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Abstract

Applying classical association rule extraction framework on fuzzy data sets leads
to an unmanageably highly sized association rule sets – compounded with an in-
formation loss due to the discretization operation – that often constitutes a ham-
per towards an efficient exploitation of the mined knowledge. To overcome such
a drawback, we advocate the extraction and the exploitation of compact and in-
formative generic basis of fuzzy association rules. This generic basis constitutes
a compact nucleus of fuzzy association rules, from which it is possible to infor-
matively derive all the remaining rules. In order to ensure a sound and com-
plete derivation process, we introduce an axiomatic system allowing the complete
derivation of all the redundant rules. The results obtained from experiments car-
ried out on benchmark datasets, are very encouraging. They highlight a very im-
portant reduction of the number of the extracted fuzzy association rules without
information loss.
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1. Introduction

Association rule mining, introduced by [1], has been applied over market bas-
ket data in order to identify groups of products frequently bought together. This
knowledge may be of valuable help for shop-keepers to make decisions about what
to put on sale, how to place merchandize on shelves, to maximize a cross-selling
effect etc. Such an association rule can tell, for example, customers that buy bread
and milk will also buy butter. This kind of rules used to be called binary associ-
ation rules (i.e., which involve binary attributes). Mining binary association rules
has been studied for several years and has become a well established technique.

However, when tackling numerical contexts using the binary data mining back-
ground, the reported results are closely dependent on the discretization method,
i.e., how the original context is translated to a binary one. Usually, the corre-
sponding entry is set to crossed whenever the corresponding item fulfills a given
property with respect to a given threshold. Clearly, such translation is far from
being information lossless. Indeed, the main drawback is that discretization is not
able to describe the "actual" situation. For this reason, it is of paramount impor-
tance to handle an extended extraction context, i.e., without binarizing the orig-
inal context. In this respect, introducing soft computing techniques seems to be
a promising solution. In fact, the use of soft computing techniques mainly based
on fuzzy sets in connection with association rules grasped the interest of numer-
ous authors. By allowing “soft" rather than ”harsh" boundaries of intervals, fuzzy
sets can avoid some undesirable threshold effects. Furthermore, fuzzy association
rules are very appealing from a knowledge representational point of view: fuzzy
set theory features an interesting capability to bridge the gap between quantita-
tive patterns and qualitative knowledge structures expressible in terms of natural
language. Thus, association rules discovered in a database might be presented in
a linguistic and, hence, comprehensible and user-friendly way. Thus, the liter-
ature witnesses a determined effort to introduce the soft computing techniques,
e.g., [2, 8, 14, 15, 16, 28, 30], to cite but a few. Unfortunately, these approaches
were introduced regardless the effectiveness of the mined knowledge. In fact, they
paid little attention to the amount of association rules that may be drawn. Hence,
at the end of the process, the user is obliged to face an overwhelming quantity of
association rules among which a large number is redundant, what badly affects
the quality of their interpretability. Beyond, the quantitative aspect and as pointed
out by [32], the existing mining approaches did not differentiate the data items
in terms of the interestingness users have on them. Thus, avoiding the extraction
of a huge amount of knowledge is of primary importance as it guarantees extra
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value knowledge usefulness and reliability. This fact is reinforced while handling
highly dense data.

To tackle the above mentioned limitations, we introduce a novel approach for
extracting fuzzy association rules, with the following features:

1. Highlight user’s item interstingness : laying within a user-driven ap-
proach, the user has the possibility to highlight the importance of the prod-
ucts, items or attributes, e.g., the total income attribute is more interesting
than the height of a person in a household. Indeed, according to Hackman
and Oldham [23], the larger the user’s skills involvement during the mining
process, the stronger sense of independence and responsibility.

2. The extraction of compact and information lossless fuzzy association
rules: in fact, generic bases of association rules – backboned on the con-
cepts of minimal generator and closed itemset, –constituted so far irre-
ducible compact nuclei of association rules. In addition, we provide an
axiomatic system, that we show that it is sound and complete, to ensure the
derivation mechanism of all redundant fuzzy association rules. The experi-
ments show important rates of compactness.

The remainder of the paper is organized as follows. Section 2 scrutinizes the
related work that focussed on fuzzy association rule mining. Section 3 introduces
the generic basis of fuzzy association rules. The derivation mechanism by means
of an axiomatic system, shown to be sound and complete, is also given. Section 4
introduces the GEN-IFF algorithm that mines fuzzy closed itemsets. In Section 5,
we report the encouraging compactness rates obtained by applying our approach
on SAGE data as well as on benchmark datasets. Section 6 presents concluding
remarks and sketches our future perspectives.

2. Related work

The problem of mining association rules in large relational tables containing
quantitative attributes was ignited by Agrawal et al. [30]. An example of such an
association might be "10% of married people between age 50 and 60 have 2 cars".
The authors proposed to divide the attribute domain into discret intervals and to
combine adjacent ones if necessary. Then, each original attribute is replaced by
a set of (attribute, interval) pairs. Thus, the quantitative problem is converted
into a binary one. This discretizing method certainly generates information loss.
Besides, defining such intervals may not be concise and intuitive for human ex-
perts. For example, the partition into intervals method might classify a person
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as "young", if his age is less than 40, and as “adult" if his age is greater than
40. However, this obviously corresponds to a very subjective human perception
to “young" and “adult". Moreover, another drawback consists in the number of
extracted association rules that will evidently be huge, since every attribute atti of
the basis will be replaced by a certain number of pairs (atti, intervalij ) (i.e., each
attribute atti of the basis is associated to k intervals intervali1 ,. . . , intervalij ,. . . ,
intervalik). To avoid the pitfall of quantitative attribute discretization problems,
several authors opted for introducing fuzzy logic in the association rule mining
technique. In fact, the fuzzy logic was shown to be an advocable mechanism for
handling uncertain and imprecise data [17]. Thus, many fuzzy association rule
mining algorithms have been proposed in literature.

Au and Chan [2] introduced a novel technique called FARM. This technique
employs linguistic terms and their corresponding fuzzy sets whom have to be
previously predefined by human experts. In order to identify interesting fuzzy
association rules (FARs), FARM uses adjusted difference analysis which does not
require any user supplied thresholds (i.e., a rule is interesting when its adjusted
difference is greater than 1.96 which is the 95 percentiles of the normal distribu-
tion). Furthermore, FARM uses the weight of evidence measure [2] as a confidence
metric for FARs.

In the proposal of Kuok et al. [28], to each attribute is assigned to a set of
fuzzy sets. These fuzzy sets and the corresponding membership functions are
provided by human experts. The interestingness of a rule is assessed by means of
two measures called, respectively significance and certainty factor. Indeed, if a
rule is interesting, then it should present enough significance as well as a high cer-
tainty factor. The significance factor is a generalization of support and computed
by summing all the votes(1) of each record with respect to the specified itemset
and then dividing it by the total number of records. Two different methods were
proposed to compute the certainty factor of a fuzzy rule. The first one uses the
significance factor, thus the certainty factor is a generalization of the confidence.
Whereas, the second method is based on correlation measure.

In He et al. [24], the authors proposed a novel adaptive algorithm for mining
FARs. The algorithm aims at building an effective Decision Support System for
binary classification problems in the biomedical domain. In fact, it combines data
clustering techniques with fuzzy interval partitions on input features. Doing so,

1The vote of a record is computed as the product of membership grade of each item in that
record.
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high-level data abstraction is extracted and the quantitative data can be efficiently
transformed into fuzzy discrete transactions. On the latter, the traditional Apriori
algorithm is applied to mine association rules that can be used for classification
and decision support.

The proposal of Delgado et al. [16] for mining FARs is based on "fuzzy trans-
actions". The main characteristic of this proposal is to model fuzzy transactions
with crisp items. The support of an itemset and the support and the confidence of
a fuzzy association rule is assessed by the evaluation of quantified sentences. The
authors propose an alternative measure to confidence which is certainty factor.

In Ben Yahia and Jaoua,[8], a different definition of FARs was proposed. It
is based on fuzzy degrees, which are respectively associated to items. It does not
necessarily employ linguistic terms. An item i having a degree α is present in
each transaction τ when τ (i) ≥ α. A fuzzy itemset Ĩ is a set of items associated
to their fuzzy degrees. The definitions of the support and the confidence of a FAR
are similar to those of the crisp case. An efficient algorithm for mining FARs,
based on the pruning of the "fuzzy concept lattice" was proposed in [8]. Recently,
Helm proposed an implementation of a mining FARs algorithm [25]. The author
adopted the FP-GROWTH algorithm to deal with fuzzy data.

Recently and as an extension of their former approach [11], Weng and Chen [12]
introduced a new Apriori-like algorithm, called UDM, for extracting fuzzy asso-
ciation rules using the theory of possibility to represent uncertain data. The theory
of possibility was of use to represent uncertain data. An additional statistical met-
ric, called deviation, was introduced towards a further pruning and a withdrawal
of uncertain fuzzy association rules. Experiments showed that the proposed al-
gorithm "increases linearly with respect to the database size". Unfortunately, the
latter approach is another one that is introduced regardless the effectiveness of
the mined knowledge. In fact, the authors paid little attention to the amount of
association rules that may be drawn. Hence, at the end of the process, the user
faces an overwhelming quantity of association rules among which a large num-
ber is redundant, what badly affects the quality. Thus the effort is padded out in
optimizing approaches that will generate "useless" knowledge for end-users.

In table 1, we report a comparative survey of the different approaches men-
tioned above. For this purpose, we consider as criteria of comparaison the follow-
ing features:

• Transformation of original attributes: In all propositions illustrated above
a transformation of original context attributes was performed before begin-
ning the FARs extraction process.
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• FARs measure assessment: Every approach has identified its own measure
to assess FARs.

• Number of FARs: For the same context the number of generated fuzzy as-
sociation rules differs from one approach to another. In fact, this number
varies, respectively with the number of intervals and the number of fuzzy
sets assigned to each attribute according, respectively to Agrawal et al. [30]
and Kuok et al. [28]. In the propositions of Chan and Au [13] and Delgado
et al. [16] , the number of generated FARs varies with the number of lin-
guistic terms associated to each attribute. Finally, the number of generated
FARs varies with the number of formal concepts generated with the FARD

algorithm [8].

Transformation FARs Number
of the original measure of

attributes assessment FARs
Srikant and (attribute- Support, varies with the
Agrawal [30] intervals) confidence number of intervals
(Discretization)
Kuok (attribute- Significance, varies with the
et al. [28] fuzzy sets) certainty factors number of fuzzy sets

Chan and Au [13] (attribute- Weight of varies with
(FARM) linguistic terms) evidence, the number of

Adjusted difference linguistic terms

Delgado (attribute-
et al. [16] linguistic Fuzzy quantifiers varies with

labels) evaluation linguistic terms

Ben Yahia Support, varies with
and Jaoua [8] - confidence the number of fuzzy
(FARD) formal concepts

Table 1: Comparative survey of the different approaches.

Remark 1. In order to enable the evaluation of a fuzzy association rule, several
measures were proposed in the literature. According to [18], the standard ap-
proach is to replace set-theoretic operations, namely Cartesian product and car-
dinality, by corresponding fuzzy set-theoretic operations. Modeling the Cartesian
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product by a t-norm 2. and the cardinality of a fuzzy set by the sum of the values
of its membership function

It is noteworthy that all above cited propositions were not interested in reduc-
ing the huge number of FARs that may be drawn even from small contexts. They
were only limited to define the adopted approach to generate FARs. In this paper,
we thus put the focus on FARs, as previously defined in [8]. The main thrust is
to solve the problem of the huge amount of rules discovered from databases con-
taining fuzzy attributes. As quite expectable, this amount of knowledge seems to
be overwhelming and beyond human capabilities to analyze.Thus, in the remain-
der, we propose a new algorithm for extracting generic FARs from frequent fuzzy
closed itemsets w.r.t the user’s preferences.

3. Generic basis of FARs

To cope with the problem of the overwhelming number of binary association
rules that can often be extracted from even reasonably sized real-life databases,
several solutions towards an information lossless reduction were proposed. These
reduced association rules are commonly referred to as "generic basis". A solution
consists in using the battery of results of the FCA (Formal Concept Analysis) [21]
to define generic basis of association rules. Several studies focused on extracting
such generic basis [3, 7, 26, 27].
To the best of our knowledge, no previous study in the literature paid attention
to define a generic basis of FARs. However, the extension of Galois connection
from the point of view of fuzzy logic grasped the interest (see e.g. [6] for further
information and references).

3.1. Characterization of the search space
In the following section, we present the fundamental properties of the search

space induced by a fuzzy extraction context. Along all this section, J stands for

2A triangular norm t-norm is a function > : [0, 1] × [0, 1] → [0, 1] verifying, ∀ x and y ∈ [0,
1], these following properties:

• > is commutative > (x, y) = > (y, x),

• > is associative > (x, > (y, z)) = > (> (x, y), z),

• > is increasing > (x, y) ≤ > (z, t) if x ≤ z and y ≤ t,

• > (x, 1) = x.
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any set of indices.

Definition 1. User’s constraint
A user’s constraint is a fuzzy subset C̃ in a universe of discourse I (i.e., finite set
of attributes) characterized by the membership function µC̃: I → [0,1]. The fuzzy
subset C̃ is denoted by:

C̃ = {iµC̃(i1)
1 , i

µC̃(i2)
2 ,. . . , iµC̃(in)

n }

Definition 2. Fuzzy extraction context under constraint
A fuzzy formal context under constraint is a quadrupletK= (O, Ĩ, R̃, C̃) describing
a finite set O of objects (or transactions), a fuzzy finite set Ĩ of attributes (or
items), a fuzzy binary relation R̃ (i.e., R̃⊆O× Ĩ) and a fuzzy finite set of attributes
C̃ (i.e., the user’s constraint).
Each pair (o, iα) ∈ R̃, means that the attribute (item) i belonging to Ĩ is contained
in the object O belonging to O with the degree α. The value α has to be greater
than or equal to a minimal threshold given by µC̃(i).

In order to obtain a fuzzy extraction context, it is possible to fuzzify a quan-
titative database by normalizing each item quantity. A fuzzy extraction context
can also be an indexing relation between documents and terms, in which member-
ship values are obtained by considering only the local frequency of the term ti in
the document dj , normalized with respect to the maximal frequency of a term tk
belonging to the same document dj .

Within the framework of basket (binary) association rules, all the products are
treated uniformly, and all the rules are mined based on the counts of the itemsets.
However, in the social science research, the analysts may be interested in high-
lighting the importance of the products, items or attributes in the minable knowl-
edge. For example, total income attribute is more interesting than the height of a
person in a household.

In the remainder, we tackle this issue by considering the case where items are
given weights to reflect their importance for the users. Hence, an extracted generic
FAR has to fulfill the user’s constraint, i.e., this constraint is a materialization of
the importance assignment to attributes. Therefore, each item in a fuzzy asso-
ciation rule must have a membership degree at least equal to the corresponding
degree indicated by the underlying constraint.
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R̃ B C E M
1 0.5 1.0 0.7 0.5
2 0.6 0.7 1.0 0.5
3 1.0 0.9 1.0 0.1
4 1.0 0.9 0.9 0.1

C̃ 0.0 0.2 0.7 0.1

Figure 1: Fuzzy formal context under constraint C̃

Example 1. An example of a fuzzy formal context under constraint K= (O, Ĩ,
R̃, C̃) is sketched by Figure 1. According to the constraint C̃, we are interested
in extracting FARs such that the items “B", “C", “E" and "M" must appear with
degrees, respectively, greater than or equal to 0.0, 0.2, 0.7 and 0.1.

3.1.1. Mapping fuzzy to crisp
In the following, we show how fuzzy context can be mapped into a crisp one. It

is important to note that the fuzzy context introduces a peculiarity, with respect to
the crisp case, that the extraction context is not fixed "apriori". Indeed, for fuzzy
attribute description we have to mine the fuzzy context and to extract different
values associated to each attribute. With respect to a generalization order, these
irreducible elements form a chain made up of elements corresponding to the set
of distinct values associated to each attribute.

Example 2. From the fuzzy extraction context given by Figure 1, the chains asso-
ciated to each attribute is depicted in Figure 2 (Up).

Therefore, under a generalization order view, a fuzzy context can be mapped into
a crisp one as follows: Let A be an attribute and ValA its associated distinct values.
Then, the set A is mapped into set of distinct |ValA| binary attributes Ai, such that
Ai ≤ Aj i, j ∈ ValA and i < j. The set of distinct "crisp" associated values of the
context extracted is given by Figure 2 (Down).

Let R̃ be a relation over a schema R = {a1, a2, . . . , an}.
∏

ai stands for the
projection of R̃ over ai.

The search space includes all valid combinations built up by considering the
value sets of R, and is defined as follows : S(R̃) = (×ai∈R

∏
ai) where × stands

for the cartesian product.
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Figure 2: (Up)Attribute chains from the extraction context (Down) Crisp attributes from the ex-
traction context

Example 3. If we consider a projection over the attributes {B,C, E} from the
relation scheme associated to the context given by Figure 1, then Figure 3 depicts
its associated search space.

The search space of R̃ is structured under a generalization order, denoted ≤g,
between its descriptions.

Definition 3. Let d̃1 and d̃2 be two fuzzy descriptions of the search space S(R̃) :

d̃1 ≤g d̃2 ⇔ ∀ai ∈ R d̃1[ai] ⊇ d̃2[ai]

The covering relation ≺g associated to ≤g is defined as follows: ∀ d̃1, d̃2 ∈
S(R), d̃1 ≺g d̃2 ⇔ d̃1 <g d̃2 and ∀d̃3 ∈ S(R), d̃1 ≤g d̃3 ≤g d̃2 ⇒ d̃1 = d̃2.

Proposition 1. Let Tr be the set of fuzzy descriptions of R̃ ordered by the re-
lation ≤g. (Tr ,≤g) is a complete and distributive lattice, with least element
< 0, . . . , 0 >, and greatest one < 1, . . . , 1 >. The supremum (

∨
) and the in-
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Figure 3: Search space associated to R̃
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fimum (
∧

) of any set of fuzzy descriptions of Tr are, respectively, as follows:
∨
j∈J

X̃j = ∩j∈JX̃j (1)

∧
j∈J

X̃j = ∪j∈JX̃j (2)

Proof 1. First, let us show that any set of fuzzy rectangles of R̃ has a least upper
bound and a greatest lower one, which are both fuzzy rectangles of R̃. Then, we
show that

∨
is distributive relatively to

∧
and conversely.

• Least upper Bound :

∀j ∈ J, (X̃j) ≤g (Ỹ )

⇔ ∀j ∈ J , Ỹ ⊆ X̃j

⇔ Ỹ ⊆ ∩j∈JX̃j

⇔ (∩j∈JX̃j) ≤g (Ỹ ).
Hence, any set of fuzzy description of Tr has a least upper bound, which
is:

∨
j∈J(X̃j) = (∩j∈JX̃j).

• Greatest lower Bound :

Let (X̃j) be a fuzzy description of Tr :

∀j ∈ J, (Ỹ ) ≤g (X̃j)

⇔ ∀j ∈ J , X̃j ⊆ Ỹ

⇔∪j∈JX̃j ⊆ Ỹ

⇔ (Ỹ ) ≤g (∪j∈JX̃j).

Hence, any set of fuzzy descriptions of Tr has a greatest lower bound, which
is :

∧
j∈J(X̃j) = (∪j∈JX̃j).

• we could easily show that ∀ X1, X2, X3 ∈ Tr X1 ∧ (X2 ∨ X3) = (X1 ∨
X2)∧ (X1∨X2). Hence,

∨
is distributive relatively to

∧
and conversely by

using the corresponding properties and the duality of the operators ∪ and
∩.

• According to the definition of ≤g, we could easily show that < 0, . . . , 0 >
is the least element of (Tr ,≤g) and that < 1, . . . , 1 > is the greatest one.
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3.1.2. Fuzzy Galois connection under constraint
Definition 4. Let KC̃= (O, Ĩ, R̃, C̃) be a fuzzy formal context under constraint.
For O ⊆ O and Ĩ ⊆ Ĩ, we define:

f̃C̃ : P (O) → P (Ĩ)
f̃C̃(O) ={dα|∀o ∈ O,α = min µR̃(o, d) ∧ α ≥ µC̃(d), d ∈ Ĩ }

g̃C̃ : P (Ĩ) → P (O)

g̃C̃(Ĩ) ={o ∈ O|∀d ∈ Ĩ , [(µĨ(d)
IRG→ µR̃(o, d)) = 1 ∧ (µC̃(d)

IRG→ µR̃(o, d)) = 1]}

In the above definition IRG denotes the Rescher-Gaines fuzzy implication,
which is an R-implication [5, 19]. This implies that:

g̃C̃(Ĩ) ={o ∈ O|∀d∈ Ĩ ,µĨ(d)≤µR̃(o, d) ∧ µC̃(d)≤ µR̃(o, d)}.

f̃C̃ and g̃C̃ are defined respectively over the power sets of O and Ĩ (i.e., P (O)
and P (Ĩ)).

The fuzzy operator f̃C̃ is applied on a crisp set of objects and determines to
which degree each property is satisfied by all the objects, according to their respec-
tive degrees. Note that f̃C̃ , as defined formerly, presents the desired abstraction
vocation. Indeed, the retrieved fuzzy set is the least generalization, through the
min function, of all fuzzy sets (or descriptions) associated respectively to the input
set objects fulfilling the constraint C̃.

On the other hand, the g̃C̃(Ĩ), applied on a fuzzy set of attributes, permits to
obtain the desired interpretation effect by filtering objects presenting more general
descriptions than that of Ĩ as well as the user’s constraint C̃.

Example 4. Let us consider the constrained fuzzy context illustrated in Figure 1.
Thus, we have :
f̃C̃({2, 3, 4}) = B 0.6 C 0.7 E 0.9 M 0.1 and g̃C̃ (B 0.6 C 0.9) = {3, 4}.

Proposition 2. The composite operators f̃C̃◦g̃C̃ and g̃C̃◦f̃C̃ are called fuzzy con-
strained Galois closure operator. Indeed, considering both functions (f̃C̃ and g̃C̃)
as previously defined, the following properties hold ∀ Ĩ , Ĩi, Ĩj∈Ĩ:
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(A1) Oi ⊆ Oj ⇒ f̃C̃(Oi) ⊇ f̃C̃ (Oj)

(B1) Ĩi ⊆ Ĩj ⇒ g̃C̃(Ĩi) ⊇ g̃C̃ (Ĩj)

(A2) O ⊆ g̃C̃◦f̃C̃(O)

(B2) Ĩ ⊆ f̃C̃◦g̃C̃ (Ĩ)

(A3) f̃C̃ (O) = f̃C̃◦g̃C̃◦f̃C̃(O)

(B3) g̃C̃ (Ĩ) = g̃C̃◦f̃C̃◦g̃C̃ (Ĩ)

(A4) Oi ⊆ Oj ⇒ g̃C̃◦f̃C̃(Oi) ⊆ g̃C̃◦f̃C̃(Oj)

(B4) Ĩi ⊆ Ĩj ⇒ f̃C̃◦g̃C̃(Ĩi) ⊆ f̃C̃◦g̃C̃(Ĩj)

(A5) g̃C̃◦f̃C̃(g̃C̃◦f̃C̃(O)) = g̃C̃◦f̃C̃(O)

(B5) f̃C̃◦g̃C̃(g̃C̃ ◦f̃C̃(Ĩ)) = f̃C̃◦g̃C̃(Ĩ)

Proof 2. In a dual manner, these properties are valid for the fuzzy Galois closure
operators f̃C̃ ◦ g̃C̃ and g̃C̃ ◦ f̃C̃ .

(A1) We have :
f̃C̃(Oi) = {dαi|∀o ∈ O, αi = minµR̃(o, d) ∧ αi ≥ µC̃(d), d ∈ Ĩ } and
f̃C̃(Oj) = {dαj |∀o ∈ O,αj = minµR̃(o, d) ∧ αj ≥ µC̃(d), d ∈ Ĩ }
If Oi ⊆ Oj ⇒ αi ≥ αj . Thus, f̃C̃(Oi) ⊇ f̃C̃(Oj).

14



(B1) We have :
g̃C̃(Ĩi) = {oi ∈ O|∀d ∈ Ĩi, µĨi

(d) ≤ µR̃(oi, d) ∧ µC̃(d) ≤ µR̃(oi, d)} and
g̃C̃(Ĩj) = {oj ∈ O|∀d∈ Ĩj, µĨj

(d) ≤ µR̃(oj, d) ∧ µC̃(d)≤ µR̃(oj, d)}
If Ĩi ⊆ Ĩj ⇒ µĨi

(d) ≤ µĨj
(d) (1)

If oj ∈ g̃C̃(Ĩj) ⇒




µĨj
(d) ≤ µR̃(oj, d)

(2)
µC̃(d) ≤ µR̃(oj, d)

According to (1) and (2), we

have µR̃(oj, d) ≥ µĨj
(d) ≥ µĨi

(d) and oj satisfies the constraint C̃. Hence,
oj ∈ g̃C̃(Ĩi). Therefore, g̃C̃(Ĩi) ⊇ g̃C̃(Ĩj).

(A2) We have :
f̃C̃(O) = {dα|∀o, o ∈ O, α = min µR̃(o, d) ∧ α ≥ µC̃(d), d ∈ Ĩ},
g̃C̃◦f̃C̃(O) = {o ∈ O|∀d ∈ f̃C̃(O), µR̃(o, d) ≥ min µR̃(o, d) ∧ µC̃(d) ≤
µR̃(o, d)}. Obviously, if o ∈ O ⇒ o ∈ g̃C̃◦f̃C̃(O) ⇒ O ⊆ g̃C̃◦f̃C̃(O).

(B2) Let d ∈ Ĩ with µĨ(d), We have :
g̃C̃(Ĩ) = {o ∈ O|∀d ∈ Ĩ , µĨ(d) ≤ µR̃(o, d) ∧ µC̃(d) ≤ µR̃(o, d)} (3)
f̃C̃◦g̃C̃(Ĩ) = {dα|∀o, o ∈ g̃C̃(Ĩ), α = minµR̃(o, d) ∧ α ≥ µC̃(d), d ∈ Ĩ}
(4)
From (3) and (4), α ≥ µĨ(d) ⇒ Ĩ ⊆ f̃C̃◦g̃C̃(Ĩ).

(A3) Let Ĩ = f̃C̃(O), according to (B2), we have:
f̃C̃(O) ⊆ f̃C̃◦ g̃C̃◦f̃C̃(O) (5)
And from (A1) O ⊆ g̃C̃◦f̃C̃(O), we have:
f̃C̃(O) ⊇ f̃C̃◦ g̃C̃◦f̃C̃(O) (6)
According to (5) and (6), we get f̃C̃(O) = f̃C̃◦ g̃C̃◦f̃C̃(O).

(B3) Let O = g̃C̃(Ĩ), according to (A2), we have :
g̃C̃(Ĩ) ⊆ g̃C̃◦f̃C̃◦g̃C̃(Ĩ) (7)
We have: Ĩ ⊆ f̃C̃◦g̃C̃(Ĩ), from (B1), we have :
g̃C̃(Ĩ) ⊇ g̃C̃◦f̃C̃◦g̃C̃(Ĩ) (8)
According to (7) and (8), we get g̃C̃(Ĩ) = g̃C̃◦f̃C̃◦g̃C̃(Ĩ).
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(A4) We have from (A1) :
If Oi ⊆ Oj then f̃C̃(Oi) ⊇ f̃C̃(Oj). Therefore, g̃C̃◦f̃C̃(Oi) ⊆ g̃C̃◦f̃C̃(Oj).

(B4) We have from (B1) :
If Ĩi ⊆ Ĩj then g̃C̃(Ĩi) ⊇ g̃C̃(Ĩj). Therefore, f̃C̃◦g̃C̃(Ĩi) ⊆ f̃C̃◦g̃C̃(Ĩj).

(A5) We have from (A3) :
f̃C̃◦g̃C̃(f̃C̃(O)) = f̃C̃(O), hence g̃C̃◦f̃C̃(g̃C̃◦f̃C̃(O)) = g̃C̃◦f̃C̃(O).

(B5) We have from (B3) :
g̃C̃◦f̃C̃(g̃C̃(Ĩ)) = g̃C̃(Ĩ)
⇒ g̃C̃(f̃C̃◦g̃C̃(Ĩ)) = g̃C̃(Ĩ)
⇒ f̃C̃◦g̃C̃(f̃C̃◦g̃C̃(Ĩ)) = f̃C̃◦g̃C̃(Ĩ).

Remark 2. It is noteworthy that in case we omit the user’s constraint (i.e., mem-
bership degrees of the items in C̃ are fixed to zero) or transforming beforehand
the extraction context by assigning the value 0 to each (oj , ai) whenever oj[ai]
< µC̃(i), we recover the same definitions of a fuzzy formal context and fuzzy Galois
connection operators as they were previously defined by Ben Yahia and Jaoua [8].

Definition 5. Fuzzy formal concept The pair (O, Ĩ), such that O ∈ O and Ĩ ∈
Ĩ, is called a fuzzy formal concept if and only if f̃C̃(O) = Ĩ and g̃C̃(Ĩ) = O. O
is called the extension and Ĩ the intension of the fuzzy formal concept. g̃C̃(Ĩ) is
called the domain of Ĩ . A set of fuzzy formal concepts FC̃K, extracted from a fuzzy
formal constrained context KC̃ and ordered using the set inclusion relation, form
a complete fuzzy lattice LFC̃K = (FC̃K, ⊆), called fuzzy Galois lattice.

Definition 6. Fuzzy closed itemset Let us consider the fuzzy context under con-
straint KC̃ = (O, Ĩ, R̃, C̃), a fuzzy subset Ĩ ⊆ Ĩ, Ĩ is called fuzzy closed itemset
if and only if it is equal to its closure, i.e., f̃C̃◦g̃C̃(Ĩ) = Ĩ , Ĩ is said to be frequent

with respect to the minimum threshold if support(Ĩ) = |g̃C̃(Ĩ)|
|Ĩ| ≥ minsup.

Definition 7. Fuzzy Iceberg Concept lattice When only fuzzy frequent closed
itemsets are considered with the set inclusion relation ⊆, the resulting structure
only preserves the join operator. This structure forms an upper semi-lattice and it
is designated by "Fuzzy Iceberg Concept lattice".
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Definition 8. Fuzzy minimal generator A fuzzy itemset c̃ is said to be fuzzy min-
imal generator of a fuzzy closed itemset Ĩ , if and only if f̃C̃◦g̃C̃(c̃) = Ĩ and @ c̃1 ⊂
c̃ such that f̃C̃◦g̃C̃(c̃1) = Ĩ . The set GMF Ĩ of the fuzzy minimal generators of a
fuzzy closed itemset Ĩ is defined as follows:
GMF Ĩ ={c̃ ⊆ Ĩ|f̃C̃◦g̃C̃(c̃)= Ĩ ∧ @ c̃1 ⊂ c̃ s.t. f̃C̃◦g̃C̃(c̃1)=Ĩ}.

Definition 9. Fuzzy equivalence class The fuzzy constrained Galois closure op-
erators (f̃C̃◦g̃C̃) induces an equivalence relation on the power set of Ĩ, i.e., the set
of parts are split into disjoint subsets, called fuzzy equivalence classes. In each
class, all elements have the same value of support since they share the same clo-
sure. Within a given fuzzy equivalence class, minimal generators are the smallest
incomparable elements (w.r.t set inclusion relation), while the fuzzy closed itemset
is the largest element.

Example 5. Let us consider the constrained fuzzy context given by Figure 1. For
a minsup = 1

4
, the set of fuzzy minimal generators as well as their domains and re-

spective fuzzy closures are given in table 6. The associated fuzzy Iceberg concept
lattice is depicted by Figure 4.
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Figure 4: Fuzzy Iceberg Concept lattice associated to the constrained fuzzy context KC̃ depicted
in Figure 1, for minsup = 1

4 .

In order to extract fuzzy closed itemsets and their corresponding fuzzy mini-
mal generators (i.e., that will be of use during the FARs extraction process), we
introduce an algorithm, called GEN-IFF, which is detailed below.
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Table 2: List of fuzzy minimal generators and their corresponding fuzzy closed itemsets extracted
from the constrained fuzzy context KC̃ , illustrated by Figure 1 for minsup = 1

4 .

Fuzz.min.gen Domain closure Support
B1 {3, 4} B 1 C 0.9 E 0.9 M 0.1 1

2
B0.6 {2, 3, 4} B 0.6 C 0.7 E 0.9 M 0.1 3

4
B0.5 {1, 2, 3, 4} B 0.5 C 0.7 E 0.7 M 0.1 1
C1 {1} B 0.5 C 1 E 0.7 M 0.5 1

4
C0.9 {1, 3, 4} B 0.5 C 0.9 E 0.7 M 0.1 3

4
C0.7 {1, 2, 3, 4} B 0.5 C 0.7 E 0.7 M 0.1 1
E1 {2, 3} B 0.6 C 0.7 E 1.0 M 0.1 3

4
E0.9 {2, 3, 4} B 0.6 C 0.7 E 0.9 M 0.1 3

4
E0.7 {1, 2, 3, 4} B 0.5 C 0.7 E 0.7 M 0.1 1
M0.5 {1, 2} B 0.5 C 0.7 E 0.7 M 0.5 1

2
M0.1 {1, 2, 3, 4} B 0.5 C 0.7 E 0.7 M 0.1 1

B0.6 C0.9 {3, 4} B 1 C 0.9 E 0.9 M 0.1 1
2

B1 E1 {3} B 1 C 0.9 E 1 M 0.1 1
4

B0.6 M0.5 {2} B 0.6 C 0.7 E 1 M 0.5 1
4

C0.9 E1 {3} B 1 C 0.9 E 1 M 0.1 1
4

C0.9 E0.9 {3, 4} B 1 C 0.9 E 0.9 M 0.1 1
2

C0.9 M0.5 {1} B 0.5 C 1 E 0.7 M 0.5 1
4

E0.9 M0.5 {2} B 0.6 C 0.7 E 1 M 0.5 1
4
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4. GEN-IFF: Fuzzy closed itemsets extraction algorithm

GEN-IFF is an iterative algorithm taking as input a constrained fuzzy for-
mal context and the minsup value. As a result, the algorithm outputs the set of
all fuzzy closed itemsets and their corresponding fuzzy minimal generators. The
algorithm proceeds in two steps as described belowFinding all frequent fuzzy
minimal generators fulfilling the minsup threshold and the user’s constraint:
The GEN-IFF algorithm starts by determining the set of candidate fuzzy mini-
mal generators denoted by GMFCk and their respective domains. It adopts a
levelwise search starting by finding the set of all candidate 1-sized fuzzy mini-
mal generators GMFC1. This set will be pruned with respect to both the minsup
threshold and the user’s constraint. This pruning step is carried out after the appli-
cation of the GET-DOMAIN function on GMFC1 set (line 3). The GET-DOMAIN

function consists in applying the g̃C̃ operator on the GMFC1 set. The domain
cardinality of each 1-fuzzy minimal generator is compared to minsup value. If
it is greater than or equal to minsup, then the fuzzy minimal generator is poten-
tially frequent. If the 1-fuzzy minimal generator fulfils the user’s constraint then
it will be inserted in the GMFF1 set (line 8). In order to find the GMFCk set,
the subroutine GEN-NEXT is invoked (line 11). GEN-NEXT considers frequent
fuzzy minimal generators of the previous iteration as an input and returns frequent
fuzzy generators with one more item. Indeed, it joins frequent k-fuzzy generators
together, forming candidate (k + 1)-fuzzy generators (i.e., the join step). After
that, a pruning step will remove any fuzzy generator whose fuzzy subsets have
not been part of the discovered sets during the previous iterations. The following
step i.e., the domain’s computing step, will compute the domain of all frequent
(k+1)-fuzzy minimal generators by calling the GET-DOMAIN2 function. This
function computes the domain of a (k + 1)-fuzzy generator which is the result of
a two k-fuzzy generators combination. This will be achieved without the need to
scan the original context any more. This step is based on proposition 3.

After that, the candidate fuzzy generators set is pruned with respect to the
minsup threshold as well as to the structural property of a fuzzy minimal generator,
i.e., for any (k+1)-fuzzy generator, we have to make sure that there is no frequent
k-fuzzy generator, having the same domain. If such a case exists, this (k+1)-fuzzy
generator will not be inserted in the GMFF (k+1) set.

Proposition 3. g̃C̃(Ĩ1 ∪ Ĩ2) = g̃C̃(Ĩ1) ∩ g̃C̃(Ĩ2), ∀ Ĩ1, Ĩ2 ∈ Ĩ .

Proof 3. Let Ĩ3 = Ĩ1 ∪ Ĩ2, we have:
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g̃C̃(Ĩ3)= {g|∀d ∈ Ĩ3, =⇒ µR̃(g, d) ≥ µĨ3
(d) ∧ µC̃(d)≤ µR̃(g, d)}

= {g|∀d ∈ Ĩ3, =⇒ µR̃(g, d) ≥ µĨ1∪Ĩ2
(d) ∧ µC̃(d)≤ µR̃(g, d)}

= {g|∀d ∈ Ĩ3, =⇒ µR̃(g, d) ≥ max(µĨ1
(d), µĨ2

(d)) ∧ µC̃(d)≤ µR̃(g, d)}
= {g|∀d ∈ Ĩ3, =⇒ µR̃(g, d) ≥ µĨ1

(d) and µR̃(g, d) ≥ µĨ2
(d)) ∧ µC̃(d)≤

µR̃(g, d)}
= {g|∀d ∈ Ĩ3, =⇒ µR̃(g, d) ≥ µĨ1

(d) ∧ µC̃(d)≤ µR̃(g, d)} and {g|∀d ∈
Ĩ3, =⇒ µR̃(g, d) ≥ µĨ2

(d) ∧ µC̃(d)≤ µR̃(g, d)}
= g̃C̃(Ĩ1) ∩ g̃C̃(Ĩ2)

Generating fuzzy closed itemsets: This step consists in applying the f̃C̃ op-
erator on the GMFF set (line 12).

The pseudo-code and the notations used in the GEN-IFF algorithm are, re-
spectively presented in algorithm 1 and table 3. The GEN-NEXT procedure is
given by algorithm 2.

KC̃ : Constrained fuzzy formal context.

GMFCk : Set of k-fuzzy minimal generators.

GMFFk : Set of k-frequent fuzzy minimal generators (i.e., having
a support greater than or equal to minsup and fulfilling the
constraint C̃).

GMFF : Set of all frequent fuzzy minimal generators.

IFF̃ : Set of all fuzzy closed itemsets.

minsup : Minimal support.

Table 3: Notations used in the GEN-IFF algorithm
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Input:
• KC̃ : Fuzzy formal context under constraint

• minsup

Output: IFF̃ : Fuzzy closed itemsets
Begin1

GMFC1 = {1-fuzzy itemsets};2

GET-DOMAIN(GMFC1);3

GMFF0 = {∅}4

GMFF = {∅}5

foreach (g̃ ∈ GMFC1) do6

if (| g̃.dom| ≥ minsup) and (g̃.dom ⊆ C̃.dom) then7

GMFF1 = GMFF1 ∪ g̃;8

for (k =1; GMFFk 6= ∅; k++) do9

GMFF = GMFF ∪ GMFFk;10

GMFF (k+1) = GEN-NEXT(GMFFk);11

IFF̃=GEN-CLOSURE(GMFF );12

return IFF̃ ;13

End14

Algorithm 1: GEN-IFF
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Procedure: GEN-NEXT1

Input: GMFFk

Output: GMFF (k+1)

Begin2

/∗ Join step. ∗/3

INSERT INTO GMFC(k+1)4

SELECT g̃1.itemα1
1 ,g̃1.itemα2

2 ,. . ., g̃1.itemαi
i ,g̃2.itemα1

1 ,g̃2.itemα2
2 ,. . .,5

g̃2.itemαi
i

FROM GMFFk g̃1 , GMFFk g̃26

WHERE g̃1 6= g̃2,7

g̃1.itemα1
1 = g̃2.itemα1

1 ,8

g̃1.itemα2
2 = g̃2.itemα2

2 ,9

...10

g̃1.itemαi−1

i−1 = g̃2.itemαi−1

i−1 ,11

g̃1.itemαi
i 6= g̃2.itemαi

i12

/∗ Pruning Step. ∗/13

foreach (g̃ ∈ GMFC(k+1)) do14

foreach (g̃1 s.t |g̃1| = k and g̃1 ⊂ g̃) do15

if g̃1 /∈ GMFFk then16

GMFC(k+1) = GMFC(k+1) - g̃117

exit;18

/∗ Domain computing step. ∗/19

foreach g̃ ∈ GMFC(k+1) do20

GET-DOMAIN2(g̃);21

if (|g̃.dom| ≥ minsup) and (@ g̃′ ∈ GMFFk s.t (g̃′ ⊂ g̃) and22

(g̃.dom=g̃′.dom)) then
GMFF (k+1) = GMFF (k+1) ∪ g̃;23

return GMFF (k+1)24

End25

Algorithm 2: GEN-NEXT
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Example 6. The GEN-IFF algorithm starts by determining the set of fuzzy candi-
date minimal 1-generators GMFC1 = {B1, B0,6, B0,5, C1, C0,9, C0,7, E1, E0,9,
E0,7, M0,5, M0,1}, as well as their associated domains. For minsup = 1

4
and set-

ting values in C̃ to 0, we find that GMFC1 is equal to GMFF1 (cf. Figure 5.a).
Then, the GEN-NEXT procedure is invoked to obtain the set of fuzzy candidate
minimal 2-generators GMFC2 (cf. Figure 5.b) as well as their associated do-
mains. The obtained set is pruned with respect to the property that has to fulfill
any fuzzy minimal generator. Hence, the generator B1 C0,9 is withdrawn, since
it exists another generator B0,6 C0,9 such that B0,6 C0,9 ⊂ B1 C0,9 and the do-
main of B1 C0,9 is equal to that of B0,6 C0,9, i.e., both generators share the same
closure. The GMFF2 set, shown in Figure 5.c, is obtained after the pruning of
the GMFC2 set. The process comes to an end at the third iteration, since the
respective domains of all the fuzzy candidate fuzzy 3-generators are shown to be
equal to the empty set (cf. Figure 5.d). Once the set of all frequent fuzzy minimal
generators is outputted, the GEN-CLOSURE is invoked in order to compute the
associated closures, by applying the f̃C̃ operator on the associated domain of the
retained frequent fuzzy minimal generators. The obtained output is sketched by
Figure 6.

In the sake of better performances for the GEN-IFF algorithm, we suggest
storing the constrained fuzzy context (i.e., the input data of the algorithm) in a
condensed structure that can be loaded in main memory. In what follows, we
describe the construction of this data structure that we baptized "FUZZYTREE".

4.1. The FUZZYTREE data structure: A condensed representation of the original
constrained fuzzy context

4.1.1. Presentation
The GEN-IFF takes as an input data the constrained fuzzy context that will be

explored to identify fuzzy minimal generators with their respective domains (i.e.,
the application of the fuzzy operator g̃C̃). One bottleneck encountered by GEN-
IFF is the computation of 1-sized fuzzy items domains. In fact, let us suppose that
every 1-sized fuzzy minimal generator has α degrees over the |O| transactions of
the constrained fuzzy context. So, (α × |O|) scans are needed for computing the
associated domain of each 1-sized fuzzy minimal generator. Thus, the total num-
ber of I/O operations is estimated to be equal to (α × |O| × |I|). In order to make
GEN-IFF more efficient, original constrained fuzzy context can be loaded in a
compact lossless representation. This is achieved by organizing the data in a suit-
able data structure, called “FUZZYTREE". From this data structure, it is straight-
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Figure 5: (a): Frequent fuzzy closed 1-itemsets , (b): Candidate fuzzy minimal 2-
generators, (c): Frequent fuzzy closed 2-itemsets, (d): Candidate fuzzy minimal 3-
generators. 24



GMFF=⇒

Fuzz.min.gen Domain Closure Support
B1 {t3 t4} B 1 C 0.7 E 0.9 M 0.1 1

2
B0.6 {t2 t3 t4} B 0.6 C 0.7 E 0.9 M 0.1 3

4
B0.5 {t1 t2 t3 t4} B 0.5 C 0.7 E 0.7 M 0.1 1
C1 {t1} B 0.5 C 1 E 0.7 M 0.5 1

4
C0.9 {t1 t4} B 0.5 C 0.9 E 0.7 M 0.1 1

4
C0.7 {t1 t2 t3 t4} B 0.5 C 0.7 E 0.7 M 0.1 1
E1 {t2 t3} B 0.6 C 0.7 E 1.0 M 0.1 3

4
E0.9 {t2 t3 t4} B 0.6 C 0.7 E 0.9 M 0.1 3

4
E0.7 {t1 t2 t3 t4} B 0.5 C 0.7 E 0.7 M 0.1 1
M0.5 {t1 t2} B 0.5 C 0.7 E 1 M 0.5 1

2
M0.1 {t1 t2 t3 t4} B 0.5 C 0.7 E 0.7 M 0.1 1
B1 E1 {t3} B 1 C 0.7 E 1 M 0.1 1

4
B0.6 C0.9 {t4} B 1 C 0.9 E 0.9 M 0.1 1

4
B0.6 M0.5 {t2} B 0.6 C 0.7 E 1 M 0.5 1

4
C0.9 E0.9 {t4} B 1 C 0.9 E 0.9 M 0.1 1

4
C0.9 M0.5 {t1} B 0.5 C 1 E 0.7 M 0.5 1

4
E0.9 M0.5 {t2} B 0.6 C 0.7 E 1 M 0.5 1

4

Figure 6: Fuzzy minimal generators and closed itemsets extracted from the fuzzy context
K for a minsup= 1

4 .
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forward to get out the domain of fuzzy minimal generators. The “FUZZYTREE" is
a two-level tree. The first level contains nodes representing the identifiers of items
and a link to upper level. The second level contains nodes storing the degree of
the fuzzy item (i.e., which is presented in the upper level), the set of objects corre-
sponding to that degree and a link to the following sibling node. The construction
process of the FUZZYTREE corresponding to the constrained fuzzy context of the
Figure 1 is shown below.
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Figure 7: Construction process of the FUZZYTREE corresponding to the constrained fuzzy context
of the Figure 1. (a): First iteration, (b): Second iteration, (c): Third iteration, (d): Fourth iteration.

Initially, the FUZZYTREE contains only one node (i.e., the root). The handling
of the first transaction generates four nodes of level 1 (B, C, D, E) and their cor-
responding elder sons (0.5, t1), (0.9, t1), (0.7, t1) and (0.5, t1)(3) (Figure 7.a). The
second transaction t2, generates three new nodes as follows:

Degrees are read and inserted according to a decreasing order. So, the degree
of the item "B" in the second transaction is equal to 0.6 which is greater than that

3The ith transaction is denoted here by ti.
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of the node (0.5, t1). Consequently, we insert a new node (0.6, t2) before (0.5, t1).
For the node "C", it has a degree equal to 0.7 which is lower than the degree 1 of
the first node. Therefore, we insert the node (0.7, t2) as a son of the node (1, t1).
For the item "M", its membership degree in the second transaction is equal to 0.5,
which is equal to that of the node (0.5, t1). In that case, the transaction t2 is inserted
in the domain of the node (0.5, t1). So, this node becomes (0.5, t1; t2) (c.f., Figure
7.b). The process continues until scanning the whole constrained fuzzy context.
So, the domain of a fuzzy itemset can be found in a straightforward manner by
scanning the data structure FUZZYTREE. Indeed, the domain of a 1-sized fuzzy
generator g, having at least the degree α, is determined as follows:

• To cross FUZZYTREE from the root to the node g of the first level;

• To go downward in the tree structure until the second level node having the
degree α, while concatenating all transactions of previously visited nodes.

Example 7. The domain of the candidate fuzzy generator C0,7, is equal to {t1, t2,
t3, t4}.

4.1.2. FUZZYTREE construction algorithm complexity issues

Let us consider a fuzzy formal context under constraint KC̃= (O, Ĩ, R̃, C̃). In
order to represent it in the FUZZYTREE structure, we suppose that |O| = m (the
number of transactions) and |Ĩ| = n (the number of items). The insertion of a first
level node costs O(1). To insert a second level node in the FUZZYTREE, we have
first to find the position of its corresponding first level node which costs O(m).
Then, we have to go down in the tree structure, and find the position of this second
level node by comparing its degree with the degrees of all visited nodes. In the
worst case, we perform p comparisons, where p is the total number of degrees
that can be taken by an item. So, the theoretical complexity of the FUZZYTREE

construction algorithm is bounded by:

O(n × m × p) ' O(n × m)

4.2. Fuzzy generic basis of FARs
In this paper, we are interested in extracting fuzzy association rules of the

form r̃: Ĩ1 ⇒ Ĩ2, where Ĩ1, Ĩ2 ⊆ Ĩ = {α1
a1,

α2
a2, . . . ,

αp

ap,
αq

aq, . . . ,
αn
an}, and Ĩ1 = {α1

a1

,
α2
a2, . . . ,

αp

ap} and Ĩ2 = {αq

aq, . . . ,
αn
an}. Ĩ1 and Ĩ2 are called, respectively, the premise

part and conclusion part of the fuzzy rule r̃. The value αi, i = 1, . . . n, is called
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local weight of the item ai. This value indicates the relative degree of importance
of each item contributing to the conclusion of the rule, and plays an important role
in many real life problems [33]. For example, in medical diagnostic systems, it is
common to assign a local weight to each symptom in order to show the relative
importance (weight) of each symptom leading to the conclusion (a disease).

A fuzzy association rule is valid whenever its confidence is greater than or
equal to a minimal threshold of confidence minconf. The confidence and the sup-
port of a rule are defined as follows4:

Conf (R) = |g̃C̃(Ĩ1∪Ĩ2)|
|g̃C̃(Ĩ1)|

Supp (R) = |g̃C̃(Ĩ1∪Ĩ2)|
|O|

Remark 3. Classical (or crisp) association rules can be defined as a special case
of fuzzy association rules. Indeed, when Ĩ = {α1

a1,
α2
a2, . . . ,

αp

ap,
αq

aq, . . . ,
αn
an} and

αi = 1, i = 1, . . . , n, then a fuzzy association rule is reduced to a classical one.

It is noteworthy that extracting fuzzy association rules is far from being a triv-
ial task, compared to the boolean case, mostly because of the huge size of the
fuzzy extraction context and consequently the number of potentially interesting
fuzzy rules that can be drawn from such a fuzzy dataset. In this respect, reducing
such a set of fuzzy rules is a critical issue. Beyond basic statistical techniques
used to prune the number of rules (i.e., support and confidence), more advanced
techniques allowing at producing only limited number of rules. This techniques
rely on closures and Galois connections [4, 31, 34], which are in turn derived
from Galois lattice theory and formal concept analysis (FCA) [21]. In order to
select without loss of information a generic subset of all fuzzy association rules,
we define three fuzzy generic basis from which remaining (redundant) FARs are
generated.

Definition 10. Generic basis for exact FARs
Let FC̃K be the set of fuzzy frequent closed itemsets extracted from a fuzzy context
under constraint, and, for each fuzzy frequent closed itemset Ĩ , let us denote FG̃ Ĩ

the set of its fuzzy minimal generators. Thus, the generic basis for exact FARs
denoted by GBEF , is defined as follows :

4The interested reader is referred to [20], in which techniques were investigated to identify and
evaluate associations in a relational database that are expressible by fuzzy if-then rules.
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GBEF = {R:g̃ ⇒ (Ĩ - g̃)|Ĩ ∈FC̃K ∧ g̃ ∈FG̃ Ĩ ∧ g̃ 6= Ĩ(5)}

Example 8. The generic basis for exact FARs extracted from the constrained
fuzzy context KC̃ , shown in Figure 1, is depicted by table 4. From this context,
18 exact FARs are extracted.

Table 4: The generic basis GBEF extracted from the constrained fuzzy contextKC̃ , for minsup= 1
4

and minconf = 1
4 .

Exact FARs Support Confidence
B 0.5 ⇒ C 0.7 E 0.7 M 0.1 1 1
C 0.7 ⇒ B 0.5 E 0.7 M 0.1 1 1
E 0.7 ⇒ B 0.5 C 0.7 M 0.1 1 1
M 0.1 ⇒ B 0.5 C 0.7 E 0.7 1 1
C 0.9 ⇒ B 0.5 E 0.7 M 0.1 1 1
B 0.6 ⇒ C 0.7 E 0.9 M 0.1 3

4 1
E 0.9 ⇒ B 0.6 C 0.7 M 0.1 3

4 1
B 1 ⇒ C 0.9 E 0.9 M 0.1 1

2 1
M 0.5 ⇒ B 0.5 C 0.7 E 0.7 1

2 1
E 1 ⇒ B 0.6 C 0.7 M 0.1 1

2 1
C 1 ⇒ B 0.5 E 0.7 M 0.5 1

4 1
C 0.9 M 0.5 ⇒ B 0.5 C 1 E 0.7 1

4 1
B 0.6 M 0.5 ⇒ C 0.7 E 1 1

4 1
E 0.9 M 0.5 ⇒ B 0.6 C 0.7 E 1 1

4 1
B 0.6 C 0.9 ⇒ B 1 E 0.9 M 0.1 1

4 1
B 1 E 1 ⇒ C 0.9 M 0.1 1

4 1
C 0.9 E 0.9 ⇒ B 1 M 0.1 1

4 1
C 0.9 E 1 ⇒ B 1 M 0.1 1

4 1

Definition 11. Generic basis for approximate FARs
The generic basis for approximative FARs, denoted by GBAF , is defined as fol-
lows :

5This condition ensures discarding non-informative rules of the form g̃ → ∅.
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GBAF = { R: g̃ ⇒ (Ĩ1 - g̃)| Ĩ , Ĩ1 ∈ FC̃K, g̃ ∈ FG̃ Ĩ ∧ Ĩ ⊂ Ĩ1 ∧ Conf(R) ≥
minconf }

A transitive reduction of generic basis for approximate FARs can be defined
as:

Definition 12. Generic basis for transitive FARs
The generic basis for transitive FARs, denoted by RT F , is defined as follows :

RT F = { R: g̃ ⇒ (Ĩ1 - g̃)| Ĩ , Ĩ1 ∈ FC̃K ∧ g̃ ∈ FG̃ Ĩ ∧ Ĩ ⊂ Ĩ1 ∧ @ Ĩ2 s.t. Ĩ ⊂ Ĩ2 ⊂
Ĩ1 ∧ Conf(R) ≥minconf }

Example 9. From the context shown in Figure 1, 47 approximate generic FARs
are extracted vs 22 transitive generic FARs. The generic basis for approximative
FARs (GBAF ) extracted from the constrained fuzzy context KC̃ is shown in table
5, while, the generic basis for transitive FARs (RT F ) is shown in table 6.

Remark 4. Given a fuzzy Iceberg concept lattice in which each fuzzy closed item-
set is “decorated" with its associated list of fuzzy minimal generators, the generic
exact FARs can be derived in a straightforward manner. In fact, generic exact
fuzzy rules represent “intra-node" implications, between a fuzzy minimal genera-
tor and the corresponding fuzzy closed itemset. Generic approximate (transitive)
fuzzy rules represent “inter-node" implications, assorted with the confidence mea-
sure, between two comparable equivalence classes, i.e., from a sub fuzzy closed
itemset to a super (immediate) fuzzy closed itemset, when starting from a given
node in the partially ordered structure.

4.3. Redundant FARs derivation
A generic basis extraction approach should be performed without informa-

tion loss. Therefore, extracting generic basis process has to fulfill the following
requirements [7] :

• “Derivability": An inference mechanism should be provided (e.g., an ax-
iomatic system). The axiomatic system has to be valid (i.e., should forbid
derivation of non valid rules) and complete (i.e., should enable derivation of
all valid rules).

• “Informativeness": The generic basis of association rules allows to exactly
retrieve the support and confidence of the derived (redundant) association
rules.
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Table 5: The generic basis (GBAF ) corresponding to the constrained fuzzy context KC̃ for min-
sup= 1

4 and minconf = 1
4 .

App. FARs Support Confidence
B0.5 ⇒ B 0.6 C 0.7 E 0.9 M 0.1 3

4
3
4

B0.5 ⇒ C 0.9 E 0.7 M 0.1 3
4

3
4

B0.5 ⇒ C 0.7 E 0.7 M 0.5 1
2

1
2

B0.5 ⇒ B 1 C 0.9 E 0.9 M 0.1 1
2

1
2

B0.5 ⇒ B 0.6 C 0.7 E 1 M 0.1 1
2

1
2

B0.5 ⇒ C 1 E 0.7 M 0.5 1
4

1
4

B0.5 ⇒ B 0.6 C 0.7 E 1 M 0.5 1
4

1
4

B0.5 ⇒ B 1 C 0.9 E 1 M 0.1 1
4

1
4

C0.7 ⇒ B 0.6 E 0.9 M 0.1 3
4

3
4

C0.7 ⇒ B 0.5 C 0.9 E 0.7 M 0.1 3
4

3
4

C0.7 ⇒ B 0.5 E 0.7 M 0.5 1
2

1
2

C0.7 ⇒ B 0.6 E 1 M 0.1 1
2

1
2

C0.7 ⇒ B 1 C 0.9 E 0.9 M 0.1 1
2

1
2

C0.7 ⇒ B 0.5 C 1 E 0.7 M 0.5 1
4

1
4

C0.7 ⇒ B 0.6 E 1 M 0.5 1
4

1
4

C0.7 ⇒ B 1 C 0.9 E 1 M 0.1 1
4

1
4

E0.7 ⇒ B 0.5 C 0.9 M 0.1 3
4

3
4

E0.7 ⇒ B 0.6 C 0.7 E 0.9 M 0.1 3
4

3
4

E0.7 ⇒ B 1 C 0.9 E 0.9 M 0.1 1
2

1
2

E0.7 ⇒ B 0.5 C 0.7 M 0.5 1
2

1
2

E0.7 ⇒ B 0.6 C 0.7 E 1 M 0.1 1
2

1
2

E0.7 ⇒ B 0.5 C 1 M 0.5 1
4

1
4

E0.7 ⇒ B 0.6 C 0.7 E 1 M 0.5 1
4

1
4

E0.7 ⇒ B 1 C 0.9 E 1 M 0.1 1
4

1
4

M0.1 ⇒ B 0.5 C 0.9 E 0.7 3
4

3
4

M0.1 ⇒ B 0.6 C 0.7 E 0.9 3
4

3
4

M0.1 ⇒ B 1 C 0.9 E 0.9 1
2

1
2

M0.1 ⇒ B 0.5 C 0.7 E 0.7 M 0.5 1
2

1
2

M0.1 ⇒ B 0.6 C 0.7 E 1 1
2

1
2

M0.1 ⇒ B 0.5 C 1 E 0.7 M 0.5 1
4

1
4

M0.1 ⇒ B 0.6 C 0.7 E 1 M 0.5 1
4

1
4

M0.1 ⇒ B 1 C 0.9 E 1 1
4

1
4

B0.6 ⇒ C 0.7 E 1 M 0.1 1
2

2
3

B0.6 ⇒ B 1 C 0.9 E 1 M 0.1 1
4

1
3

B0.6 ⇒ C 0.7 E 1 M 0.5 1
4

1
3

E0.9 ⇒ B0.6 C 0.7 E 1 M 0.1 1
2

2
3

E0.9 ⇒ B 1 C 0.9 E 1 M 0.1 1
4

1
3

E0.9 ⇒ B0.6 C 0.7 E 1 M 0.5 1
4

1
3

C0.9 ⇒ B1 C 0.9 E 0.9 M 0.1 1
2

2
3

C0.9 ⇒ B1 C 0.9 E 1 M 0.1 1
4

1
3

B1 ⇒ C 0.9 E 1 M 0.1 1
4

1
2

B0.6 C 0.9 ⇒ B 1 E 1 M 0.1 1
4

1
2

C0.9 E 0.9 ⇒ B1 E 1 M 0.1 1
4

1
2

M0.5 ⇒ B 0.5 C 1 E 0.7 1
4

1
2

M0.5 ⇒ B 0.6 C 0.7 E 1 1
4

1
2

E1 ⇒ B 0.6 C 0.7 M 0.5 1
4

1
2

E1 ⇒ B 1 C 0.9 M 0.1 1
4

1
2

31



Table 6: The generic basis (RT F ) corresponding to the constrained fuzzy context KC̃ , for min-
sup= 1

4 and minconf = 1
4 .

Trans. FARs Support Confidence
B0.5 ⇒ B 0.6 C 0.7 E 0.9 M 0.1 3

4
3
4

B0.5 ⇒ C 0.9 E 0.7 M 0.1 3
4

3
4

B0.5 ⇒ C 0.7 E 0.7 M 0.5 1
2

1
2

C0.7 ⇒ B 0.6 E 0.9 M 0.1 3
4

3
4

C0.7 ⇒ B 0.6 C 0.9 E 0.7 M 0.1 3
4

3
4

C0.7 ⇒ B 0.5 E 0.7 M 0.5 1
2

1
2

E0.7 ⇒ B 0.6 C 0.7 E 0.9 M 0.1 3
4

3
4

E0.7 ⇒ B 0.5 C 0.9 M 0.1 3
4

3
4

E0.7 ⇒ B 0.5 C 0.7 M 0.5 1
2

1
2

M0.1 ⇒ B 0.6 C 0.7 E 0.9 3
4

3
4

M0.1 ⇒ B 0.5 C 0.9 E 0.7 3
4

3
4

M0.1 ⇒ B 0.5 C 0.7 E 0.7 M 0.5 1
2

1
2

B0.6 ⇒ C 0.7 E 1 M 0.1 1
2

2
3

E0.9 ⇒ B0.6 C 0.7 E 1 M 0.1 1
2

2
3

C0.9 ⇒ B1 E 0.9 M 0.1 1
2

2
3

B1 ⇒ C 0.9 E 1 M 0.1 1
4

1
2

B0.6 C 0.9 ⇒ B 1 E 1 M 0.1 1
4

1
2

C0.9 E 0.9 ⇒ B1 E 1 M 0.1 1
4

1
2

M0.5 ⇒ B 0.5 C 1 E 0.7 1
4

1
2

M0.5 ⇒ B 0.6 C 0.7 E 1 1
4

1
2

E1 ⇒ B 0.6 C 0.7 M 0.5 1
4

1
2

E1 ⇒ B 1 C 0.9 M 0.1 1
4

1
2
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In the following, we start by defining the notion of a redundant FAR and then,
we prove that the derivation of the pair (GBEF , GBAF ) is a lossless information
approach.

Definition 13. Let FAR be the set of all FARs derived from a constrained fuzzy
context KC̃ . A fuzzy rule R:Ĩ1

s,c⇒ Ĩ2 ∈ FAR is said to be redundant to (or deriv-
able from) R′ : Ĩ1

′ s,c⇒ Ĩ2
′
, when R fulfills:

1. Support(R) = Support(R′) = s ∧ Confidence(R) = Confidence(R′) = c.
2. Ĩ1

′ ⊆ Ĩ1 ∧ Ĩ2 ⊂ Ĩ2
′
.

In the remainder, we introduce rule inference mechanisms, by means of an ax-
iomatic system.

Proposition 4. Let us consider the pair (GBEF , GBAF ) and the set of all valid
fuzzy rules extracted from a constrained fuzzy context KC̃ denoted by FAR. The
following axiomatic system is valid and complete:

A1. Reflexivity:
If R : X

s,c⇒ Y ∈ (GBEF , GBAF ) then R : X
s,c⇒ Y ∈ FAR.

A2. Left augmentation:

• If R : X
s,c⇒ Y ∈ GBEF and Z ⊂ Y , then R′ : XZ

s,c⇒ (Y − Z) ∈
FAR, ∀ Z ⊂ Y (i.e., R′ is valid).

• If R : X
s,c⇒ Y ∈ GBAF then R′ : XZ

s,c⇒ (Y − Z) ∈ FAR, such
that support(XZ) = support(X) and Z ⊂ Y.

A3. Right decomposition:

• If R : X
s,c⇒ Y ∈ GBEF then R′ : X

s,c⇒ Z ∈ FAR, ∀ Z ⊂ Y.

• If R : X
s,c⇒ Y ∈ GBAF then R′ : X

s,c⇒ Z ∈ FAR, such that
support(XZ) = support(XY) and Z ⊂ Y.

Proposition 5. The rule inference mechanism (i.e., the axiomatic system), as de-
fined above is valid.
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Proof 4. In order to prove the axiomatic system’s validity, we have to prove that
all the FARs derived from the pair (GBEF , GBAF ), are valid (i.e., their support
and confidence are, respectively, greater than or equal to minsup and minconf).

A1. Reflexivity :
This can be deduced from the definition of both generic bases GBEF and
GBAF .

A2. Left augmentation :

• If R : X
s,c⇒ Y ∈ GBEF then confidence(R) = support(XY )

support(X)
= 1 = c. So,

support(XY ) = support(X).

Let R′ : XZ
s,c′⇒ (Y − Z), be a fuzzy association rule such that Z

⊂ Y . Since, X ⊂ XZ, then we have support(X) ≥ support(XZ).
On the one hand, we have confidence(R′) = c′ = support(XY )

support(XZ)
≥ c. On

the other hand, the confidence of a fuzzy association rule is a statistic
metric ranging in the interval [0, 1]. We have confidence(R) = c = 1
and confidence(R′) = c′ ≥ c, then, confidence(R′) = 1 (i.e., R′ is a
valid fuzzy association rule).

• If R : X
s,c⇒ Y ∈ GBAF then confidence(R) = support(XY )

support(X)
=c.

Let R′ : XZ
s′,c′⇒ (Y − Z), be a fuzzy association rule such that Z

⊂ Y . We have, Z ⊂ Y then support(R′) = s′ = |g̃C̃(XZ ∪ (Y −
Z))| = support(XY ) = support(R) = s. On the other hand, we have
support(XZ) = support(X), then confidence(R′) = support(XY )

support(XZ)
= c′ =

support(XY )
support(X)

= confidence(R) = c.

A3. Right decomposition :

• If R : X
s,c⇒ Y ∈ GBEF then confidence(R) = support(XY )

support(X)
= 1. So,

support(XY ) = support(X). Let R′ : X ⇒ Z, be a fuzzy association
rule such that Z ⊂ Y . So, confidence(R′) = support(XZ)

support(X)
. We have, Z

⊂ Y then XZ ⊂ XY . Hence, we have support(XZ)≥ support(XY )
and confidence(R′) = support(XZ)

support(X)
≥ confidence(R)= support(XY )

support(X)
. How-

ever, the confidence is a statistic measure belonging to the interval
[0, 1]. We can deduce then, that confidence(R′) = support(XZ)

support(X)
= 1 and

support(R′)=support(R)=s.
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• If R : X
s,c⇒ Y ∈ GBAF then confidence(R) = support(XY )

support(X)
= c. Let

R′ : X
s′,c′⇒ Z, be a fuzzy association rule such that Z ⊂ Y and

support(XZ)=support(XY ).
From these last conditions, we can deduce that support(R′ : X ⇒ Z)
= support(XZ) = support(XY ) = and confidence(R′) = support(XZ)

support(X)
=

c′ = support(XY )
support(X)

= confidence(R) = c.

Proposition 6. The rule inference mechanism (i.e., the axiomatic system), as de-
fined above is complete.

Proof 5. Proving the completeness of the axiomatic system comes back to show
that, when it is applied to the pair (GBEF , GBAF ) it allows the derivation of all
valid fuzzy associative rules that can be extracted from a fuzzy formal context.

Let R : X
s,c⇒ Y − X be a valid fuzzy association rule between two fuzzy

itemsets X and Y :

• If R is an exact fuzzy association rule (i.e., confidence(R) = c = 1), we obvi-
ously have X ⊂ Y and confidence(R) =1, we have support(X) = support(Y ).
Therefore, we can conclude that f̃C̃◦g̃C̃(X) = f̃C̃◦g̃C̃(Y ) = Ĩ . The fuzzy
itemset Ĩ is a fuzzy closed itemset and there exists a fuzzy association rule
R′ :g̃ ⇒ (Ĩ - g̃) ∈ GBEF such that g̃ is a fuzzy minimal generator of Ĩ for
which we have :
g̃ ⊂ X and g̃ ⊂ Y , (application of the augmentation axiom);
g̃ = X and g̃ ⊂ Y , (application of the decomposition axiom). We will prove
that the fuzzy rule R and its support can be deduced from the fuzzy rule
R′. Since g̃ ⊆ X and g̃ ⊂ Y ⊆ Ĩ , the fuzzy association rule R can be de-
rived from R′ (by applying the augmentation or the decomposition axiom).
From f̃C̃◦g̃C̃(X) = f̃C̃◦g̃C̃(Y ) = Ĩ , we can deduce that support(R) = s =
support(Y ) = support(f̃C̃◦g̃C̃(Y )) = support(R′).

• If R is an approximative fuzzy association rule (i.e., confidence(R) = s ≤
1) then we have X ⊂ Y . Since confidence(R) ≤ 1, we have necessarily,
f̃C̃◦g̃C̃(X) ⊂ f̃C̃◦g̃C̃(Y ). For both fuzzy itemsets X and Y , there exist two
fuzzy minimal generators, g̃1 and g̃2 having, respectively, Ĩ1 and Ĩ2 as fuzzy
closures such that:

g̃1 ⊂ X ⊂ f̃C̃◦g̃C̃(X) = Ĩ1;

g̃2 ⊂ Y ⊆ f̃C̃◦g̃C̃(Y ) = Ĩ2.
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Since X ⊂ Y , we have X ⊆ Ĩ1 ⊂ Y ⊆ Ĩ2 and the fuzzy rule R′ : g̃1
s′,c′⇒ (Ĩ2

- g̃1) ∈ GBAF . We will prove now that the fuzzy rule R (with its support s
and confidence c) can be deduced from the fuzzy rule R′ (with its support s′

and confidence c′).
Since g̃1 ⊂ X ⊆ Ĩ1 ⊂ Y ⊆ Ĩ2 then the premise and the conclusion parts of
the fuzzy rule R can be derived from R′. Besides, we have f̃C̃◦g̃C̃(Y ) = Ĩ2

then support(R) = s = support(Y ) = support(Ĩ2) = support(R′) = s′. Since
X ⊆ Ĩ1, we have support(X) = support(Ĩ1) and we can deduce that :

confidence(R) = c= support(Y )
support(X)

= support(Ĩ2)

support(Ĩ1)
= confidence(R′) = c′.

Example 10. The cardinality of the redundant exact FARs set extracted from the
GBEF basis given by table 4 is equal to 179 FARs which are enumerated below.

• 18 exact fuzzy rules obtained by applying the “reflexivity" axiom;

• 69 exact fuzzy rules obtained by applying the “left augmentation" axiom;

• 92 exact fuzzy rules obtained by applying the “right decomposition" axiom.

5. Experiments

We implemented our algorithm in the C++ language using gcc version 3.3.1
under Linux Fedora core 5 platform. Experiments were conducted on a Centrino
Dual Core with a 1.66 GHz and 2 GB of main memory. The evaluation of the
proposed approach is split in two parts. Firstly, the focus is put on the scalability
issue of the GEN-IFF algorithm. Secondly, the compactness ratios obtained by
the different introduced generic bases of fuzzy association rules are assessed. We
begin by presenting the dataset’s characteristics used during this evaluation.

5.1. Test dataset description
To rate the behavior of our algorithm presented in the previous section, we

ran experiments on two different types of datasets. The first type originates from
biological domain, while the second one presents benchmark datasets of the data
mining field. The first dataset is the publicly available SAGE (Serial Analysis of
Gene Expression)(6) data produced from human cells. One of the crucial task

6http://www.ncbi.nlm.nih.gov/SAGE/index.cgi.
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in genomic research is the analysis of SAGE expression to identify a priori in-
teresting sets of genes, e.g., sets of genes that are frequently co-regulated. Such
matrices provide expression values for given biological situations (the lines) and
given genes (columns) [29]. The SAGE dataset contains 12000 genes (in columns)
and only 56 patients (in lines). This type of context is different from the traditional
ones since the number of lines is generally very important compared to that of at-
tributes (i.e., usually of use in the data mining field). Mining the whole basis with
its 12000 genes was an intractable task. This is the reason why we have chosen to
work with some randomly chosen excerpts of the base.

The Mushroom dataset contains characteristics of various mushroom species.
The Chess dataset is derived steps of associated game. These datasets were origi-
nally taken from the UC Irvine Machine Learning Database Repository(7). Typi-
cally, these real datasets are dense, i.e., they produce long frequent itemsets even
for very high values of support. Please note that both latter datasets were "fuzzi-
fied", by assigning a random value, ranging in the unit interval, to each item ap-
pearing in each dataset rows. Characteristics of the considered datasets are sum-
marized in Table 7.

Dataset Type #items Avg. transaction size # transactions
SAGE dense 12, 000 - 56
Mushroom dense 119 23 8, 124
Chess dense 75 37 3, 196

Table 7: Benchmark dataset characteristics.

5.2. Scalability issue of the GEN-IFF algorithm
We begin this subsection by providing an idea on the usefulness of the in-

troduced FUZZYTREE data structure. To illustrate it, we have chosen the SAGE

dataset since it is the most dense one from the considered datasets.
At a glance, Table 8, reporting the computation time and the memory space

needed to build the FUZZYTREE, sheds light on the compactness of the proposed
data structure as well as on the scalability of its construction algorithm.

During the scalability assessment experiments, we took the liberty to omit
considering the user’s constraint in order to test our algorithm in the worst case.

7http://www.ics.uci.edu/∼mlearn/MLRepository.html.
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Excerpts of the SAGE base Space Memory(MB) Computation time (sec.)
Version 1 : 2000 genes 1.5 2
Version 2 : 4000 genes 2.3 4
Version 3 : 6000 genes 3.2 8
Version 4 : 8000 genes 4.8 21
Version 5 : 10000 genes 5.6 35
Version 6 : 12000 genes 6.2 45

Table 8: Variation of the memory space and the computation time vs. the number of genes
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Figure 8: Evolution of the computation time for discovering fuzzy closed itemsets and fuzzy
minimal generators vs the variation of the minsup value for the for the considered datasets.

Table 9 reports statistics on the number of fuzzy closed itemsets and their cor-
responding fuzzy minimal generators that can be extracted from the considered
datasets. From the reported values in Table 9, we can highlight that:

• We remark that even from a small excerpt (that represents the 1
80

of the total-
ity of the dataset), we extracted a huge number of fuzzy minimal generators
and their corresponding fuzzy closed itemsets (that reaches millions for a
minsup value lower than 0.5), when compared to those extracted from the
other datasets. This result confirms that our SAGE dataset is a very dense
one. The overwhelming number of fuzzy minimal generators extracted from
the SAGE dataset has a direct influence on the performances of the GEN-IFF
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Dataset minsup Fuzzy minimal Fuzzy closed Runtime (Sec)
generators (Step 1) itemsets (Step 2) Step 1 Step 2

SAGE 0.80 496 509 247 521 31 474 291
(an excerpt of 0.85 56 502 30 539 577 37
of 150 genes) 0.90 10 135 5 824 20 0

0.95 484 231 1 0
CHESS 0.50 21 142 19 764 2 527 126

0.60 2 630 1 876 321 17
0.70 406 365 56 3
0.80 121 48 8 1

MUSHROOM 0.20 28 934 26 815 4681 228
0.30 3 344 3 098 1085 61
0.40 836 695 332 11
0.50 320 253 109 6
0.60 187 64 36 2

Table 9: Variation of the number of fuzzy closed itemsets and their fuzzy minimal generators vs
the minsup value variation for the considered datasets.

algorithm. Indeed, the computation time required for the SAGE dataset is
by far greater than those dedicated respectively to the Chess and Mushroom
datasets.

• As expectable, the number of fuzzy minimal generators as well as that of
fuzzy closed itemsets increases as far as the minsup value decreases.

• The computation time, corresponding to the extraction of fuzzy minimal
generators, exponentially increases as far as the minsup value decreases.
Whereas, the computation time, corresponding to the generation of fuzzy
closed itemsets, remains reasonable even for low minsup values, specially
for the Chess and Mushroom datasets.

• For all the considered datasets, the computation time for extracting fuzzy
minimal generators is by far greater than that dedicated to computing closed
fuzzy itemsets. This is due to time consumed by the construction of the
FUZZYTREE.
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5.3. Compactness ratio’s assessment
In the following, we put the focus on the variation of the reported generic

fuzzy rule number of GBEF basis. The compactness rate is measured as follows:

comp= 1− ( #basis
#FAR).

Table 10: Variation of generic FARs vs that of gene number (minsup=95%).

Genes Fuzz.Closed Tran. FARs Exact FARs Redundant Compactness
itemsets RT F GBEF exact FARs ratio

100 115 420 268 52 098 0.0051
200 418 3 135 1 003 394 880 0.0025
300 1 589 33 973 4 627 2 743 210 0.0016
400 2 649 105 169 10 572 8 379 892 0.0012
500 3 049 189 534 16 990 16 863 554 0.0010
600 4 084 448 869 33 562 40 019 440 0.0008
700 5 391 1 018 551 64 282 89 500 100 0.0007
800 6 373 1 512 339 87 563 139 423 724 0.0006
900 7 029 1 854 399 102 858 184 348 722 0.0005

From the statistics reported in table 10, we can remark that:

• Even for a high minsup value (i.e., 0.95), the number of generic exact and
transitive fuzzy rules is very important ranging from 688 rules (for an ex-
cerpt of 100 genes) to 1 957 257 (for an excerpt of 900 genes).

• The number of generic fuzzy rules is by far smaller than that of the total
number of FARs. In fact, the total number of association rules that can be
extracted from any context have been assessed to be equal to 22×l, where l is
the length of the longest frequent itemset [35]. So, if we consider an excerpt
of 200 items (genes), the number of FARs that can be extracted from such a
context will be roughly equal to 2400 (a number that we cannot even read).
Thus, fuzzy generic rules (GBEF andRT F ) drastically reduce this number
(reaching 115 741 generic fuzzy rules), without loss of information.

Table 12 reports the compactness provided by the pair (RT F , GBEF ) generic
bases vs. the total number of all redundant fuzzy association rules that we ex-
tracted from respectively the Chess and Mushroom datasets. From the reported
statistics in Table 12, we can point out that:
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Table 11: Evolution of the generic fuzzy association rules number vs. minconf value variation for
the Chess and Mushroom datasets.

Dataset minconf Exact. FARs Tran. FARs |GBEF|+ |RT F|
(minsup %) (%) |GBEF| |RT F|

CHESS (70) 30 406 756 1 162
70 406 756 1 162
80 406 727 1 133
90 406 394 800

100 406 84 490
MUSHROOM (40) 30 836 2 752 3 588

70 836 2 335 3 171
80 836 1 949 2 785
90 836 1 381 2 217

100 836 856 1 692

• The reduced number of generic exact fuzzy association rules is due to the
small difference between the number of fuzzy minimal generators and that
of the fuzzy closed itemsets. Even though the Chess and Mushroom datasets
are considered as dense ones, this behavior is typical of sparse datasets. This
fact can be due to the process of fuzzification of these datasets.

• The obtained compactness ratios are very interesting. The ratio flagged by
the Mushroom dataset shows that it is more dense that the Chess dataset.

Table 12: Compactness rate of (RT F , GBEF ) for CHESS and MUSHROOM datasets.

Dataset minsup % minconf % |RT F|+ |GBEF| Redundant FARs Compactness ratio
CHESS 70 100 490 58 484 0.0083
MUSHROOM 50 100 1 692 189 564 0.0089

6. Conclusion

In this paper, we presented a novel approach for the extraction of generic bases
of fuzzy association rules. Beyond an interesting scalability feature, the proposed
approaches aims at :
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1. Reinforcing the user intervention within the knowledge mining process by
giving him the possibility to interact within in order to highlight the impor-
tance of items or attributes.

2. The extraction of compact and information lossless fuzzy association rules.
We also provided an expansion mechanism via a sound and complete ax-
iomatic system, to enable the derivation of all redundant fuzzy association
rules whenever of need. The experiments shed light on important rates of
compactness.

Other avenues for future work mainly address the following issues:

1. Handling type-2 fuzzy contexts: To the best of our knowledge, no previous
work was led for defining closure operator for type-2 fuzzy contexts. In
addition, it is worth carrying out an in depth study of the applicability of
other definitions of generic bases of association rules, e.g., the Guigues-
Duquenne generic basis is known to present the maximal compactness rate
for exact association rules [7].

2. A thorough study of the approximation by factorization of fuzzy concept
lattices: This study was initiated by Bělohlavek et al. [10] and presents the
smart idea to get out more comprehensible but less accurate approximations
of the original concept lattice by means of factorization of the original fuzzy
context. In this respect, we have to put the focus on the scalability issue of
such an approach as well as the scrutiny of the trade off between accuracy
of the extracted knowledge and approximation.

3. The design of alternative interestingness measures: During the last decade,
the designing of quality measures has become an important challenge in
data mining [22]. As stated in the well known "No Free Lunch Theorems",
interestingness measures have many different qualities or flaws, since there
is no optimal outstanding measure. In this respect, we are trying to intro-
duce alternative interestingness measures, e.g. that presented in [9], to that
based on the confidence measure. Even though it is very popular, the latter
quality measure was shown to present many flaws specially from a statisti-
cal point of view.
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