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The aforementioned statistical models for estimating the fatigue levels
are obtained by analyzing the data of [1]. The variables zi (i = {1. . .
6}) and yj (j = {1. . . 5}) are representative of the various cues and the
fatigue values. For further information on these variables, the reader is
directed to the original paper [1].

B. ANN-Based Experts

The data from [1] was used as training set for training five neural
networks (one for each mode of cues). The MATLAB source codes
for the networks were downloaded from collection of open-source
codes from Phil Brierley’s website (http://philbierley.com) which were
modified to suit the current implementation. The networks consisted of
one input (two inputs in case of EEG analysis) and one output (fatigue).
One layer of three hidden neurons was implemented.

C. SBN-Based Experts

The SBN-based experts for inferring fatigue from the various cues
were constructed by using an approximate guess of the prior probabil-
ities. There are all simple cause-effect links with individual cues as the
cause and fatigue state as the effect. The guesses of the prior probabil-
ities were made by manually modifying the prior probabilities values
until an acceptable accuracy of inference was achieved (see Table I). As
these values were not taken from any previous studies in the literature,
it is not surprising that the SBN-based experts performed the poorest
in inference.

D. TSK-Based Experts

The TSK-based experts were used “as reported” in [1]. The source
codes were obtained from the authors of [1].
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Abstract—This paper presents a new system for analysis of walking and
running gaits. The system is based on a network of wireless nodes with
various types of embedded sensors. It has been designed to allow long-term
recording in outdoor environments and was tested during the 2010 “Sultan
Marathon des Sables” desert race. A runner was fitted with the sensory
network for six days of the competition. Although technical problems have
limited the amount of data recorded, the experiment was nevertheless suc-
cessful: the system did not interfere with the runner, who finished with a
high ranking, the concept was validated and high quality data were ac-
quired. It should be noted that the loss of some of the measurements was
mainly due to problems with the cable connectors between the nodes and
batteries. In this paper, we describe the technical aspects of the system
developed, the experimental conditions under which it was validated, and
give examples of the data obtained with some preliminary processing.
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I. INTRODUCTION

Analysis of the motion of living organisms from various species lies
at the heart of many areas of research and their applications. In funda-
mental research, studies in biomechanics, neurosciences, ecology, and
animal biology often require recording of posture and self-propulsion
data, as well as data on bulk movement of individuals or populations.
Beyond these established fields of investigation, motion analysis is
continually developing larger and more varied applications.

In the field of sport (see, [1] for a review), the two main areas of
interest are, first, to use accurate measurements to improve an athlete’s
individual performance and, second, the design of “better” sportswear,
shoes, or sports equipment by evaluating its efficiency using motion
analysis.

The required motion data may include, for example, joint angles,
position, velocity, and acceleration of limbs, ground reaction forces,
and the overall motion of the body with respect to a reference frame on
the ground. These all have to be synchronized with other types of mea-
surements, such as physiological factors (heart rhythm, body-surface
humidity and temperature, oxygen consumption, EMG, ECG, EEG,
etc.) and environmental factors (temperature and humidity, wind speed,
lighting and geometry of the terrain, etc.). Moreover, related qualitative
or symbolic information may also be of interest in some cases.

The conventional method for acquiring human motion data is to use
dedicated laboratory setups, often including commercial motion cap-
ture system, treadmill, and force plates. Such a facility can provide the
user with accurate motion reconstruction; however, it is expensive and
not always easy to operate. Furthermore, it can only be used for studies
under laboratory conditions, whereas there is a rapidly increasing de-
mand for long-term data recording under indoor or outdoor conditions.
This implies the need for embedded sensors that are more “wearable,”
in the sense of delivering maximum autonomy (with long operating
times) and transparency (for preserving the natural behavior of the
subject). Small, lightweight sensors and batteries are, therefore, essen-
tial in order to simplify their integration into shoes [2] or sportswear
textiles, for example. Another required quality of such systems is ro-
bustness when faced with extreme environmental conditions, such as
temperature variations, repeated impacts, dust, sand wind, etc. without
excessive deterioration in the data quality.

Inertial measurement units (IMU)-based microsensors are good
candidates for meeting such a technological challenge. Indeed, high-
performance IMU that combine accelerometers and gyrometers have
been widely used, for decades, in the aerospace industry. Microelec-
tromechanical systems-based IMU are small-size devices that are often
combined with other kinds of microsensors, such as magnetometers,
in order to constitute low-cost-integrated attitude measurement units.
There are several providers of such devices worldwide (see, for ex-
ample, [3]–[5], and [6]). Their performance in terms of accuracy and
bandwidth is generally sufficient for a wide range of applications,
among them guidance and control of small aerial vehicles, motion cap-
ture in virtual reality, human–machine interfaces, and analysis of the
motion of living organisms, with a strong emphasis on gait analysis
(see, [7], [8], and [9] as examples of the many publications available).
One current trend is to arrange the sensors within a specific class of
network known as a body area network (BAN) [10].

The application reported here falls into the category of long-term
analysis of the performance of an athlete and uses a network of embed-
ded sensors. The runner was, thus, equipped with a set of micro IMUs,
force sensitive resistors, and physiological and environmental sensors
all integrated into his equipment. The goal was to record all the data
possible during six days trail in the desert, and then, later to analyze
the runner’s behavior and performance throughout the race.

This paper describes various aspects of this unique experiment:
technological aspects, results, successes, and failures, as well as the
lessons to be learnt. It is organized as follows: the next section describes
the wireless sensory system that we have designed; Section III describes
the experimental validation performed and finally, Section IV presents
our discussion and conclusions.

II. WIRELESS SENSORY SYSTEM

A. Nodes

We have developed a distributed recording architecture based on a
wireless sensor network (WSN). The objective is to allow long-term
monitoring of information of various kinds (biomechanical, physio-
logical, and environmental) relating to human motion under ecolog-
ical conditions. The choice of wireless sensors had to facilitate their
integration into clothing and provide high connection reliability; wired
sensors, for example, could have been expected to break quickly due
to mechanical stress. We have also designed a distributed recording ar-
chitecture, as opposed to a centralized one, simply because the amount
of data that would have been needed to be transferred to the collecting
point was far too high for the wireless data transfer rate (less than
250 kbits/s). This architecture is based on three kinds of nodes:

1) Motion sensing nodes: each including a three-axis accelerometer,
a three-axis gyrometer (composed of two separate chips), and a
three-axis magnetometer, the combination of which can be used
to estimate the orientation of the unit;

2) Insole pressure sensing nodes: these are composed of six in-
dependent force-sensitive sensors (FSR). The six sensors are
integrated in the shoe insoles;

3) Master node: this is responsible for network operating and mon-
itoring, environmental measurements (luminosity, temperature,
altitude, and humidity), and heart rate monitoring.

These three types of nodes are based on the same core technology, in
order to optimize the efficiency of hardware and software development.
This core is composed of a 16-bit microcontroller (TI MSP430) and a
2.4 GHz radio transceiver (TI CC2500). It is capable of acquiring data
from various kinds of sensors using standard communication buses
and interfaces (SPI, I2C, ADC, etc.), of synchronizing with the master
node—in order to have consistent timing—and of writing to a micro SD
flash card using the FAT32 file system. We have chosen this rather old
file system because it is easy to implement on an embedded hardware
device with limited capabilities. Furthermore, it has almost no overhead
when writing and this file system is readable on most common operating
systems.

The main parameters to optimize in the design of the wireless sen-
sor nodes were: size, weight, and power consumption. Since the runner
was supposed to be self-sufficient over the six days, the overall weight
of the system needed to be as low as possible: this meant that the
electronic boards must be small and light, and should not consume ex-
cessive energy (to reduce battery size and weight). We have dealt with
these constraints and developed a 3.5 cm × 1.5 cm board that weights
6 g, so that the entire system weights around 150 g without batteries. A
photograph of an IMU node with its micro SD card is shown in Fig. 1.
We used batteries with a capacity of 1.2 Ah. In order to decrease the
consumption of the devices, the time synchronization protocol and the
activity scheduling of the sensor nodes were optimized. Regarding the
time synchronization protocol, the inter emission period of timestamp
packets was computed to minimize the time spent in reception mode
by the sensor nodes. In particular, at the network bootstrap and be-
fore it gets synchronized, the sensor nodes wait for the reception of a
packet coming from the master node to enter the synchronized mode.
However, as they cannot remain in reception mode indefinitely waiting
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Fig. 1. IMU node with its micro SD card compared to 10 cents of euro coin.

for this reception, we had to setup a rendezvous protocol with sleep
periods [11]. Such protocols induce a clear tradeoff between the delay
before the rendezvous occurs and the frequency of packet transmission.
After implementation, the consumption of the sensor nodes was exper-
imentally measured, giving a 24 h lifetime with the 1.2 Ah batteries. In
consequence, the runner started the race with two batteries per sensor
node.

B. BAN

As discussed earlier, long-term recording under outdoor conditions
introduces severe stresses on the measurement architecture due to the
special operating conditions. For example, for the application reported
in this paper, the system was supposed to operate and record data
over a six days period during which it was subject to the harsh climatic
conditions and strenuous conditions of use associated with a multistage
race in the desert. Among other things, this involved contact with sand
and dust, high temperatures, high mechanical stresses such as repeated
shocks induced by the mechanics of running, partial immersion in
sweat, indeed, water whenever the runner used his residual water in a
desperate attempt to cool down his body at a check point, etc.

Under such stresses, temporary or permanent failure of a node is
not simply a risk but rather a highly probable event that needs to be
considered seriously when estimating the system life cycle. In order
to reduce the possibility of the entire system being compromised by
failure at a single point, we have chosen to design an almost completely
distributed system. In such a system, each individual sensor node op-
erates autonomously and independently from all the others. It is well
accepted that the distributed paradigm offers much greater reliability
and resilience to faults than a centralized paradigm where the integrity
of the whole system is reliant on the correct functioning of a single or
few elements.

In consequence, the sensor nodes have been designed to operate in-
dependently from each other. As described in the previous section, each
sensor node possesses its own battery as well as enough storage capacity
to fulfill its nonstop task, a closed loop (measure then record)
without the need of an external component. Such a simplistic distributed
system would have been ideal except in terms of data synchronization.

Let us remember that the objective of the system is to acquire data of
various kinds, biomechanical, physiological, and environmental from
several physical locations on the runner’s body. The power of such a
global system requires the capability to analyze these data with a coher-
ent multidimensional approach, e.g., estimating joint angles requires
IMU data from each pair of adjacent body limbs. In consequence, if

measured independently, all the recorded data must somehow be syn-
chronized so that the offline analysis can be performed over a common
global timeline.

Due to the time drift of the internal clocks, the sensor nodes do not
share a global clock. Hence, synchronization must be performed by
exchanging information, in the form of timestamps, via the wireless
channel, the only way in which the sensor nodes can communicate.
Time synchronization in WSNs is a classical problem [12], in particular
when it is necessary to merge distributed measurements that have been
sampled at different frequencies [13], as in our case.

To ensure data synchronization and correct operation of the entire
system, the sensor nodes were compiled into a star network with a
single node being selected as the master node while the others acted
as slave nodes. The master node had the responsibility for operating
the network, and to provide all the sensor nodes with timestamps, so
that a common time reference was available at all the sensor nodes.
The timestamp packets were sent by the master node with a period
of 153.4 ms. This period was chosen based on two arguments: first to
optimize the tradeoff between delay and energy consumption before
synchronization at network bootstrap and second to ensure a low po-
tential drift among sensors between two timestamps. The clock drift of
a sensor having been experimentally measured to be inferior to 30 ppm,
matching the clock specifications, it gives a potential drift of 9.4 μs
between two sensors if no timestamp packet is lost.

Once synchronized, the network operates as follows.
1) Master: at regular intervals with period T , the master node emits

a timestamp packet containing its local time tm ;
2) Slaves: the slave nodes listen to the radio channel with the same

periodicity T , to receive the timestamp packets and record
their reception at local time ts together with the master time
contained in the packet tm ;

3) the slave nodes begin their listening period with an offset δ from
the expected reception time to avoid any loss of synchronization
that would be caused by a clock drift.

The timestamp and its local reception time (ts , tm ) are recorded at
the slave node in a similar format to the other measurements recorded
as (ts , measurement).

Distributed data resynchronization is then performed offline, based
on the common timestamps that have been disseminated by the master
node to the slave nodes by radio communication. This synchronization
is undertaken by making two assumptions:

1) Homogeneous transmission and reception delays: we assume
that the delay due to the radio propagation and the system recep-
tion latency of a timestamp packet is the same for all slave
nodes;

2) Locally constant-rate clock model: we assume that the clock
drift of a node remains constant between reception of any two
consecutive radio timestamps.

The first assumption is acceptable since the distances between the
master node and the slave nodes are similar and negligible compared to
the velocity of radio propagation and since the packet reception occurs
during an interrupt handler routine that preempts all other tasks in the
slave nodes firmware. The second assumption is also realistic because
the clock drift variation at a node is mainly due to changes in supply
voltage, temperature, etc. Such changes occur at a negligible frequency
compared to thetimestamp packet period 153.4 ms, and the potential
maximum drift of a clock 30 ppm. In consequence, we may reasonably
expect the clock drift to vary in a negligible way between the reception
of two timestamp packets. As an illustration of this offline data
synchronization, consider a measurement m performed at local time
ts (m). Consider the closest preceding timestamp t1

m received at local
time ts (t1

m ) and the consecutive one t2
m received at ts (t2

m ). In the
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TABLE I
DESCRIPTION OF THE DIFFERENT SENSOR MODALITIES AND RECORDING

CHARACTERISTICS

global reconstructed timeline, the measurement m is located at

tG (m) = t1
m +

(t2
m − t1

m )
(ts (t2

m ) − ts (t1
m ))

(ts (m) − ts (t1
m )).

Of course, the setup of this data synchronization protocol conflicts
with the distributed paradigm that we defended at the beginning of this
section. Whereas all sensor nodes are independent in terms of their
internal measurement and recording tasks, the data synchronization
relies on a centralized protocol and, thus, on a centralized unit, i.e.,
this is a weak point in the system. Although fully distributed protocols
are available, a centralized one was selected despite the reliability
risk for several reasons. First, this centralized protocol has the major
advantage of simplicity. It reduces the risk of implementation bugs,
a not insignificant advantage. Next, it enables a smooth bootstrap for
the system. On wakeup, a slave node needs only to wait for reception
of its first timestamp packet for it to enter the system and become
synchronized. This synchronization period has even been made energy
efficient by using a probabilistic listening scheduling [11]. Moreover,
it does not require the introduction of a medium access control or
collision avoidance protocol; the master node transmits while the slave
nodes only receive. Finally, this protocol is energy efficient, since it
reduces the volume of radio communication to a minimum.

C. Different Embedded Sensory Modalities

As described in Section II-A, the sensor nodes record data from
various sources. In order to preserve the spectral properties required by
the processing, these data must be acquired with a specific sampling
rate. Table I gives the list of sampling rates for each sensor modality
and the size of one sample. The sampling rate was chosen according
to the modality specificity in terms of type of information and based
on our experience and literature. This table gives a precise estimate of
the huge amount of data that is collected in 1 h by one inertial sensor:
about 5,5 MB (mega byte). This corresponds to about 175 MB for 32 h
of race.

D. Packaging

The purpose of integrating the sensors into the running suit was
twofold: to locate all of the nodes efficiently from a measurement point
of view, while minimizing the discomfort induced by their inclusion
(they must not cause injury due to friction between the sensors and the
skin, nor increase the weight of the shoes through addition of sensors
and batteries) in order to preserve the natural behavior of the runner. For
the master node, the aim was to measure the environmental conditions
that the runner was experiencing. Therefore, the board needed to be
remote from the runner’s body to avoid disturbing these temperature
and humidity measurements. The decision was taken to install the

Fig. 2. Motion sensing nodes integration in the race suit.

Fig. 3. Inertial and FSR sensors shoe integration.

master node on the backpack shoulder strap. A hole was drilled in
the plastic box in order to allow air circulation inside and to obtain
a genuine humidity measurement. The temperature measured under
these conditions was not a conventional in-the-shade measurement,
rather it reflected the actual temperature experienced by the runner.
The inertial sensors (motion sensing nodes) were spread across the
entire body (except the feet); the objective being to place sensors on
the most distal part of each limb possible, while avoiding disrupting
movements between the measured limb and the sensor (the sensor was
placed on a bony area and not on a muscle). All sensors were placed
under a compression garment (EXO Sensifit, Salomon Corporation,
Annecy, France) specially designed for this study, in order to secure
the sensors on the limbs (see Fig. 2). To minimize the risk of unwanted
movement between the limbs and inertial sensors, the battery was
placed outside the measurement box and connected to the sensor unit
through an extension cable. When incorporating the FSR and inertial
sensors into shoes, the aim was to avoid creating discomfort for the
runner; therefore, the inertial sensor was installed on the most distal
foot area and did not increase the weight of the shoe. In order to meet
these requirements, the two FSR and inertial boards were integrated
into the shoe tongue (at the most distal point possible) and the batteries
were located in an external heel counter, designed for this study (see
Fig. 3). All the necessary cables between the inertial sensors, the FSR
sensors, and the batteries were inserted into the upper part as illustrated
in the figure. Finally, the weight of the shoe (excluding batteries) was
the same as that of a shoe from the Salomon XT Wings range designed
for this activity (415 g for a UK size 10), and did not modify the overall
kinematics of the runner.
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Fig. 4. Nodes disposition on the runner.

Fig. 5. Runner equipped with the system during the marathon.

III. EXPERIMENTAL VALIDATION

A. Experimental Context

The system was initially tested during several testing campaigns
before the race. The testing campaigns took place in several geographic
locations and in different conditions (indoor, outdoor, trail, sand, etc.)
[14], [15]. The system was then embedded on a runner during the 26th
Sultan Marathon Des Sables (MDS). The MDS is a foot race over a
distance of about 240 km in the Moroccan desert. Each participant
carries his/her own backpack containing food, sleeping gear, and other
material. The participant in the race was authorized by the organizers to
use the sensory equipment. His body limbs were entirely instrumented,
apart from his hands (see Figs. 4 and 5). The choice of this race is
justified by the objective of the experiment: to show that such sensory
system can be used in real conditions and over a long period without
specific human intervention or maintenance. And this race was perfect
for that it lasts six days, it is run in total autonomy and in very hard
conditions, and the temperature raising up to 50 ◦C. It induced strong
constraints on the system: it has to be energy efficient, it should be
ergonomic and comfortable enough not to disturb or hurt the runner,
and it has to be robust enough to survive the shocks, the temperature,
the sweet, and the manipulation (when dressing and undressing).

B. Results

Our runner finished the competition ranked 66 out of 1013 com-
petitors, 923 of whom completed all six stages. The feedback from the
runner was very positive: the system was comfortable to wear and the
sensors were small and light enough so that they did not disturb him.
The only default of the device was a wire that was misplaced in one of
the pressure insoles that caused damages to the runner feet.

TABLE II
RACE STAGES DESCRIPTION AND CORRESPONDING NODES WHICH CORRECTLY

ACQUIRED DATA

Fig. 6. Example of post-collection analysis of data recorded during the stage
1 of the competition. (Top) Heart rate recorded by node 12. (Middle) Frequency
of the impacts detected by FSR sensors (autocorrelation of the signals). Seg-
mentation result at the top part of the graph: green stands for running classes,
blue for walking classes, and red for breaks (runner is not moving). (Bottom)
Norm of the three accelerometers of node 1.

1) Recorded Data: the distances and durations of all stages are
reported in Table II, together with the references of the nodes for
which data were correctly collected. A connection problem between
measurement units and batteries was responsible for difficulties with
the power supply to each individual node, except for node 12 which
was not using any extension cable and worked perfectly throughout
the entire race. Therefore, during some parts of the various stages,
full sets of data were recorded. Furthermore, had the power supply
been disrupted during the SD card writing, the whole file could have
been corrupted. This packaging weakness was responsible for the high
failure rate that was observed over the whole competition.

2) Examples of Estimated Parameters: Fig. 6 presents some of the
data obtained during stage 1 and their analysis. The computation of the
step frequency (middle) is based on an autocorrelation of the signal
from the FSR. Even at first glance, this figure shows good coherence
between the three types of data (cardiac frequency, feet impacts, and
accelerations), with major peaks corresponding to the times when the
runner stopped (with the classical delay in the slowing down of the
heart rate), and an overall decrease in acceleration toward the end of
the race corresponding to a predominance of walking over running.
The combination of all these parameters gives a good idea of the
state of the runner, with some redundancy useful in the case of sensor
failure. Such data can also be used to separate walking and running
phases, and the different velocities. Usually, discrimination between
walking and running can be performed by measuring the double support
duration. However, since the finally available FSR data came from a
single shoe only, we had to use a segmentation approach based on
the step period only, which is known to be greater when walking than
when running, combined in some cases with the acceleration. If a
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Fig. 7. Zoom on Fig. 6. (Top) Heart rate recorded by node 12. (Bottom) Fre-
quency of the impacts detected by FSR sensors (autocorrelation of the signals).
Segmentation result at the top part of the graph: green stands for running classes,
blue for walking classes, and red for breaks.

more accurate labeling of the running phases is desired, into different
velocity classes, then step length is relevant rather than step period.
In that case, a segmentation method based on the detection of abrupt
changes to the norm of the acceleration of the right shank could be
used. Fig. 6 also illustrates the results for the case of the three simplest
classes: running, walking, and stopped. The magnified section in Fig. 7
shows the following sequence: running, walking, running, stopped, and
running again. Blank periods indicate when no classification could be
achieved. For more details and other results on segmentation methods,
the reader is referred to [14].

IV. DISCUSSION AND CONCLUSION

We have developed a new BAN based on wireless sensors. The
network has been optimized in order to allow for long-term recording
under extreme conditions. Other similar products such as Shimmer
Research or XSens are available in the market. From an hardware point
of view, our IMUs are similar but we have extended the principle to
other sensor types such as feet pressure and environmental parameters.
Our device also greatly differs from these products since it operates as
a whole sensor network, providing synchronized data from all over the
runner’s body, and not as single independent devices. The integration
of the sensors in the racer equipment, especially in the insoles and
running shoes, is also an originality of our system. The optimization of
the embedded software, the communication and time-synchronization
protocols, and the low energy consumption of the devices for the six-
stage race are also specific to our system. There is a big difference
between a system that can be used 3 h in a laboratory and one that can
be deployed for a long period in hard conditions and without human
intervention. Our objective was to walk this step. From a runner point
of view the system is a success, it is comfortable and light.

The encountered power loss problems can be ameliorated through
the design of a better packaging. An extension cable with a connector
was used between the sensors and batteries. This connector was the
weak link of the system regarding robustness. Indeed, the connector
was neither protected by a hard box, as the sensor was, nor sunk into
silicon, as the battery was. It was only protected by the sensor pockets in
the race suit. In consequence, the connector was neither waterproof nor
shock proof and we suffered disconnections and, hence, loss of power.
There is no easy solution to prevent files from getting corrupted upon
a power loss. Indeed, if the power loss occurs between two SD card
writings, there is no corruption: the file system had been made robust
so that the files are not lost when the sensor is violently rebooted.

However, when the power loss occurs during a write access, the data
are lost and the file gets corrupted.

The types of sensors that could be incorporated in such a network
are not limited to those described here. Indeed, most of the sensors
that are conventionally used in human movement science could be
plugged into the generic amplifier nodes (GPS, goniometer, EMG,
etc.). From the user’s point of view, a second goal of the experiment
was to validate the processing algorithms dedicated to the automatic
analysis of large amounts of data collected under extreme conditions.
For illustration, in this paper we have presented some examples of basic
data analysis, which could obviously be extended according to the target
applications. The system is currently being used in several other studies
in the domains of animal biologging and functional rehabilitation. As
an example, it equips cats in the context of a study on their preying
habits conducted by the CERFE. The experiment presented in this paper
will also be renewed during the Ultra Trail du Mont Blanc, a 160 km
race around the highest European summit. In the domain of functional
rehabilitation, this equipment is now used by the INRIA in order to
control assistive devices (electrical stimulation) during sit to stand and
walking tasks. Finally, this system is at the center of a technological
transfer that has led to the creation of the HIKOB SAS company.
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