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We investigate complexity and approximation results on a processor networks where the
communication delay depends on the distance between the processors performing tasks. We then
prove that there is no heuristic with a performance guarantee smaller than 4/3 for makespan
minimization for precedence graph on a large class of processor networks like hypercube, grid,
torus, and so forth, with a fixed diameter δ ∈ �. We extend complexity resultswhen the precedence
graph is a bipartite graph. We also design an efficient polynomial-time O(δ2)-approximation
algorithm for the makespan minimization on processor networks with diameter δ.

1. Introduction

1.1. Problem Statement

In this paper, we consider the processor network model, which is a generalization of the
����������� �	��
����� 
��
� ��
�� in which task allocation on the processors does not
have any influence over the length of scheduling. Indeed, since the graph of processors
(denoted hereafter G∗ = (V ∗, E∗) where V ∗ = {π1, . . . , πm} is a set of m processors and E∗

is the set relationship between them) is fully connected, the starting of a task i depends only
on the potential communication delay, given by precedence graph between i and its own
predecessors.

In the processor network model, this assumption is relaxed in order to take into
account the fact that the processor graph may not be fully connected. Thus, task allocation
on the processors can be expressed by its essential and fundamentals characteristics. We
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Figure 1: Difference between the problem P |prec; cij = 1; pi = 1|Cmax and (P,grid 2 × 2)|prec; cij =
d(πi, πj); pi = 1|Cmax.

consider a model in which a distance function (which is defined hereafter), denoted d(πl, πh)
between two processors πl and πh in the graph of processors impacts computation of
the communication delay between two tasks i and j (subject to a precedence constraint)
and consequently on the starting time of task j. The communication time, using ci, πl, j, πh

for computing the starting time of a task (this notation indicates that the value of the
communication delay between task i, which is allotted to processor πl and task j which will
be executed on the processor πh), is assumed as cijd(πl, πh), where cij is the communication
delay given by the precedence graph.

Formally, the processor network model may be defined as

∀
(
i, j

)
∈ E, tj ≥ ti + pi + cijd

(
π�, πh

)
, (1.1)

where π� (resp. πh) represents the processor on which task i (resp. task j) is scheduled, ti
represents the starting time of task i, pi represents the processing time of task i, d(π�, πh)
represents the shortest path in graph G∗ (the graph of processor G∗ = (V ∗, E∗)) between
π� and πh, and cij represents the communication delay if two tasks are executed on two
neighboring processors (this value is given by the precedence graph).

We consider the classic scheduling UET-UCT (Unit Execution Time-Unit Commu-
nication Time, i.e., ∀i ∈ V , pi = 1, and ∀(i, j) ∈ E, cij = 1) problem on a bounded
number of processors such that the processor network is a structured graph with a diameter
δ. In these topologies, processors are numbered as π1, π2, . . . , πm and processor πh may
be communicated with processor πl with a communication cost equal to d(πh, πl) where
d(πh, πl) represents the shortest path on graph G∗ between processors πh and πl. The
communication delay is therefore the distance function proposed above.

In scheduling theory, a problem type is categorized by its machine environment,
job characteristic, and objective function. Thus, using the three fields notation scheme
α|β|γ ,(where α designates the environment processors, β the characteristics of the job, and
γ the criteria.) proposed by Graham et al. [1], we consider the problem of makespan
minimization (denoted in follows by Cmax) with unitary task and unitary communication
delay (UET-UCT) in presence of a precedence graph G on a processors network having a
graph G∗ such that the communication delay depends on the shortest path on graphG∗. This
problem is denoted by (P,G∗)|prec; cij = d(π�, πk); pi = 1|Cmax.

Example 1.1. Figure 1 shows the difference between the two problems P |prec; cij = 1; pi =
1|Cmax and (P, grid 2 × 2)|prec; cij = d(π�, πk); pi = 1|Cmax. (The relationship between
processors is as follows: π0 and π3 are connected to π1 and π2.) The processing time of the
tasks and the communication delay between the tasks are unitary (UET-UCT problem). Gantt
diagram G1 represents an optimal solution for the P |prec; cij = 1; pi = 1|Cmax problem. We
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Table 1: Previous complexity results on the processors network model.

Topology Precedence graph Complexity Reference
Unbounded chain Tree NP-complete [2]

Antitree NP-complete
Star Tree NP-complete [2]
Cycle/chain Prec ρ ≥ 4/3 [4]
Star Prec ρ ≥ 6/5 [3]

can notice that task z can be executed on any processor at t = 2. Moreover, Gantt diagram G2

represents an optimal solution for the problem (P, grid 2×2)|prec; cij = d(π�, πk); pi = 1|Cmax.
In order to obtain an optimal solution, the task a must be delayed by one unit of time and
must be processed on the same processor π2 as task c at t = 1. Thus, task e may be executed
at t = 2 only on the processor π2.

1.2. Organization of the Paper

This paper is organized as follows: the next section is devoted to the related works.
In Section 3, after defining the class graph G we propose a general nonapproximability
result for a nonspecified precedence graph. We also extend the previous result when the
precedence graph is a bipartite graph and when the duplication is allowed. In the last section,
we design a polynomial-time approximation algorithm with a performance ratio within
O(δ).

2. Related Works

2.1. Complexity Results

To the best of our knowledge, the first complexity result was given by Picouleau [2]. The
considered problem was to schedule unit execution time tasks with a precedence graph
on an unbounded number of processors and on a chain or star (a star is a tree of depth
one) topology. Picouleau proved that this problem is NP-complete if the precedence graph
is a tree or an outtree. Recently in [3], the authors proved that there is no heuristic with
a performance guarantee smaller than 6/5 for minimizing the makespan on a processor
network represented by a star. This model is closest to themaster-slave architecture. In [4], the
authors proved that there is no hope to finding a polynomial-time approximation algorithm
with a ratio ρ > 4/3 for the problem to schedule a set of tasks on a ring or a chain as processors
network (see Table 1).

2.1.1. Approximation Results

In ring topology, Lahlou developed, in [5], using the list scheduling proposed by Rayward-
Smith [6], a ρ-approximation algorithm with �

√
m� ≤ ρ ≤ 1 + (3/8)m − 1/2m where m is the

number of processors.
Moreover, Hwang et al. [7] studied approximation list algorithms for scheduling

problems where the communication times depend on contention and a distance function
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for the tasks involved and on the processors that execute the tasks. The authors examined
a simple strategy called extended list scheduling, ELS, which is a straightforward extension of
list scheduling. They proved that the ELS strategy is unsatisfactory, but improved a strategy
called earliest task first.

Recently, in [3] the authors proposed a sophisticated polynomial-time approximation
algorithm with a ratio equal to four based on three steps for the problem for the makespan
minimization problem on a processor networks as a star forms. In [4] the authors develop two
polynomial-time approximation algorithms for processor networks with limited or unlimited
resources.

2.2. Our Contributions

In this paper, we answer the following interesting question: is there a large class of graphs, for
which it exists a polynomial-time reduction from n-PARTITION, to show the NP-completeness?
Therefore, it is sufficient to show if the graph G is belonging to this class, in order to prove the
nonexistence of PTAS? In order to complete the study of processor networks, we design a
polynomial-time approximation algorithm within a ratio at most ((δ + 1)2/3) + 1 where δ
designates the diameter of the graph G∗.

3. Computational Complexity for a Large Class of Graph

3.1. The Class Graph G

We propose a large class of graph G for which the problem of deciding whether an instance
(P,G∗)|prec; cij = d(π�, πk);pi = 1|Cmax ≤ 3 is NP-complete.

We present now a graph class for which we may apply the same polynomial-
time transformation mechanism from 3-PARTITION problem to show that our scheduling
problem when processor networks belong to this class is NP-complete. Hereafter, we give
the definition of the prism graph.

Definition 3.1. Aprism P = (VP , EP ) of size k and length L (k, L ∈ �) is a connected undirected
graph for that

(i) there are two sets of vertices K and K′ such as K ⊂ VP , K′ ⊂ VP \ {K}, and |K| =
|K′| = k. The vertices are denoted s1, . . . , sk (resp. s′1, . . . , s

′
k
);

(ii) it exists an order on K and K′ vertices such that ( ∀si ∈ K, s′i ∈ K, 1 ≤ i ≤ k) there is
a path of length L denoted Ci between si and s′i;

(iii) (i /= j) ∧ x ∈ Ci \ {si, s′i} ∧ y ∈ Cj \ {sj , s′j} ⇒ (x, y) /∈ EP .

Moreover, the size of a prism is polynomial in k. An illustration is given in Figure 2.

Definition 3.2. Let G be a collection of graphs. G possess the prism property if and only if
∀n0, ∀n1 ∈ � ∃G ∈ G, such that G contains a unique subgraph G1 = (V1, E1) of G induced by
vertices V1 ⊂ V with a prism of size k = n0 and length L = n1.
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Figure 2: An example of a prism of size k and length L.

Lemma 3.3. The class graph G is not empty.

Proof. In particular we will see in Section 3.2 classic structured graph like torus, grid,
complete binary tree, and so forth, belonging to this class graph.

Theorem 3.4. The problem of deciding whether an instance of (P,G∗)|β; cij = d(π�, πk);pi = 1|Cmax

has a schedule of length at most two is polynomial with β ∈ {prec, bipartite} and G∗ ∈ G.

Proof. No communication is allowed between two pairs of tasks.

The remainder of this section is devoted to proving Theorem 3.5.

Theorem 3.5. The problem of deciding whether an instance of (P,G∗)|prec; cij = d(πk, πl); pi =
1|Cmax has a schedule of length at most three is NP-complete with G∗ ∈ G.

Proof. The proof is established by a reduction of the 3-PARTITION problem [8].

Instance

A finite set A of 3M elements {a1, . . . , a3M}, a bound B ∈ �
+ , and a size s(a) ∈ � for each

a ∈ A such that each s(a) satisfies B/4 < s(a) < B/2 and such that
∑

a∈A s(a) = MB.

Question 1. Can A be partitioned into M disjoint sets A1, . . . ,AM of A such that for all i ∈
[1, . . . ,M],B =

∑
a∈Ai

s(a) =
∑

a∈A s(a)/M ∈ �?

3-PARTITION is known to be NP-complete in the strong sense [8]. (Even if B is
polynomially bounded by the instance size, the problem is stillNP-complete.)

It is easy to see that (P,G∗)|prec, cij = d(πl, πk) = 1, pi = 1|Cmax ≤ 3 ∈ NP.
Given an instance I of the 3- PARTITION problem, we construct an instance I′ of the

scheduling problem (P,G∗)|prec; cij = d(π�, πk); pi = 1|Cmax ≤ 3 with G∗ ∈ G, in the following
way.
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Figure 3: Graph Z2.

The precedence graph G̃ = W +Z, which will be scheduled on the processors network
G∗, is decomposed into two disjointed graphs, denoted as follows by W and Z (the graph
Z is a collection of graphs Zs(aj ), i.e., Z = ∪aj∈AZ

s(aj)). Hereafter, graphs Z and W are
characterized.

Graph Zi

Let i be an integer such that i > 1. Graph Zi consists of 4 × i vertices denoted by Zi[k, 0],
Zi[k, 1], where 0 ≤ k < 2i. The precedence constraints between these tasks are defined as
follows:

(i) arcs Zi[j, 0] → Zi[j, 1] for any j, 0 ≤ j ≤ 2i − 1,

(ii) arcs Zi[2j, 0] → Zi[2j + 1, 1] for any j, 0 ≤ j ≤ i − 1,

(iii) arcs Zi[2j, 0] → Zi[2j − 1, 1] for any j, 1 ≤ j ≤ i − 1.

Remark 3.6. Valid scheduling of length three for the case where the precedence graph is Zi in
a path of 2i processors is as follows, for any j, 0 ≤ j ≤ 2i − 1,

(i) tasks Zi[j, 0] and Zi[j, 1] are executed on πj ,

(ii) tasks Zi[j, �] are executed at time �, for any � ∈ {0, 1}, if j is even,
(iii) tasks Zi[j, �] are otherwise executed at time � + 1, for any � ∈ {0, 1}.

See Figure 3 for graph Z2 and Figure 4 for the valid scheduling described in
Remark 3.6.

GraphW

Remark 3.7. A path of length l admits l + 1 vertices.
The W = (V ∪ V′;EW) graph will be defined as follows. Let G∗ = (V ∗, E∗) be a graph

such that G∗ ∈ G, with V ∗ = {v∗
1, . . . , v

∗
n∗}. By Definition 3.2, we know that it exists a unique

subgraphG = (V ⊂ V ∗, E ⊂ E∗) of size k and length Lwith desired properties. In the following
we set k = n and L = 2B+1 and the size ofG∗ = (V ∗, E∗) is polynomial in k. Note that n∗ � 2B.

The W-graph is defined by polynomial-time transformations from the G∗-graph. The
graph given in Figure 5 will be used to illustrated the following construction.

(i) The paths of length three are created and precedence constraints are added (see
Figure 6). The two sets of tasks V1 and V′ are created.

(ii) The tasks are partitioned into three subsets V′, K, and V (see Figure 7).
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0 1 t2 3

Z2[0, 0] Z2[0, 1]

Z2[1, 0] Z2[1, 1]
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Figure 4: Valid schedule of length three for graph Z2.

The graph G∗

The G-graph is induced by the V -vertices

V ′-vertices
V -vertices

Figure 5: The beginning of the construction of W graph from G∗ ∈ G.

(iii) The V1-tasks are now partitioned into two subsets K and V. We consider the
subgraph induced by the V ∪ V′-tasks (see Figure 8) as the W−graph.

The purpose of removing these tasks is to allow the tasks of K-graph when the tasks
of W-graph, deprived of these tasks, will be executed on the graph of processors.

The set of vertices V ∗ is partitioned into two sets V ∗ = V ′ ∪ V :

(i) V = {v∗
1, . . . , v

∗
2n(B+1)} the vertices of G, and defined the vertices of the n unique

paths of length (2B + 1) respecting the characteristics given by Definition 3.1,

(ii) V ′ = {v∗
2n(B+1)+1, . . . , v

∗
n∗ }, the set of an other vertices. Note that these vertices do not

belong to G graph.
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V′tasks
V1tasks

Figure 6: Next step of the construction of W graph. Path of length three is created and precedence
constraints between tasks are added.

V′tasks
Ktasks

Vtasks

Figure 7: Partition of G∗ graph into tasks sets V, K, and V.
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V′tasks
Vtasks

Figure 8: The final W graph issue from several transformations.

The definition of the W graph is given below.

(i) ∀i ∈ {1, . . . , 2n(B + 1)}, we create a path of length three v∗
i [0], v

∗
i [1], and v∗

i [2], with
edges v∗

i [0] → v∗
i [1] → v∗

i [2]. The set of tasks will be denoted V1 = {v∗
i [j]| ∀i ∈

{1, . . . , 2n(B + 1)}, j ∈ {0, 1, 2}}. The cardinality of V1 is 6n(B + 1) (see Figure 6).

(ii) ∀i ∈ {2n(B+1)+1, . . . , n∗}, we create a path of length three v∗
i [0] → v∗

i [1] → v∗
i [2].

This set of tasks will be denoted V′. The number of tasks is 3(n∗ − 2n(B + 1)) with
n∗ = |V ∗|.

(iii) (k, l) ∈ E∗, we add the edges v∗
k
[0] → v∗

l
[2] and v∗

l
[0] → v∗

k
[2] (see Figure 6).

Now, 4nB tasks are removed from W-graph. (In order to clarify the polynomial-
time transformation, we give priority to create tasks and remove some ones instead of
enumerating all precedence constraints.) Therefore, we consider the following index sets:

(i) J0 = {2i(B + 1) | i = {1, 2, . . . , n}},
(ii) J1 = {2i(B + 1) + 1 | i ∈ {0, 1, 2, . . . , n − 1},
(iii) I0 = {k ∈ {1, . . . , 2n(B + 1)} \ {J0 ∪ J1} and |k is even},
(iv) I1 = {k ∈ {1, . . . , 2n(B + 1)} \ {J0 ∪ J1} and |k is odd}.

We remove from the V1-set the following tasks v∗
k
[0], v∗

k
[1] with k ∈ I0, (resp. v∗

k
[1],

v∗
k
[2] with k ∈ I1). K denotes the set of removed tasks (see Figure 7). Finally, we put V =

V1 \ K with |V| = 2nB + 6n (see Figure 8).
Figures 5, 6, 7, and 8 describe the construction of W-graph from G∗ ∈ G.
EW is the set of arcs as described above.
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Lastly, the number of processors is m = n∗, and they are numbered as πi with i ∈
[1, n∗].

In summary the precedence graph G̃ = W + Z is composed by W = (V ∪ V′, EW) with
3n∗ − 4nB tasks and the precedence constraints given before and the graphZ = {

⋃
aj∈A Zs(ai)}

with 4nB tasks.
The transformation is computed in polynomial time.

(i) Let us assume that A = {a1, . . . , a3M} can be partitioned into M disjoint subsets
A1, . . . ,AM with each summing up to B. We will then prove that there is a schedule
of length three at most.

Let us construct this schedule.
First, the task v∗

i [j] ∈ V′ ∪ V is executed on the processors πi to t = j with j ∈ {0, 1, 2}
(if this task exists).

Consider the processors on which the set of V-tasks are scheduled. By the previous
allocation, these processors are numbered as π1, . . . , π2n(B+1).

Let {A1, . . . ,An} be a partition of A. Consider Ai = {ai1 , ai2 , ai3} with a fixed i. The
tasks of Zs(aj ), aj ∈ Ai are executed between processors π1+2(i−1)(B+1) and π2i(B+1). Moreover,
the tasks Zs(aj )[l, k], k ∈ {0, 1}, l ∈ J0 (resp., k ∈ {1, 2}, l ∈ J1) are scheduled on 2s(aij )
processors in succession in order to respect a schedule of length three.

Thus without loss of generality, we suppose that the tasks of Zs(ai1 ) are scheduled
between processors π1+2(i−1)(B+1) and π2(i−1)(B+1)+2s(ai1 ). In similar way, the tasks Zs(ai2 ) (resp.,
Zs(ai3 )) are executed between processorsπ2+2(i−1)(B+1)+2s(ai1 ) andπ1+2(i−1)(B+1)+2s(ai1 )+2s(ai2 ) (resp.
π2+2(i−1)(B+1)+2s(ai1 )+2s(ai2 ) and π2i(B+1)).

(ii) Let us assume now that there is a schedule S of length at most three. We will prove
that A = {a1, . . . , a3M} can be partitioned into M disjoint subsets A1, . . . ,AM with
each summing up to B.

Lemma 3.8. In any valid schedule of length three there is no idle time.

Proof. The number of processors is m = n∗ and the number of tasks is 3n∗ (4nB for Z-graph
and 3n∗ − 4nB forW graph).

Lemma 3.9. In any valid schedule of length three, the subgraph induced by V tasks must be executed
on 2(B + 1) processors in succession.

Proof. Consider the subgraph induced by the V tasks. This precedence graph admits paths
of length two and these paths must be executed on the same processor (no communication
delay is allowed).

Consider the tasks of path of length one. Let v∗
i [0] ∈ V be a task without predecessor.

By construction v∗
i [0] admits one successor denoted by v∗

i+1[2] ∈ V.
Suppose that these two tasks are allotted on the same processor πl. Since that v∗

i+1[2]
admits another predecessor denoted by v∗

i+2[0] ∈ V then v∗
i+1[2] is allotted at t = 2.

The task v∗
i+2[0] cannot be executed at t = 1 on πl since this task admits another

successor as v∗
i+1[2]. Therefore, it exists an idle slot at t = 1 on the processorπl. By construction

there is no independent task and since the Z graph admits only path of length one, then no
task can be allotted on this idle slot. This is impossible

In conclusion, the subgraph induced byV tasksmust be executed on 2(B+1) processors
in succession.
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Lemma 3.10. In any valid schedule of length three, two subgraphs induced by the V tasks from two
disjoint paths of length 2(B + 1) cannot be allotted on the same processors.

Proof. Consider theV tasks which are elements of two disjoints paths of length 2(B+1). A task
without predecessor of one path cannot be allotted on the same processor as a task without
successor of other path since there is no isolated task to schedule.

Lemma 3.11. In any valid valid schedule of length three theZs(aj ) tasks must be executed on the same
processors as the V tasks.

Proof. Let Π = {πl | V tasks allotted on πl} be the set of processors on which the V tasks are
executed.

Suppose that the Zs(aj )-tasks are executed on processors πk /∈ Π. By Lemma 3.8, there
is no idle slot, then the tasks on the path of length three are necessarily allotted on processor
π∗ ∈ Π. This is impossible by Lemma 3.9.

With previous lemmas, we know that 6n(B + 1) tasks (the V tasks and the Zs(aj)-tasks)
are executed on the n disjoints paths of length 2B + 1. By Definition 3.2, we know that the
graph G∗ admits a unique set of n disjoints paths of length 2B + 1 with desired properties.
Moreover with the precedence constraints, these tasks are allotted on a processor path of
length (2B + 1). Without loss of generality, we suppose that a task vlßV is executed on the
processor πl with l ∈ {2n(B + 1) + 1, . . . , n∗}.

Building the partition {A1, . . . ,An} with desired property from S schedule of length
three, we know that two tasks of the same subgraph Zs(aj ) (see Lemma 3.11) cannot be exe-
cuted on two different paths. The edge distance between these two processors is at least two.

We defineA� such that aj ∈ A� if and only if the tasks of the graph Zs(aj ) are executed
between the processors numbered as π1+(j−1)2(B+1) to π2j(B+1) with a fixed j.

Now, we will compute
∑

ai∈A�
s(ai).

Using previous remarks, without loss of generality, we suppose that v∗
i [k] with i ∈

{1, . . . , 2n(B + 1)} and k ∈ {0, 1, 2} (if it exists) are executed on πl with l ∈ {1, . . . , 2n(B + 1)}.
Consider the Zs(aj )-tasks which are scheduled between processors π1+(j−1)2(B+1) and π2j(B+1)

for a fixed j ∈ {1, . . . , 2n(B + 1)} except the index such that paths of length three constituted
by tasks from V, are allotted on πl.

Using Lemma 3.9, we know that the number of V tasks executed on processors
π1+(j−1)2(B+1) and π2j(B+1) for a fixed j is 6 + 2B.

In conclusion we have {A1, . . . ,An}which forms aA with desired properties.
The construction suggested previously can be easily adapted to obtain a bipartite

graph of depth one. Moreover, from the proof of Theorem 3.5, we can derive the following
theorem.

Theorem 3.12. The problem of deciding whether an instance of (P,G∗)|β, cij = d(π�, πk) = 1, pi =
1|Cmax has a schedule of length at most three is NP-complete with β ∈ {prec, bipartite}.

Proof. The proof is similar as the proof of Theorem 3.5 by considering the graph G̃′ instead of
widget G̃. Nevertheless each path of length two induced by the V tasks is transformed into
two paths of length one.

We use the same construction as it is proposed for the proof of Theorem 3.5.
Nevertheless, all paths of length three are transformed into two paths in the following way:
v∗
i [0] → v∗

i [1] and v∗
i [0] → v∗

i [2]. These three must be executed on the same processors.
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Indeed, if v∗
i [2] admits several predecessors, it is obvious. Otherwise, suppose that v∗

i [0] is
allotted on a processor π . So v∗

i [1]must be executed at t = 1 on π . The task v∗
i [2] is scheduled

at t = 2 on a neighborhood processor. Therefore no task from the graphs Z and G̃′ can be
executed on processor π at t = 2. Now using the same arguments as previously there is a
schedule of length three if and only if the set A = {a1, . . . , a3n} can be partitioned into n
disjoint subsets A1, . . . ,An each summing up to B.

The proof of Theorem 3.5 therefore implies that the problem where the tasks can be
duplicated is alsoNP-complete.

Corollary 3.13. The problem of deciding whether an instance of (P,G∗)|β; cij = d(π�, πk); pi =
1, dup|Cmax with G∗ ∈ G has a schedule of length at most three is NP-complete with β ∈
{prec, bipartite}.

Proof. The proof comes directly from Theorems 3.5 and 3.12. In fact, Lemma 3.8 implies that
no task can be duplicated (the number of the tasks is equal to the number of processors times
3).

Moreover, nonapproximability results can be deduced.

Corollary 3.14. No polynomial-time algorithm exists with a performance bound less than 4/3 unless
P = NP for the problems (P,G∗)|β; cij = d(π�, πk); pi = 1|Cmax and (P,G∗)|β; cij = d(π�, πk);
pi = 1, dup|Cmaxβ ∈ {prec, bipartite} with G∗ ∈ G.

Proof. The proof of Corollary 3.14 is an immediate consequence of the impossibility theorem;
see [9, page 4].

3.2. Discussion

In the previous section, we propose a class graph G for which the problem of deciding
whether an instance of (P,G∗)|β; cij = d(π�, πk); pi = 1|Cmax has a schedule of length at most
three is NP-complete with β ∈ {prec, bipartite} and G∗ ∈ G.

Hereafter, we will exhibit the parameters (L, k) for some classic structured graphs in
order to prove that the class graph G is not empty.

(i) For a grid G∗ = Grid(m, p) (m, p ∈ �, where the couple (i, j) designates the j the
position in the i the line; 1 ≤ i ≤ m, 1 ≤ j ≤ p) (or torus) topology, we need k =
2n + 1 lines and L = 2B + 2 columns. The set of vertices for the graph G a subgraph
of G∗ with the desired properties given by Definition 3.2 is V = {(i, j), 2 ≤ i ≤
2n, i even, 2 ≤ j ≤ 2B + 3} and V ′ = {(i, 1), 1 ≤ i ≤ 2n + 1} ∪ {(i, j), 1 ≤ i ≤ 2n +
1, i odd; 1 ≤ j ≤ 2B + 3}.

(ii) For the complete binary tree, it is sufficient to consider a tree with height of
�log(n)� + 2B + 1.

(iii) For the HypercubeH(d) topology (or cube connected cycles), it is sufficient to have
d = 2�log(n)� + B + 2.

(iv) . . ..
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4. An Approximation Algorithm for Processor Networks with
a Fixed Diameter

4.1. Description and Correctness of an Algorithm

In order to design an efficient polynomial-time approximation algorithm, the classic strategy
consists of taking an instance of the combinatorial optimization problem and applying some
transformations and/or using polynomial-time algorithms as subroutines (shortest path,
spanning tree, maximum matching, etc.). Afterwards, it is sufficient to evaluate the best
lower bound for any optimal solution, and this lower bound may be compared to the feasible
solution for the combinatorial optimization problem in order to determine the ratio of an
approximation algorithm.

Here, instead of considering an instance I and trying to directly develop a feasible
solution for the (P,G∗)|prec; cij = d(πk, πl) = 1; pi = 1|Cmax problem, we consider a partial
instance of I of our scheduling problem (An instance I is constituted by a precedence graph
with unit execution time and unit communication time, m processors in G graph form, with
the distance function.), denoted I∗. (The partial instance I∗ of I is constituted only by the
precedence graph with unitary tasks and unitary communication time) For any instance I∗,
we use the classic approximation algorithm proposed by Munier and König [10] for the
P |prec; cij = 1; pi = 1|Cmax problem. We obtain a feasible schedule, denoted S (we omit
consideration of the processor graph for the moment) for the previous problem.Nevertheless,
this solution is not feasible for our scheduling problem.

We proceed with polynomial-time chain of transformations, from schedule S to a
schedule S′′, in order to get a feasible schedule. It is only in the last step, only for schedule
S′′, that we guarantee a feasible schedule for the problem (P,G∗)|prec; cij = d(πk, πl) = 1; pi =
1|Cmax.

This chain is defined as follows: I∗
f
−→ S

g
−→ S

′ h−→ S′′ (The schedule S′ is a feasible
solution for the{P,G}|prec; cij = d(πk, πl) = 1; pi = 1|Cmax problem.) , where f is the
Munier-König algorithm [10], g the dilatation algorithm (see [11] for details or Appendix A)
and h the folding algorithm (see [12] for details or Appendix B).

Subsequently, we will consider the three following scheduling problems:

(i) P |prec;cij = 1; pi = 1|Cmax,

(ii) P |prec; cij ≥ 2; pi = 1|Cmax,

(iii) and finally (P,G∗)|prec; cij = d(πk, πl) = 1; pi = 1|Cmax.

The principal steps of the algorithm are described below.
An approximation algorithm uses three steps. In each step we apply an algorithm for

a specified scheduling problem [10–12]. In the two first steps, a schedule is produced (these
schedules are not feasible for our problem).

(i) In the first step of an algorithm, a schedule (denoted S on an unbounded number of
processors), for the scheduling problem P |prec; cij = 1; pi = 1|Cmax is produced. For
this problem, Munier and König [10] presented a (4/3)-approximation algorithm
that is based on an integer linear programming formulation. They use the following
procedure: an integrity constraint is relaxed, and a feasible schedule is produced by
rounding.

(ii) The second step of an algorithm produces a schedule (denoted S′, also on an
unbounded number of processors) from S by applying the dilatation principle
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I∗
f

SS
g ′ hm
m

mS′′

CG,mmaxCU ET-UCT,∞
max C

U ET-LCT(c=δ),∞
max

It is clear that CUET-UCT,∞
max ≤ CUET-LCT(c=δ)∞

max ≤ CG,mmax

Figure 9: Description of chain of polynomial-time transformations.

proposed by [11] for the problem P |prec; cij ≥ 2; pi = 1|Cmax (this algorithm
produces a feasible schedule for the large communication delay problem from
unitary communication delay. We therefore have S′ = g(S)where g is the dilatation
algorithm.

(iii) The third step produces a schedule S′′ (feasible for the (P,G∗)|prec, cij = d(πk, πl) =
1, pi = 1|Cmax problem) on the G topology from S′ using the folding principle
[12]. The folding procedure constructs a feasible schedule on restricted number of
processors from a feasible schedule on an unbounded number of processors. Thus,
S′′ = h(S′) with h being the folding algorithm.

Note that the length of schedule S is less than S′, which is less than S′′. The three steps
are summarized in Figure 9. The notation description is given in the proof of Theorem 4.2.

Theorem 4.1. The previous algorithm leads a feasible schedule for the problem (P,G∗|prec; cij =
d(πk, πl) = 1; pi = 1|Cmax.

Proof. Proof is clear from the previous discussion concerning the description of an algorithm.
Indeed, the communication delay is preserved and the precedence constraint is respected.
Moreover, at most m tasks are executed at any time.

4.2. Relative Performance Analysis

Theorem 4.2. The problem (P,G∗)|prec; cij = d(πk, πl) = 1; pi = 1|Cmax may be approximable
within a factor of ((δ + 1)2/3) + 1 using the previous algorithm.

Proof. We denote using C
x,y,z
max with x ∈ {opt, ∅}, y ∈ {UET-UCT,UET-LCT(c = δ), G∗},

and z ∈ {m,∞} the length of the schedule. Moreover ρG
∗,m (resp., ρG

∗,∞) designates the
performance ratio on a G processor network model with a bounded (resp., unbounded)
number of processors.

Now let us examine the relative performance of this algorithm.

(i) According to an algorithm, the first step deals with the problem P |prec; cij = 1; pi =
1|Cmax.
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First of all the Schedule (UET-UCT,∞) is not optimal. Using the algorithm from [10]
gives us a 4/3 relative performance. And so, by [10], we know that

CUET-UCT,∞
max ≤ 4

3
C

opt,UET-UCT,∞
max . (4.1)

(ii) In the second step, a feasible solution for a large communication delay c = δ (recall
that δ stands for the diameter of processors network) is created. This solution comes
from using the dilatation algorithm. Then, the expansion coefficient is (δ + 1)/2
([11]). And so,

C
UET-LCT(c=δ),∞
max ≤ δ + 1

2
· 4
3
C

opt,UET-LCT(c=δ),∞
max , (4.2)

C
UET-LCT(c=δ),∞
max ≤ 2(δ + 1)

3
C

opt,UET-LCT(c=δ),∞
max . (4.3)

Thus, we have a schedule on a UET-LCT task system with a communication delay equal to δ
and an infinite number of processors.

By definition it is obvious that

CG∗ ,∞
max ≤ C

UET-LCT(c=δ),∞
max , (4.4)

C
opt,UET-UCT,∞
max ≤ C

opt,UET-LCT(c=δ),∞
max . (4.5)

It is necessary to evaluate the gap between the optimal length for the schedule on a fully
connected processor graph and a processor graph with a diameter of length K. For this,
we consider unitary tasks subject to precedence constraints and an unbounded number of
processors.

Lemma 4.3. The gap between a schedule on a fully connected graph of processors with a large
communication delay c, for all pairs of tasks, and a schedule on a graph of processors with a diameter
of lengthK ∈ �, is at most (c + 1)/2.

Proof. We need to compare first the relative performance of this schedule on our model with
network processor. The relative performance for the UET-LCT task system is not valid for our
model. We need to compute a new bound for this schedule on our model.

Let p = {x1, x2, . . . , xn} be a critical path of the schedule (i.e., a path that gives the
length of the schedule). Suppose that there is a communication delay between each pair of
tasks (xi, xi+1) with 1 ≤ i < n. In the UET-LCT task system ( with a communication delay
equal to c for all pair of tasks) the length of the schedule would be (1 + c)n − c units of time.
In the graph of processors with a diameter of length k, the same path allows a length of
(k/2)(n − 1) +n units of time. The worst case of the length for this path is n+ (n− 1)k and the
best case is 2n− 1. So, the ratio is (n(1+ c)− c)/(2n− 1). For the large n, we obtain the desired
result.
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By applying Lemma 4.3, which is valid for all schedules, and in particular for the
optimum, with c = δ, we obtain

C
opt,UET-LCT(c=δ),∞
max ≤ (δ + 1)

2
C

opt,G∗,∞
max (4.6)

and so

CG∗,∞
max ≤ C

UET-LCT(c=δ),∞
max by (4.4) (4.7)

CG∗ ,∞
max ≤ 2(δ + 1)

3
C

opt,UET-LCT(c=δ),∞
max using (4.3) (4.8)

CG∗ ,∞
max ≤ (δ + 1)2

3
C

opt,G,∞
max using (4.6) (4.9)

ρG
∗ ,∞ ≤ (δ + 1)2

3
. (4.10)

Now we have to transform this schedule using an infinite number of processors into a
schedule with a bounded number of processors. This can be done easily using the method
from [12]. The new worst-case relative performance is just increased by one. Thus we have

ρG
∗,m ≤ ρG

∗ ,∞ + 1 ≤ (δ + 1)2

3
+ 1.

(4.11)

Remark 4.4. Note that the order of the operations may be modified. Nevertheless, the ratio
becomes 7/6 × (δ + 1)2. Indeed, the folding principle may be used just after the solution
given by an algorithm proposed by Munier and König [10]. We then obtain a schedule on m
processors. Afterwards, we apply the dilation principle. This order yields a polynomial-time
approximation algorithm with a ratio bounded by 7/6 × (δ + 1)2.

Remark 4.5. we may recall two classic results in scheduling problems for which the
performance ratio increases by one between the unbounded and bounded versions.

(1) When the number of processors is unlimited, the problem of scheduling a set
of n tasks under precedence constraints with noncommunication delay is polynomial.
It is sufficient to use the classical algorithm given by Bellman [13] as well as the two
techniques widely used in project management: CPM (Critical Path Method) and PERT
(Project/Program Evaluation and Review Technique). In contrast, when the number of
processors is limited, the problem becomes NP-complete and a (2 − 1/m)-approximation
is developed by Graham, see [14], where m designates the number of processors based on a
list scheduling in which no order on tasks is specified.

(2) The second illustration is given by the transition to UET-UCT on unrestricted
version to the restricted variant. In [10], we know the existence of a 4/3-approximation
algorithm. Using the previous result Munier and Hanen in [15] design a 7/3-approximation
for the restricted version.
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5. Conclusion

We have sharpened the demarcation line between the polynomially solvable and NP-hard
case of the central scheduling problem (UET-UCT) on a structured processor network by
showing that its decision is polynomially solvable for Cmax ≤ 2 while it is NP-complete for
Cmax ≥ 3. This result is given for a large class of graphwith a nonconstant diameter. This result
implies there is no ρ-approximation algorithmwith ρ < 4/3. These results are extended to the
case of precedence graph is a bipartite graph.

Lastly, we complete our complexity results by developing a polynomial-time
approximation algorithm for (P,G∗)|prec, cij = d(πk, πl) = 1, pi = 1|Cmax with a worst-
case relative performance of (δ + 1)2/3 + 1, where δ designates the diameter of the graph.
An interesting question for further research is to find a polynomial-time approximation
algorithm with performance guarantee ρ with ρ ∈ �.

Appendices

A.

This section describes the dilatation principle. This principle has been studied in [11],
and used for designing a new polynomial-time approximation algorithm with a nontrivial
performance guarantee for the problem P |prec; cij = c ≥ 2; pi = 1|Cmax. For the latter problem,
the authors propose a c + 1/2-approximation algorithm (the best ratio as far as we know).

A.1. Introduction, Notation, and Description of the Method

Notation 1. We use σ∞ to denote the UET-UCT schedule, and by σ∞
c the UET-LCT schedule.

Moreover, we use ti (resp., tci ) to denote the starting time of the task i in schedule σ∞ (resp.,
in schedule σ∞

c ).

Principle

The tasks in σ∞
c allow the same assignment as the feasible schedule σ∞ on an unbounded

number of processors. We proceed to an expansion of the makespan, while preserving the
communication delay (tcj ≥ tci + 1 + c) for two tasks i and j, with (i, j) ∈ E, processing on two
different processors. For this, the starting time tci is translated by a factor d.

In the following section, we will justify and determine the coefficient d.
More formally, let G = (V,E) be a precedence graph. We determine a feasible schedule

σ∞, for the model UET-UCT, using the (4/3)-approximation algorithm proposed by Munier
and König [10]. The result of this algorithm gives a couple of values (ti, π), ∀i ∈ V on the
schedule σ∞ with ti being the starting time of the task i for the schedule σ∞ and π the
processor on which the task iwill be processed at ti.

From this solution, we will derive a solution for the problem with large communica-
tion delays. For this, we will propose a new couple of values (tci , π

′), ∀i ∈ V derived from
couple (ti, π). The computation of this set of new couples is obtained in the following ways:
the start time tci = d × ti = ((c + 1)/2)ti and, π = π ′. In other words, all tasks in the schedule
σ∞
c are allotted on the same processor as the schedule σ∞, and the starting time of a task i

undergoes a translation with a factor (c + 1)/2. The justification of the expansion coefficient
is given below. An illustration of the expansion is given in Figure 10.
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Figure 10: Illustration of the notion of expansion.

A.2. Feasibility, Analysis of the Method, and Computation of the Ratio

Afterwards, we will justify the existence of the coefficient d. Moreover, we prove the
correctness of the feasible schedule for P |prec; cij = c ≥ 2; pi = 1|Cmax problem. Lastly, we
propose a worst-case analysis for the algorithm.

Lemma A.1. The coefficient of an expansion is d = (c + 1)/2.

Proof. Let there be two tasks i and j such that (i, j) ∈ E, which are processed on two different
processors in the feasible schedule σ∞. We are interested in obtaining a coefficient d such that
tci = d × ti and tcj = d × tj . After expansion, in order to respect the precedence constraints
and communication delay, we must have tcj ≥ tci + 1 + c, and so d × ti − d × tj ≥ c + 1, d ≥
(c + 1)/(ti − tj), d ≥ c + 1/2. It is sufficient to choose d = (c + 1)/2.

LemmaA.2. An expansion algorithm gives a feasible schedule for the P |prec; cij = c ≥ 2; pi = 1|Cmax

problem in O(n).

Proof. It is sufficient to check that the solution given by an expansion algorithm produces a
feasible schedule for the UET-LCT model. Let i and j be two tasks such that (i, j) ∈ E. We use
πi (resp.,πj) to denote the processor on which task i (resp., the task j) is executed in schedule
σ∞. Moreover, we use π ′i (resp., π ′j) to denote the processor on which task i (resp., the task
j) is executed in schedule σ∞

c . Thus,

(i) if πi = πj then π ′i = π ′j . Since the solution given by Munier and König [10] gives
a feasible schedule on the model UET-UCT, we have ti + 1 ≤ tj , (2/(c + 1))tci + 1 ≤
(2/(c + 1))tcj ; t

c
i + 1 ≤ tci + (c + 1)/2 ≤ tcj ;

(ii) if πi /=πj then π ′i /=π ′j . We have ti + 1 + 1 ≤ tj , (2/(c + 1))tci + 2 ≤ (2/(c + 1))tcj ;
tci + (c + 1) ≤ tcj .

TheoremA.3. An expansion algorithm gives a (2(c+1)/3)-approximation algorithm for the problem
P |prec; cij = c ≥ 2; pi = 1|Cmax.

Proof. We use Ch,UET-UCT,∞
max (resp., Copt,UET-UCT,∞

max ) to denote the makespan of the schedule
computed byMunier and König (resp., the optimal value of a schedule σ∞). In the same way,
we use Ch∗,UET-LCT,∞

max (resp., Copt,UET-LCT,∞
max ) to denote the makespan of the schedule computed

by an algorithm (resp., the optimal value of a schedule σ∞
c ).
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We know that

Ch,UET-UCT,∞
max ≤ 4

3
C

opt,UET-UCT,∞
max . (A.1)

Thus, we obtain

Ch∗ ,UET-LCT,∞
max

C
opt,UET−LCT,∞
max

=
((c + 1)/2)Ch,UET-UCT,∞

max

C
opt,UET-LCT,∞
max

≤ ((c + 1)/2)Ch,UET-UCT,∞
max

C
opt,UET-UCT,∞
max

≤ (c + 1/2)(4/3)Copt,UET-UCT,∞
max

C
opt,UET-UCT,∞
max

≤ 2(c + 1)
3

.

(A.2)

B.

In this section, we present a simple algorithm which gives a schedule σm on m machines
from a schedule σ∞ on an unbounded number of processors for P |prec, cij = 1, pi = 1|Cmax.
Let Xi be the set of tasks executed at ti in σ∞ using a heuristic h∗. The Xi tasks are
executed in �|Xi|/m� units of time in the schedule σm. We apply this procedure for all
i = 0, . . . , Ch∗,UET-UCT,∞

max − 1. The validity of this algorithm is based on the fact there is at most
a matching between the tasks executed at ti and the tasks processed at ti + 1 (called Brent’s
lemma, see [12]).

Theorem B.1. From any polynomial time algorithm h∗ with performance guarantee ρ∞ (i.e.,
Ch∗ ,UET-UCT,∞

max ≤ ρ∞C
opt,UET-UCT,∞
max ) for the problem P |prec, cij = 1, pi = 1|Cmax, we may obtain a

polynomial-time algorithm h with performance guarantee ρm = (1 + ρ∞) for the problem P |prec, cij =
1, pi = 1|Cmax.

Proof. Let Ch∗ ,UET-UCT,∞
max (resp., Ch,UET-UCT,m

max ) be the length of the schedule given by h∗ (resp.,
by h). In the same way, let Copt,UET-UCT,∞

max (resp., Copt,UET-UCT,m
max ) be the optimal length of the

schedule on an unbounded number of processors (resp., in a restricted number of processors).
We denote by n the number of tasks in the schedule.
Clearly, this gives us Copt,UET-UCT,∞

max ≤ C
opt,UET-UCT,m
max and Ch∗,UET-UCT,∞

max ≤ ρCh,UET-UCT,∞
max . So,

Ch,UET-UCT,m
max ≤

Ch∗ ,UET-UCT,∞
max −1∑

i=0

⌈ |Xi|
m

⌉
≤

Ch∗ ,UET-UCT,∞
max −1∑

i=0

(⌊ |Xi|
m

⌋
+ 1

)
,

Ch,UET-UCT,m
max ≤

Ch∗ ,UET-UCT,∞
max −1∑

i=0

( |Xi|
m

)
+ Ch∗ ,UET-UCT,∞

max ,

Ch,UET-UCT,m
max ≤ C

opt,UET-UCT,m
max +Ch∗ ,UET-UCT,∞

max ,

Ch,UET-UCT,m
max ≤ C

opt,UET-UCT,m
max + ρC

opt,UET-UCT,m
max ,

ρm ≤
(
1 + ρ∞

)
.

(B.1)

This concludes proof of Theorem B.1.
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