformed by implementing a round 
function that is repeated 10 times, with the final round slightly 
differing from the first 9 rounds.  The final State is then copied 
to the output. The round function is parameterized using a Key 
Expansion function that generates a variation of the original 

secret key for each round. Round function is composed of 4 
operations: SubBytes,  ShiftRows, MixColumns,  and 
AddRoundKey. These functions operate and modify the value 
of the State. The round-keys are processed in similar way. A 
schematic view of the round function is shown in Fig.2 in 
which each wire is one byte wide.

Pipelined and non-pipelined, as well as 8, 32 or 128 bits 
datapath implementations have been proposed. In any case, the 
result of a round is stored within a register, called round-
register hereafter, which is the target of scan-based attacks.

B. Scan-Based Attack

The general principle of the scan attacks consists in 
observing the data stored in the round-register after the 
execution of the first round for several known plaintexts by 
means of scan-out operations, and then, from these 
observations, to derive the secret key. For this purpose we 
recall hereafter the principle of the attack proposed in [1] since 
it will serve as a basis for the proposed attacks.

The attack relies on three requirements:
1) the possibility to switch from mission mode to test mode, 

which allows the attacker to “stop” the cipher operation at 
any moment (typically after the first round);

2) the possibility to control somehow the input plaintext (e.g. 
as a primary input of the circuit) and to observe 
intermediate states by means of scan out;

3) reseting the circuit and performing one AES round with a 
first plaintext and doing the same operations with another 
plaintext only affect the FFs belonging to the round-
register. In other words only the round-register FFs 
depends on he plaintext value after the first round.

If these requirements are fulfilled, then the procedure to 
retrieve the information is performed by the following steps: 1) 
reset the circuit and process a plaintext for a single round, 2) 
switch to test mode and scan out the response F, 3) reset the 
circuit and encrypt another plaintext, 4/ switch to test mode and 
scan out the response F’.  Since only FFs belonging to the 
round-register may have their value changed between step 2 
and 4 (due to third requirement),  one can determine for 
instance some of the FFs of the round-register amongst all the 
FFs of the design by comparing the two scan responses. For 
example,  if the first scan-out sequence is 01001100011001... 
and the second one is 00011101011000..., one can infer that the 
2nd, 4th, 8th and the 14th FFs belong to the round-register.

Actually, for the attack described in [1] and the ones 
presented in this paper, there is no need to locate the FFs 
belonging to the round-register, because key retrieval is 
performed by examining the difference (Hamming distance) 
between the two scan-out contents F and F’.  Since the FFs that 
do not belong to the round-register are not supposed to flip 
between two plaintexts, they do not affect the Hamming 
distance value. This feature permits the attacker to calculate the 
Hamming distance without caring about which FFs correspond 
to the AES ones.

 It must be noticed that the Hamming distance is the same 
as before the AddRoundKey operation (shown in Fig. 2), i.e. 
the dependence on the round-key is thus eliminated from the 
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observation when the attack is differential. Besides of 
removing the effects of the round-key,  working in differential 
mode also permits the division of the AES round in 16 
independent datapaths, since when changing an AES input 
corresponding to one MixColumns and keeping the inputs 
corresponding to the other MixColumns constant will lead to 
changes only in the 32 output bits of the MixColumns which 
input has changed, thus the 96 bits from the other MixColumns 
outputs keep constant and are eliminated by the Hamming 
distance. Indeed each byte of the main key may be retrieved 
while analyzing the output of its respective MixColumns block, 
and thus for the 16 bytes of the key the attack may be 
performed independently.  This is the main aspect responsible 
for the reduction of the complexity of the AES round, allowing 
the scan attacker to quickly retrieve the secret.

The attack described in [1] uses the same base previously 
described, however it relies on an analysis of the distribution of 
the Hamming distances between F and F’. In order to have the 

Hamming distances the input pairs are chosen as a and a’=a⊕1
(one pair element differs from the other just at the least 
significant bit). Since the attack is performed for each byte of 
the key the length of a is a byte, and so the total number of 
pairs is 128 (256 input vectors). Then the attacker must find 
one Hamming distance between 9, 12, 23 or 24, which are 
generated by only one input pair.  Each one of these special 
hamming distances has a constant pair of b (shown in Fig. 2), 
thus the subkey is K1s=a⊕b  or K2s=a⊕b⊕1. The same process 
is performed on the other 15 bytes of the input for retrieving 
the other 15 bytes of K. The final choice between the K1s and 
K2s can be done by checking an encryption result with respect 
to the 216 possibilities.

The target of this attack is the single or multiple chain 
schemes,  however other industrial test schemes exist (e.g. 
response compaction) where this attack is not valid anymore. 
For this purpose the attack proposed in the following section 
may be used instead, since it may be applied to a wide range of 
scenarios as single and multiple chains (Subsection IV.A), 
partially protected circuits (Subsection IV.B) and many spatial 
compaction schemes (Subsection IV.C).

III. SIGNATURE ATTACK

The previously described attack imposes the need to access 
the whole round-register in order to calculate the hamming 
distance between two values. However, it is possible that the 
attacker is not able to observe directly all 128 bits of the round-
register. For instance, in presence of test response compaction, 
only a digest of the round-register is available out of the chip 
bounds and the previous attack can no longer be carried out. 
The goal of this paper is to present a new attack that aims at 
recovering the secret key while observing a digest or part of the 
information contained in the FFs related to the secret,. By 
repeating this procedure the whole secret key is recovered. 
Another improvement provided by this new attack is that the 
number of input messages required for successfully retrieving 
the key is reduced in comparison to the other attack.

The attack is divided in three parts: the pre-attack phase 
where the circuit is modeled and the observable responses are 
stored in a table; the practical part where the input messages 

are actually loaded in the chip and the observed output 
information is collected; and finally the signatures of the 
collected information are compared to the pre-phase tables 
revealing thus the secret key.

In the first phase the device implementing the crypto 
algorithm is modeled and logic simulation is used to predict its 
behavior. In this pre-attack phase the attacker must know 
specifically which information can be observed, for instance it 
may usually be the whole round-register value, as the attack 
described in [1], or it may be the parity of the round-register, 
which is the case of response compaction schemes. In the 
Section III,  we show that the observed value is not necessarily 
obtained from the scan chain, Other side-channels (as chip 
probing) may be used as well with this attack.

Fig. 3 shows a generic crypto block model and the signature 
table built in the pre-attack phase. For each secret key value K, 
all the M possible input data D are simulated and the observed 
signal S is stored in the table at the right side, creating 
signatures for all N keys.  This procedure is complete when all 
possible values of both key and input data are covered. It must 
be noticed that the width of the S elements is exactly the 
number of observed bits.

Figure 3. Pre-attack phase

Considering the AES as the targeted crypto block, it is 
known that, when differential attacks are used (when the used 
output is actually the difference between two measured 
outputs), the first round can be decomposed in 16 independent 
datapaths of 8-bit inputs,  where each 8 bits of key affects 32 
bits of the round-register.  In this case, the pre-attack phase 
consists on generating 16 signature tables, where for all the 256 
possibilities of sub-key there is one signature.  Concerning the 
input data range, one can choose all the possible pairs that 
differ just at the less significant bit, so there will be 128 pairs. It 
should be noticed that as in the attack described in Section II, 
this attack considers that the signature is composed of 
differential information (e.g. hamming code), once this mode 
allows us to eliminate the dependency of round key added by 
the AddKey layer. For the DES, the situation is even easier 
since each round-register bit depends on 6 key bits only and 7 
plaintext bits after one round.

After the simulation is over and the signature table is 
complete, the attacker may start to load the vectors D at the 
input of the real circuit. This procedure is the very same of the 
attack described in the Section II: first, the circuit is reset, 
secondly a message is loaded at the input of the crypto chip, 
then the cipher encrypts (just for one round) the message using 
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the secret key (while in normal mode), and finally the attacker 
force the circuit to enter in test mode and scan out all the data 
stored in the scan chains. Since we suppose that the circuit is 
reset after each step and only the AES input message is 
changed, it implies that only the round-register bits may 
change. Thus calculating the hamming distance between two 
scan chains leads to the hamming distance of the desired signal.

Finally, the unauthorized user will proceed by loading at the 
input of the crypto circuit the messages corresponding to the 
first row in the signature table. If the collected signal does not 
correspond to the value stored in one line at the first row, the 
key respective to that line cannot be the secret key. In doing so, 
after all pairs are finished there will be only one key left, which 
is the correct one.

A. Finding the minimum number of input vectors

One important aspect of the proposed signature analysis is 
that it is not necessary to simulate all the possible values for the 
input message. With a reduced number of input vectors it is 
possible to find a unique signature for each key. By unique, it 
means that there are no two keys in the table with the same 
signature. This characteristic may be better illustrated on the 
example of the AES in the case where only one bit is 
observable. The signature is therefore composed by the 
concatenation of one bit values (for each input vector there is a 
bit of output). In this case one may imagine that it would be 
possible to represent 256 different signatures (each signature 
composed by 8 bits) with only 8 pairs. In practice is not easy to 
find these 8 pairs, however randomly choosing tens of pairs 
normally results in unique signatures (at the cost of negligible 
simulation time).

If the design implementing the crypto algorithm is not 
protected at all, loading tens of pairs at its input is completely 
feasible. However, some counter-measures that restrict the 
number of scan-out operations related to one secret key (and 
thus the quantity of observable information) may be 
implemented in the chip. For instance, we can imagine that the 
circuit contains a block that reset all the information related to 
the secret key if the scan-out operation has been used for some 
rounds. In this case, having a reduced number of input vectors 
is a must for the attacker and so alternative methods to find the 
required input vectors may be used.

In order to find the minimum number of needed vectors for 
a particular observed signal, we used two different state space 
search algorithms: random and simulated annealing. The first 
one chooses randomly an initial number P of input pairs and 
then verifies whether these pairs generate unique signatures. If 
so, the number P is decremented by one unit and we restart the 
algorithm. If not, we repeat the random choice and verification 
T (trials) times. If after T  trials there is no set of input vectors 
able to generate a unique signature then the minimum number 
of needed vectors is the current value of P.

Simulations show that randomly searching the vectors 
usually results in tens input vectors. However in order to 
reduce the search time and reduce even more the set of pairs, 
simulated annealing may be used. This algorithm initially 
chooses a random set of pairs, with P pairs. Then the signature 
table is generated and the number of repeated signatures is 

counted to perform an evaluation of the current set of pairs. If 
there are no repeated signatures then the P value is reduced and 
we restart the search with P-1.  If not, one pair between the set 
will be modified randomly and the new signature table is 
evaluated. If the evaluation gets better (the number of repeated 
signatures decrease) then this is the new best state. This step is 
repeated N times for each pair position (for example, the first 
pair will be changed 10 times and then the best candidate 
remains), and the whole procedure is repeated T trials.

In addition to using simulated annealing to perform the 
state space search, the form of the pairs is also chosen in such a 
way that the number of total vectors is the minimum for that 
number of pairs.  For instance we choose the vectors in the form 
(D1, D2), (D2, D3), (D3, D4) and etc,  so one vector is used in 
two pairs, except for the first and last pairs that contain one 
unique vector. In other words, for N pairs there are N+1 
vectors.

IV. SCENARI

The attack model presented in the previous section may be 
applied to several different scenarios, depending on which 
information the attacker is able to observe.  It is important to 
notice that all the most common industrial test schemes are 
covered by this attack: single chain, multiple chains and 
especially different response compaction schemes. In
Subsection A, the signature attack is used in the same scenari 
as [1], meaning that the attacker has access to all 128 bits of 
the round-register.  Then in Subsection B, circuits which are 
partially protected or where the attacker has access to a 
reduced number of round-register bits are proved to be 
attackable by the proposed technique. In addition to these 
cases, in Subsection C it is shown how to use the signature 
attack against response compaction schemes.

A. Observing the 32 bits

In the usual single chain scenario the whole round register 
is inserted in the scan chain (as shown in Fig. 1), meaning that 
the attacker may access all the 128 bits. So in the pre-attack 
phase,  the signature table is built using the hamming distance 
over all the FFs in the scan chain (similarly to the existent 
attack of Section II). Since the attacker normally changes a 
reduced set of bits of the AES input message, only the 32 
round-register bits affected by the correspondent MixColumns 
could change between two different input messages. So the 
hamming distance over all flip-flops is exactly the distance 
over the targeted 32 bits. 

As remarked, the AES attack may be split in 16 parts where 
the data length is 8 bits and the sub-key length is also 8 bits. In 
this case, the signature table is composed of 256 keys, and the 
signature is represented by a series of hamming distances (from 
0 to 32). Using the algorithm for finding the least number of 
input vectors results that with only 4 input vectors we can 
determine the value of a sub-key (8 bits of the secret key),  by 
means of generating 256 different signatures for all the keys. 
For instance, the input pairs of vectors used for the first byte of 
the secret key are (105, 223), (223, 143) and (143, 112). It must 
be noticed that for each byte there is a different set of 4 input 
vectors and each table contains different signatures. At least, 
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repeating the procedure 16 times lead the attacker to the 128 
bits of the secret key.

This instance of the attack is specially indicated for single 
and multiple chain scenarios, where the attacker has access to 
the round-register, and then he/she can retrieve the secret key 
with 4 (complexity for each subkey) times 16 (number of 
subkeys) input vectors at worst case.

B. Observing a particular FF

There are many scenarios where the user may have access 
only to partial information on the round-register:
1) It is possible that some of the FFs from the round-register 

are not inserted in the scan chain (partial scan design);
2) Some FFs may be masked with the intention to protect the 

circuit against the attack described in [1] (while some are 
not masked);

3) The attacker has no access via test and then he/she may use 
a side-channel other than test to probe the signal from one 
round-register FF;

In all these cases the attack described in [1] may not be 
appropriated because it requires the access to the whole round-
register. Considering the attack model where at least 4 bits of 
the round-register are observable, one per block of 32 bits 
(MixColumns), the signature attack may be used.  Each one of 
these FFs depends on 32 input bits (due to the MixColumn 
layer, see Fig. 2) and 32 key bits of key.  It must be noticed that 
the AddRoundKey layer is not considered because it is 
eliminated when in differential mode.

Unlike the case shown in Subsection A, the signature in 
these scenarios will contain one bit per pair (the observed bit) 
instead of 32 bits. However the principle remains the same, for 
each subkey (byte) the attacker must create a signature table in 
the pre-attack simulation.  Each table has 256 lines 
(corresponding to the sub key possible value).  For each 
simulated pair, the Hamming distance of the observed bit is 
stored in the table.

Table 1 shows the vectors that generate 256 unique 
signatures for the bit number 0 of the round-register, it may be 
noticed that it contains 13 vectors (12 pairs). Simulations 
showed that for all the 128 round-register bits there is always a 
set of 13 vectors able to ensure the uniqueness of the 
signatures.

In summary, this instance of the signature attack 
demonstrates that observing only one bit per MixColums, 4 bits 
at all,  allow the attacker to retrieve all the 128 bits of the secret 
key. However, it imposes the need of knowing exactly which 
register bit is being observed. Actually, this is not tricky since 
the same attack may be used to retrieve which observed bit 
corresponds to each round-register bit: since only 32 bits may 
be affected by a change in one of the sub keys corresponding 
input, the attacker knows which are the 32 candidates for the 
unknown bit, in other words he/she knows to which 
MixColumns block the observed output correspond. At worst, 
he/she may generate 32 signature tables for each of the 
candidates. In this case, the number of pairs should be 
increased because the goal is to find unique signatures between 
different tables, in such a way that all lines in the 32 tables 

have no repeated signature. This increases the complexity of 
the attack,  however, it allows the identification of the round-
register bits in the scan-chain.

If the attacker already knows the position of the 4 bits he/
she is observing, than this attack has a complexity of 16 times 
13 (number of subkeys times complexity of retrieving one sub 
key).  Regarding this low complexity, we conclude that all bits 
in the round-register must be protected, otherwise the signature 
attack may be used by an attacker to retrieve the key. 

C. Attacking response compaction schemes: observing the 
parity

In the current state-of-art, there is no attack that considers a 
very common test practice: the response compaction.  In 
presence of a XOR-tree compactor as shown in Fig. 4, the 
hamming distance between two output bitstreams is not 
anymore the same as the hamming distance between two states 
of the round register. The work proposed in [15] tends to 
demonstrate that a decompression/compaction structure 
naturally protects the circuit against scan-attacks. Anyway, the 
signature attack described above is able to reveal the secret key 
even in the presence of those response compactors.

This paper concentrates on the 1-bit output compactors 
such as the XOR-tree depicted in Fig.  4, this case being the 
worst situation for an attacker. The extension to other kinds of 
spatial compactors is straightforward.

Figure 4. Response Compaction Scheme

As said in the Section III, the signature attack requires the 
observation of a signal that is related to a reduced number of 
secret key bits.  The parity of the round-register may be used for 
this purpose. It is straightforward to measure if the parity of the 
round-register has changed or not (equivalent to the hamming 
bit over only one bit), once the output bitstream is completely 
unloaded, its parity is calculated and then if the resulting parity 
has changed from the previous bitstream, then the parity of the 
round-register has changed.

The pre-attack phase consists of the simulation of the AES 
round, where at each step one byte at the input message is 
changed and the parity over all round-register is stored in the 
signature table. This procedure generates 16 tables with 256 
lines each. In the practical phase, the attacker reads two output 
bitstreams and calculates the difference of the parity,  then he/
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she searches for the measured signature in the simulation table 
till the good signature is found and thus the sub key.

In the same way that this instance of the signature attack 
works for a generic compressor, it is susceptible to be used 
against other proposed test structures whose parity is 
observable. For example, the solution proposed in [17] as well 
as the one proposed in [18] provides the parity as test response. 
Simulations using the algorithm described in Section III show 
that 13 vectors are enough for assuring the uniqueness of the 
signatures, as shown in Table 2.

Moreover,  this attack also offers the advantage of being 
applicable for both single and multiple chain(s) scenarios. The 
attacker only needs to calculate the parity of the state scanned 
out from the scan chains. In other words, if the attacker does 
not know which test structure is implemented in the chip, he/
she may try this technique, as long as the parity difference can 
be observed.

V. CONCLUSION

This paper proposes a generic scan attack that is applicable 
to several industrial DfT  scenarios: single and multiple chains, 
with or without response compaction structures.  Besides, it is 
shown that state space search algorithms may be used together 
with this attack to find the minimum number of vectors needed 
to retrieve the secret key, reducing the time spent when 
interacting with the targeted circuit.

Considering the single or multiple chains without 
compaction, this attack on AES is optimized so that only 4 
vectors have to be applied on the circuit to retrieve one byte of 
the secret key. The whole key is thus obtained with 26 inputs. 
Aside from the fact that observing only 4 bits of the round-
register results in revealing the secret key, it is shown that all 
bits of the round-register have to be protected. Conversely, only 
one bit unprotected leads to divide the brute force attack 
complexity by a factor 232.

We have shown that the supposed protection offered by test 
response compaction structures has been overestimated in the 
literature.

Moreover the attack proposed in the presence of response 
compaction can be used as well for circuits without 
compaction. Furthermore, no special knowledge about the 
implemented DfT  (number of scan chains, presence of response 
compactor) is mandatory to an attacker to succeed.

Future works will analyze the security of other kinds of 
compressors such as signature analyzers or convolutional 
compactors.
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(238,198) (198,44) (44,86) (86,222) (222,60) (60,231) (231,4) (4,3) (3,175) (175,73) (73,144) (144,187)

Table 1: Input vectors which create an unique signature table when a single FF is observable

(94,79) (79,227) (227,166) (166,21) (21,141) (141,233) (233,252) (252,171) (171,41) (41,117) (117,82) (82,218)

Table 2: Input vectors which create an unique signature table when observing the response compression output
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