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Abstract. The general problem of answering top-k queries 
can be modeled using lists of data items sorted by their local 
scores. The main algorithm proposed so far for answering 
top-k queries over sorted lists is the Threshold Algorithm 
(TA). However, TA may still incur a lot of useless accesses 
to the lists. In this paper, we propose two algorithms that are 
much more efficient than TA. First, we propose the best 
position algorithm (BPA). For any database instance (i.e. set 
of sorted lists), we prove that BPA stops as early as TA, and 
that its execution cost is never higher than TA. We show that 
there are databases over which BPA executes top-k queries 
O(m) times faster than that of TA, where m is the number of 
lists. We also show that the execution cost of our algorithm 
can be (m-1) times lower than that of TA. Second, we 
propose the BPA2 algorithm which is much more efficient 
than BPA. We show that the number of accesses to the lists 
done by BPA2 can be about (m-1) times lower than that of 
BPA. We evaluated the performance of our algorithms 
through extensive experimental tests. The results show that 
over our test databases, BPA and BPA2 achieve significant 
performance gains in comparison with TA. 
Keywords: Query processing; top-k queries; threshold 
algorithm; instance optimality. 

1 Introduction  
Top-k queries have attracted much interest in many different 
areas such as network and system monitoring [8][23], 
information retrieval [18][22][32][36], sensor networks 
[34][39], multimedia databases [9][17][31], spatial data 
analysis [10], P2P systems [3][4], data stream management 
systems [13][21][27][30], probabilistic databases 
[33][35][40], temporal databases[26], etc. The main reason 
for such interest is that they avoid overwhelming the user 
with large numbers of uninteresting answers which are 
resource-consuming. 
The problem of answering top-k queries can be modeled as 
follows [14][16]. Suppose we have m lists of n data items 
such that each data item has a local score in each list and the 
lists are sorted according to the local scores of their data 
items. Each data item has an overall score computed based on 
its local scores in all lists using a given scoring function. 
Then, the problem is to find the k data items whose overall 
scores are the highest. This problem model is simple and 
general. Let us illustrate with the following examples. 
Suppose we want to find the top-k tuples in a relational table 
according to some scoring function over its attributes. To 
answer this query, it is sufficient to have a sorted (indexed) 

list of the values of each attribute involved in the 
scoring function, and return the k tuples whose overall 
scores in the lists are the highest. As another example, 
suppose we want to find the top-k documents whose 
aggregate rank is the highest wrt. some given 
keywords. To answer this query, the solution is to 
have for each keyword a ranked list of documents, and 
return the k documents whose aggregate rank in all 
lists are the highest.  
There has been much work on efficient top-k query 
processing over sorted lists. A naïve algorithm is to 
scan all lists from beginning to end, maintain the local 
scores of each data item, compute the overall scores, 
and return the k highest scored data items. However, 
this algorithm is executed in O(m∗n) and thus it is 
inefficient for very large lists.  
In related work, the main efficient algorithm for 
answering top-k queries over sorted lists is the 
Threshold Algorithm (TA) [15][17][31]. TA is 
applicable for queries where the scoring function is 
monotonic. It is simple and elegant. Based on TA, 
many algorithms have been proposed for top-k query 
processing in centralized and distributed applications, 
e.g. [5][13][28]. The basic difference between TA and 
previously designed algorithms, e.g. Fagin’s algorithm 
(FA) [14], is its stopping mechanism that enables TA 
to stop scanning the lists very soon. However, there 
are many database instances over which TA 
continuous scanning the lists although it has seen all 
top-k answers (see Example 2 in Section 3.2), while it 
is possible to stop much sooner. 
In this paper, we propose two new algorithms for 
processing top-k queries over sorted lists. First, we 
propose the best position algorithm (BPA) which 
executes top-k queries much more efficiently than TA. 
The key idea of BPA is that its stopping mechanism 
takes into account special seen positions in the lists, 
the best positions. For any database instance (i.e. set of 
sorted lists), we prove that BPA stops as early as TA, 
and that its execution cost (called middleware cost in 
[16]) is never higher than TA. We prove that the 
position at which BPA stops can be O(m) times lower 
than that of TA, where m is the number of lists. We 
also prove that the execution cost of our algorithm can 
be (m-1) times lower than that of TA. Second, based 
on BPA, we propose the BPA2 algorithm which is 
much more efficient than BPA. We show that the 
number of accesses to the lists done by BPA2 can be 
up to about (m-1) times lower than that of BPA. To 
validate our contributions, we implemented our 
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algorithms. The performance evaluation shows that over our 
test databases, BPA and BPA2 outperform TA by factors of 
about (m+6)/8 and (m+1)/2 respectively, e.g. for m=10, the 
factor is about 2 and 5.5, respectively. 
This paper is a major extension of [2], with the following 
new material. In addition to a more complete related work 
and bibliography study, this paper contains two new sections. 
First, in Section 6, we propose several techniques using 
different data structures for best position management which 
is crucial for correct and efficient execution of our 
algorithms. We analyze the time and space complexity of the 
proposed techniques and compare them. Second, in Section 7 
we provide a complete discussion on the instance optimality 
of TA and BPA.  Instance optimality has been advocated as a 
main feature of TA [16], i.e. TA is optimal over all database 
instances. In [2], by using the instance optimality of TA and 
the fact that BPA stops always before TA, we proved the 
instance optimality of BPA. But as we will illustrate in 
Section 7, the existence of deterministic algorithms such as 
BPA shows that if we are aware of positions of seen data, 
then one of the main arguments used for proving the instance 
optimality of TA (in [16]) is invalidated. Therefore, in this 
case the proof of TA’s instance optimality is incorrect, and 
must be revisited.  
The rest of this paper is organized as follows. In Section 2, 
we define the problem which we address in this paper. 
Section 3 presents some background on FA and TA. In 
Sections 4 and 5, we present the BPA and BPA2 algorithms, 
respectively, with a cost analysis. In Section 6, we propose 
several efficient techniques for managing best positions. 
Section 7 gives a discussion on the instance optimality of TA. 
Section 8 reports a performance evaluation of our algorithms. 
In Section 9, we discuss related work. Section 10 concludes. 

2 Problem definition 
Let D be a set of n data items, and L1, L2, …, Lm be m lists 
such that each list Li contains n pairs of the form (d, si(d)) 
where d∈D and si(d) is a non-negative real number that 
denotes the local score of d in Li. Any data item d∈D appears 
once and only once in each list. Each list Li is sorted in 
descending order of its local scores, hence called “sorted 
list”. Let j be the number of data items which are before a 
data item d in a list Li, then the position of d in Li is equal to 
(j + 1). 
The set of m sorted lists is called a database. In a distributed 
system, sorted lists may be maintained at different nodes. A 
node that maintains a list is called a list owner. In centralized 
systems, the owner of all lists is only one node. 
The overall score of each data item d is computed as f(s1(d), 
s2(d), …, sm(d)) where f is a given scoring function. In other 
words, the overall score is the output of f where the input is 
the local scores of d in all lists. In this paper, we assume that 
the scoring function is monotonic. A function f is monotonic 
if f(x1, …, xm) ≤ f(x'1, …, x'm) whenever xi ≤ x'i for every i. 

Many of the popular aggregation functions, e.g. Min, 
Max, Average, are monotonic. The k data items whose 
overall scores are the highest among all data items, are 
called the top-k data items. 
As defined in [16], we consider two modes of access 
to a sorted list. The first mode is sorted (or sequential) 
access by which we access the next data item in the 
sorted list. Sorted access begins by accessing the first 
data item of the list. The second mode of access is 
random access by which we lookup a given data item 
in the list. Let cs be the cost of a sorted access, and cr 
be the cost of a random access. Then, if an algorithm 
does as sorted accesses and ar random accesses for 
finding the top-k data items, then its execution cost is 
computed as as∗cs + ar∗cr. The execution cost (called 
middleware cost in [16]) is a main metric to evaluate 
the performance of a top-k query processing algorithm 
over sorted lists [16]. 
Let us now state the problem we address. Let L1, L2, 
…, Lm be m sorted lists, and D be the set of data items 
involved in the lists. Given a top-k query which 
involves a number k≤n and a monotonic scoring 
function f, our goal is to find a set D'⊆D such that 
⎪D'⎪=k, and ∀d1∈D' and∀d2∈(D-D') the overall score 
of d1 is at least the overall score of d2, while 
minimizing the execution cost. 

3 Background  
The background for this paper is the TA algorithm 
which is itself based on Fagin's Algorithm (FA). FA 
and TA are designed for processing top-k queries over 
sorted lists. In this section, we briefly describe and 
illustrate FA and TA. 

3.1 FA  

The basic idea of FA is to scan the lists until having at 
least k data items which have been seen in all lists, 
then there is no need to continue scanning the rest of 
the lists [14]. FA works as follows:  
1. Do sorted access in parallel to each of the m 

sorted lists, and maintain each seen data item in a 
set S. If there are at least k data items in S such 
that each of them has been seen in each of the m 
lists, then stop doing sorted access to the lists. 

 
2. For each data item d involved in S, do random 

access as needed to each of the lists Li to find the 
local score of d in Li, compute the overall score of 
d, and maintain it in a set Y if its score is one of 
the k highest scores computed so far. 
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3. Return Y. 
 
The correctness proof of FA can be found in [14]. Let us 
illustrate FA with the following example.  
Example 1. Consider the database (i.e. three sorted lists) 
shown in Figure 1.a. Assume a top-3 query Q, i.e. k=3, and 
suppose the scoring function computes the sum of the local 
scores of the data item in all lists. In this example, before 
position 7, there is no data item which can be seen in all lists, 
so FA cannot stop before this position.  After doing the 
sorted access at position 7, FA sees d5 and d8 which are seen 
in all lists, but this is not sufficient for stopping sorted access. 
At position 8, the number of data items which are seen in all 
lists is 5, i.e. d1, d3, d5, d6 and d8. Thus, at position 8, there are 
at least k data items which are seen by FA in all lists, thus FA 
stops doing sorted access to the lists. Then, for the data items 
which are seen only in some of the lists, e.g. d2, FA does 
random access and finds their local scores in all lists, e.g. d2 
is not seen in L1 so FA needs a random access to L1 to find 
the local score of d2 in this list. It computes the overall score 
of all seen data items, and returns to the user the k highest 
scored ones. 

3.2 TA  

The main difference between TA and FA is their stopping 
mechanism which decides when to stop doing sorted access 
to the lists. The stopping mechanism of TA uses a threshold 
which is computed using the last local scores seen under 
sorted access in the lists. Thanks to its stopping mechanism, 

over any database, TA stops at a position (under sorted 
access) which is less than or equal to the position at 
which FA stops [16]. TA works as follows: 
1. Do sorted access in parallel to each of the m 

sorted lists. As a data item d is seen under sorted 
access in some list, do random access to the other 
lists to find the local score of d in every list, and 
compute the overall score of d. Maintain in a set Y 
the k seen data items whose overall scores are the 
highest among all data items seen so far. 

 
2. For each list Li, let si be the last local score seen 

under sorted access in Li. Define the threshold to 
be δ = f(s1, s2, …, sm). If Y involves k data items 
whose overall scores are higher than or equal to δ, 
then stop doing sorted access to the lists. 
Otherwise, go to 1. 

 
3. Return Y. 
 
The correctness proof of TA can be found in [16]. Let 
us illustrate TA with the following example.  
Example 2. Consider the three sorted lists shown in 
Figure 1.a and the query Q of Example 1, i.e. k=3 and 
the scoring function computes the sum of the local 
scores. The thresholds of the positions and the overall 
score of data items are shown in Figure 1.b and 1.c, 
respectively. TA first looks at the data items which are 
at position 1 in all lists, i.e. d1, d2, and d3. It looks up 
the local score of these data item in other lists using 
random access and computes their overall scores. But, 

 
List 1  List 2  List 3  f = s1 + s2 + s3 

Position  Data 
item 

Local 
score    

s1 

 Data 
item 

Local 
score 

s2 

 Data 
item 

Local 
score 

s3 

 TA 
Threshold 

 Data 
item 

Overall 
Score 

1  d1 30  d2 28  d3 30  88  d1 65 

2  d4 28  d6 27  d5 29  84  d2 63 

3  d9 27  d7 25  d8 28  80  d3 70 

4  d3 26  d5 24  d4 25  75  d4 66 

5  d7 25  d9 23  d2 24  72  d5 70 

6  d8 23  d1 21  d6 19  63  d6 60 

7  d5 17  d8 20  d13 15  52  d7 61 

8  d6 14  d3 14  d1 14  42  d8 71 

9  d2 11  d4 13  d9 12  36  d9 62 

10  d11 10  d14 12  d7 11  33  … … 

11  d14 9  d11 10  d11 8  27  … … 

…  … …  … …  … …  …  … … 

(a)  (b)                                  (c)  

Figure 1. Example database. a) 3 sorted lists. b) TA threshold at positions 1 to 10. c) The overall score of each data item. 
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the overall score of none of them is as high as the threshold 
of position 1. Thus, at position 1, TA does not stop. At this 
position, we have Y={d1, d2, d3}, i.e. the k highest scored data 
items seen so far. At positions 2 and 3, Y involves {d3, d4, d5} 
and {d3, d5, d8} respectively. Before position 6, none of the 
data items involved in Y has an overall score higher than or 
equal to the threshold value. At position 6, the threshold 
value gets 63, which is less than the overall score of the three 
data items involved in Y, i.e. Y={d3, d5, d8}. Thus, there are k 
data items in Y whose overall scores are higher than or equal 
to the threshold value, so TA stops at position 6. The contents 
of Y at position 6 are exactly equal to its contents at position 
3. In other words, at position 3, Y already contains all top-k 
answers. But TA cannot detect this and continues until 
position 6. In this example, TA does three useless sorted 
accesses in each list, thus a total of 9 useless sorted accesses 
and 9∗2 useless random accesses. 
In the next section, we propose an algorithm that always 
stops as early as TA, so it is as fast as TA. Over some 
databases, our algorithm can stop at a position which is (m-1) 
times lower than the stopping position of TA. 

4 Best position algorithms 
In this section, we first propose our Best Position Algorithm 
(BPA), which is an efficient algorithm for the problem of 
answering top-k queries over sorted lists. Then, we analyze 
its execution cost and compare it with TA. 

4.1 Algorithm 

BPA works as follows:  
1. Do sorted access in parallel to each of the m sorted lists. 

As a data item d is seen under sorted access in some list, 
do random access to the other lists to find the local score 
and the position of d in every list. Maintain the seen 
positions and their corresponding local scores. Compute 
the overall score of d. Maintain in a set Y the k seen data 
items whose overall scores are the highest among all 
data items seen so far. 

 
2. For each list Li, let Pi be the set of positions which are 

seen under sorted or random access in Li. Let bpi, called 
best position1 in Li, be the greatest position in Pi such 
that any position of Li between 1 and bpi is also in Pi. Let 
si(bpi) be the local score of the data item which is at 
position bpi in list Li .  

 
3. Let best positions overall score be λ = f(s1(bp1), s2(bp2), 

…, sm(bpm)). If Y involves k data items whose overall 
scores are higher than or equal to λ, then stop doing 
sorted access to the lists. Otherwise, go to 1. 

 
4. Return Y. 
 

                                                           
1 bpi is called best because we are sure that all positions of Li 

between 1 and bpi have been seen under sorted or random 
access. 

Example 3. To illustrate our algorithm, consider again 
the three sorted lists shown in Figure 1.a and the query 
Q in Example 1. At position 1, BPA sees the data 
items d1, d2, and d3. For each seen data item, it does 
random access and obtains its local score and position 
in all lists. Therefore, at this step, the positions which 
are seen in list L1 are the positions 1, 4, and 9 which 
are respectively the positions of d1, d3 and d2. Thus, we 
have P1={1, 4, 9} and the best position in L1 is bp1 = 1 
(since the next position in P1 is 4 meaning that 
positions 2 and 3 have not been seen). For L2 and L3 
we have P2={1, 6, 8} and P3={1, 5, 8}, so bp2 = 1 and 
bp3 = 1. Therefore, the best positions overall score is λ 
= f(s1(1), s2(1), s3(1)) = 30 + 28 +30 = 88. At position 
1, the set of three highest scored data items is Y={d1, 
d2, d3}, and  since the overall score of these data items 
is less than λ, BPA cannot stop. At position 2, BPA 
sees d4, d5, and d6. Thus, we have P1={1, 2, 4, 7, 8, 9}, 
P2={1, 2, 4, 6, 8, 9} and P3={1, 2, 4, 5, 6, 8}. 
Therefore, we have bp1=2, bp2=2 and bp3=2, so λ = 
f(s1(2), s2(2), s3(2)) = 28 + 27 + 29 = 84. The overall 
score of the data items involved in Y={d3, d4, d5} is 
less than 84, so BPA does not stop. At position 3, BPA 
sees d7, d8, and d9. Thus, we have P1 = P2 ={1, 2, 3, 4, 
5, 6, 7, 8, 9}, and P3 ={1, 2, 3, 4, 5, 6, 8, 9, 10}. Thus, 
we have bp1=9, bp2=9 and bp3=6.  The best positions 
overall score is λ = f(s1(9), s2(9), s3(6)) = 11 + 13 + 
19 = 43. At this position, we have Y={d3, d5, d8}. 
Since the score of all data items involved in Y is higher 
than λ, our algorithm stops. Thus, BPA stops at 
position 3, i.e. exactly at the first position where BPA 
has all top-k answers. Remember that over this 
database, TA and FA stop at positions 6 and 8 
respectively. 
The following theorem provides the correctness of our 
algorithm. 
Theorem 1. If the scoring function f is monotonic, 
then BPA correctly finds the top-k answers. 
Proof. For each list Li, let bpi be the best position in Li 
at the moment when BPA stops. Let Y be the set of the 
k data items found by BPA, and d be the lowest scored 
data item in Y. Let s be the overall score of d, then we 
show that each data item, which is not involved in Y, 
has an overall score less than or equal to s. We do the 
proof by contradiction. Assume there is a data item 
d'∉Y with an overall score s' such that s' >s. Since d' is 
not involved in Y and its overall score is higher than s, 
we can imply that d' has not been seen by BPA under 
sorted or random access. Thus, its position in any list 
Li is greater than the best position in Li, i.e. bpi. 
Therefore, the local score of d' in any list Li is less 
than the local score which is at bpi, and since the 
scoring function is monotonic, the overall score of d' is 
less than or equal to the best positions overall score, 
i.e. s'≤λ.  Since the score of all data items involved in 
Y is higher than or equal to λ,, we have s≥λ. By 
comparing the two latter inequalities, we have s≥ s', 
which yields to a contradiction. □ 



5 

4.2 Cost analysis 

In this section, we compare the execution cost of BPA and 
TA. Since TA and BPA are designed for monotonic scoring 
functions, we implicitly assume that the scoring function is 
monotonic. 
The two following lemmas compare the number of 
sorted/random accesses done by BPA and TA. 
Lemma 1. The number of sorted accesses done by BPA is 
always less than or equal to that of TA. In other words, BPA 
stops always as early as TA. 
Proof. Let Y be the set of answers found by TA, and δ be the 
value of TA's threshold at the time it stops. We know that the 
overall score of any data item involved in Y is less than or 
equal to δ. For each list Li, let pi be the position of the last 
data item seen by TA under sorted access. Since any position 
less than or equal to pi has been seen under sorted access, the 
best position in Li, i.e. bpi, is greater than or equal to pi. Thus, 
the local score which is at pi is higher than or equal to the 
local score at bpi. Therefore, considering the monotonicity of 
the scoring function, the TA's threshold, i.e. δ, is higher than 
or equal to the best positions overall score which is used by 
BPA, i.e. λ,. Thus, the overall scores of the data items 
involved in Y get higher than or equal to λ when the position 
of BPA under sorted access is less than or equal to pi. 
Therefore, BPA stops with a number of sorted accesses less 
than or equal to TA. □ 
Lemma 2. The number of random accesses done by BPA is 
always less than or equal to that of TA. 
Proof. The number of random accesses done by both BPA 
and TA is equal to the number of sorted accesses multiplied 
by (m-1) where m is the number of lists. Thus, the proof is 
implied by Lemma 1. □ 
Using the two above lemmas, the following theorem 
compares the execution cost of BPA and TA.  
Theorem 2. The execution cost of BPA is always less than or 
equal to that of TA. 
Proof. Considering the definition of execution cost, the proof 
is implied using Lemma 1 and Lemma 2. □ 
Lemmas 1 and 2 show that BPA always stops as early as TA. 
But how much faster than TA can it be? In the following, we 
answer this question. Assume that when BPA stops, its 
position in all lists is u. Then, during its execution, BPA has 
seen u∗m positions in each list, i.e. u positions under sorted 
access and u∗(m-1) under random access. If these are the 
positions from 1 to u∗m, then the best position in each list is 
the (u∗m)th position. In other words, the best position can be 
m times greater than the position under sorted access. Based 
on this observation, we may conclude that BPA can stop at a 
position which is m times lower than TA. However, we did 
not find any case where this happens. Instead, we can prove 
that there are cases where BPA stops at a position which is 
(m-1) times smaller than TA. In other words, the number of 
sorted accesses done by BPA can be (m-1) times lower than 
TA. This is shown by the following lemma. 

Lemma 3. Let m be the number of lists, then the 
number of sorted accesses done by BPA can be (m-1) 
times lower than that of TA. 
Proof. To prove this lemma, it is sufficient to show 
that there are databases over which the number of 
sorted accesses done by BPA is (m-1) times lower than 
that of TA. In other words, under sorted access, BPA 
stops at a position which is (m-1) times lower than the 
position at which TA stops. Let δ be the value of TA's 
threshold at the moment when it stops. For each list Li, 
let pi be the position (under sorted access) at which TA 
stops. Without loss of generality, we assume 
p1=p2=…=pm=j, i.e. when TA stops its position in all 
lists is j. For simplicity assume that j=(m-1)∗u  where 
u is an integer. Consider all cases where the two 
following conditions hold: 
1) Each of the top-k answers have a local score at a 
position which is less than or equal to j/(m-1), i.e. each 
of the top-k answers are seen under sorted access at a 
position which is less than or equal to j/(m-1).  
2) If a data item is at a position in interval [1 .. (j/(m-
1))] in any list Li, then m-2 of its corresponding local 
scores in other lists are at positions which are in 
interval [((j/(m-1) + 1) .. j], and one1 of its 
corresponding local scores is in a position higher than 
j.  
In all cases where the two above conditions hold, we 
can argue as follows. After doing its sorted access and 
random access at position j/(m-1), BPA has seen all 
positions in interval [1 .. (j/(m-1))], i.e. under sorted 
access, and for each seen data item it has seen m-2 
positions in interval [((j/(m-1) + 1) .. j], i.e. under 
random access. Let ns be the total number of seen 
positions in interval [1..j], then we have: 
ns = (number of seen positions in [1..(j/(m-1))]) + 
(number of seen positions in [((j/(m-1) + 1) .. j]) 
After replacing the number of seen positions, we have:  
ns = ((j/(m-1)∗m) + (((j/(m-1) ∗m) ∗ (m-2))  
After simplifying the right side of the equation, we 
have ns=m∗j. Thus, when BPA is at position j/(m-1), it 
has seen all positions in interval [1 .. j] in all lists. 
Therefore, the best position in each list is at least j. 
Hence, the best positions overall score, i.e. λ, is higher 
than or equal to the value of TA's threshold at position 
j, i.e. δ.  In other words, we have λ≥δ. Since at 
position j/(m-1), all top-k answers are in the set Y (see 
the first condition above) and their scores are less than 
or equal to δ (i.e. this is enforced by TA's stopping 
mechanism), the score of all data items involved in Y 
is less than or equal to λ. Thus, BPA stops at j/(m-1), 
                                                           
1 Choosing one of the corresponding local scores at a 

position greater than j allows us to adjust the local 
scores of top-k answers such that their overall 
scores do not get higher than TA's threshold at a 
position smaller than j, i.e. TA does not stop before 
j. 
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i.e. at a position which is (m-1) times lower than the position 
of TA. □ 
Lemma 4. Let m be the number of lists, then the number of 
random accesses done by BPA can be (m-1) times lower than 
that of TA. 
Proof. Since the number of random accesses done by both 
BPA and TA is proportional to the number of sorted 
accesses, the proof is implied by Lemma 3. □ 
The following theorem shows that the execution cost of BPA 
can be (m-1) times lower than that of TA. 
Theorem 3. Let m be the number of lists, then the execution 
cost of BPA can be (m-1) times lower than that of TA. 

Proof. The proof is implied by Lemma 3 and Lemma 4. □ 
Example 3 (i.e. the database shown in Figure 1) is one of the 
cases where the execution cost of BPA is (m-1) times lower 
than TA. In that example, m=3 and TA stops at position 6, 
whereas BPA stops at position 3, i.e. (m-1) times lower than 
TA. For TA, the total number of sorted accesses is 6∗3=18 
and the number of random accesses is 18∗2=36, i.e. for each 
sorted access (m-1) random accesses. With BPA, the number 
of sorted accesses and random accesses is 3∗3=9 and 
9∗2=18, respectively. 

5 BPA2 
Although BPA is quite efficient, it still does redundant work. 
One of the redundancies with BPA (and also TA) is that it 
may access some data items several times under sorted access 
in different lists. For example, a data item, which is accessed 
at a position in a list through sorted access and thus accessed 
in other lists via random access, may be accessed again in the 
other lists by sorted access at the next positions. In this 
section, based on BPA, we propose BPA2, an algorithm 
which avoids re-accessing data items via sorted or random 

access. BPA2 is much more efficient than BPA. As we 
will show, the number of accesses to the sorted lists 
done by BPA2 can be about (m - 1) times lower than 
that of BPA. 

5.1 Algorithm 

Let direct access be a mode of access that reads the 
data item which is at a given position in a list. Recall 
from the previous section that the best position bp in a 
list is the greatest seen position of the list such that any 
position between 1 and bp is also seen. Then, BPA2 
works as follows: 
1. For each list Li, let bpi be the best position in Li. 

Initially set bpi=0. 
 
2. For each list Li and in parallel, do direct access to 

position (bpi + 1) in list Li. As a data item d is 
seen under direct access in some list, do random 
access to the other lists to find d's local score in 
every list. Compute the overall score of d.  
Maintain in a set Y the k seen data items whose 
overall scores are the highest among all data items 
seen so far. 

 
3. If a direct access or random access to a list Li 

changes the best position of Li, then along with 
the local score of the accessed data item, return 
also the local score of the data item which is at the 
best position. Let si(bpi) be the local score of the 
data item which is at the best position in list Li . 

 
4. Let best positions overall score be λ = f(s1(bp1), 

s2(bp2), …, s3(bpm)). If Y involves k data items 
whose overall scores are higher than or equal to λ, 
then stop doing sorted access to the lists. 
Otherwise, go to 1. 
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5. Return Y. 
 
At each time, BPA2 does direct access to the position which 
is just after the best position. This position, i.e. bpi + 1, is 
always the smallest unseen position in the list.  
BPA2 has the same stopping mechanism as BPA. Thus, they 
both stop at the same (best) position. In addition, they see the 
same set of data items, i.e. those that have at least one local 
score before the best position in some list. Thus, they see the 
same set of positions in the lists. 
However, there is a main difference between BPA2 and BPA. 
With BPA some seen positions of a list may be accessed 
several times, i.e. up to m times, but with BPA2 each seen 
position of a list is accessed only once. The reason is that 
BPA2 does direct access to the position which is just after the 
best position and this position is always an unseen position in 
the list. 
Theorem 4. No position in a list is accessed by BPA2 more 
than once. 
Proof. Implied by the fact that BPA2 always does direct 
access to an unseen position, i.e. bpi + 1, so no seen position 
is accessed via direct access, and thus by random access. □ 

5.2 Correctness and cost analysis 

The following theorem provides the correctness of BPA2. 
Theorem 5. If the scoring function is monotonic, then BPA2 
correctly finds the top-k answers. 
Proof. Since BPA2 has the same stopping mechanism as 
BPA, the proof is similar to that of Theorem 1 which proves 
the correctness of BPA. □ 

In many systems, in particular distributed systems, the 
total number of accesses to the lists (composed of 
sorted/direct and random accesses) is a main metric for 
measuring the cost of a top-k query processing 
algorithm. Below, using two theorems we compare 
BPA and BPA2 from the point of the view of this 
metric. 
Theorem 6. The number of accesses to the lists done 
by BPA2 is always less than or equal to that of BPA. 
Proof. BPA and BPA2 access the same set of 
positions in the lists. However, BPA2 accesses each of 
these positions only once, but BPA may access some 
of the positions more than once. Therefore, the 
number of accesses to the lists by BPA is less than or 
equal to BPA. □ 
Theorem 7. Let m be the number of lists, then the 
number of accesses to the lists done by BPA2 can be 
about (m-1) times lower than that of BPA. 
Proof. To do the proof, we show that there are 
databases over which the number of accesses done by 
BPA is about (m-1) times higher that of BPA2. For 
each list Li, let bpi be the best position at which BPA 
stops. Without loss of generality, we assume 
bp1=bp2=…=bpm=j, i.e. when BPA stops, the best 
position in all lists is j. For simplicity, assume that j-
1=(m-1)∗u  where u is an integer. We know that BPA2 
stops at the same best position as BPA, so it also stops 
at j. Consider all databases at which the following 
condition holds: 
1) If a data item is at a position in interval [1 .. j] in 
any list Li, then m-2 of its corresponding local scores 
in other lists are at positions which are in interval [1 .. 

 
List 1  List 2  List 3  f = s1 + s2 + s3 

Position 
 Data 

item 
Local 
score 
 

 Data 
item 

Local 
score 

 Data 
item 

Local 
score 

 Sum of 
local 
scores  

 Data 
item 

Overall 
Score 

1  d1 30  d2 28  d3 30  88  d1 65 

2  d4 28  d6 27  d5 29  84  d2 65 

3  d9 27  d7 25  d8 28  80  d3 70 

4  d3 26  d5 24  d4 27  77  d4 68 

5  d7 25  d9 23  d2 26  74  d5 63 

6  d8 24  d1 22  d6 25  71  d6 66 

7  d11 17  d14 20  d13 15  52  d7 61 

8  d6 14  d3 14  d1 13  41  d8 64 

9  d2 11  d4 13  d9 12  36  d9 62 

10  d5 10  d8 12  d7 11  33  … … 

…  … …  … …  … …  …  … … 

Figure 2. Example database over which the number of accesses to the lists done by BPA2 is about 1/(m-1) that of BPA.  
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(j-1)], and one1 of its corresponding local scores is in a 
position higher than j. 
The above condition assures that BPA does not see the data 
items which are at position j by a random access. Thus, it 
continues doing sorted access until the position j. In all 
databases that hold the above condition, we can argue as 
follows. Let nd be the number of distinct data items which 
are in interval [1 .. (j-1)]. Since the total number of positions 
in interval [1 .. (j-1)] is m∗ (j-1), i.e. j-1 times the number of 
lists, and each distinct data item occupies (m-1) positions in 
interval [1 .. (j-1)] (see the above condition), we have nd= 
m∗ (j-1)/(m-1). In other words, we have nd = m∗u. BPA2 
sees each distinct data item by doing one direct access. It 
also does m direct accesses at position j, i.e. one per list. 
Thus, BPA2 does a total of (u+1)∗m  direct accesses. After 
each direct access, BPA2 does (m-1) random accesses, thus 
a total of (u+1)∗m∗(m-1) random accesses. Therefore, the 
total number of accesses done by BPA2 is nbpa2 = (u+1)∗m2. 
BPA sees all positions in interval [1 .. j] by sorted access,  
thus a total of (j∗m) sorted accesses. After each sorted 
access, it does (m-1) random accesses, thus a total of 
j∗m∗(m-1) random accesses. Therefore, the total number of 
accesses done by BPA is nbpa = (j)∗m2. By comparing nbpa2 
and nbpa, we have nbpa = nbpa2 ∗ (j / (u+1)) ≈ nbpa2 ∗ (m-1). □ 
As an example, consider the database (i.e. the three sorted 
lists) shown in Figure 2, and suppose k=3 and the scoring 
function computes the sum of the local scores. If we apply 
BPA on this example, it stops at position 7, so it does 7∗3 
sorted accesses and 7∗3∗2 random accesses. Thus, the total 
number of accesses done by BPA is nbpa = 63. If we apply 
BPA2, it does direct access to positions 1, 2, 3 and 7 in all 
lists, so a total of 4∗3 direct accesses and 4∗3∗2 random 
accesses. Thus, the total number of accesses done by BPA2 is 
nbpa2 = 36. Therefore, we have nbpa ≈ 2∗ nbpa2. 

6 Managing best positions  
After each access to a list, BPA and BPA2 need to determine 
the best position in the list. A simple method for managing 
the best positions is to maintain the seen positions in a set. 
Then finding the best position is done by scanning the set and 
for each position p, verifying if all positions which are less 
than p belong to the set. This method is not efficient because 
finding the best position is done in O(u2) where u is the 
number of seen positions. Note that in the worst case, u can 
be equal to n, i.e. the number of data items in the list.  
In this section, we address the problem of managing best 
positions in the lists and propose several efficient techniques. 
Each technique takes advantage of one of the following data 
structures:  Bit array, Priority Queue, Bloom filter and B+tree. 
For each technique, we study its performance in terms of 
access time, space requirement and accuracy. 

                                                           
1 This allows us to adjust the local scores of top-k answers 

such that BPA does not stop at a position smaller than j. 

6.1 Bit array 

In this approach, to remember the positions which are 
seen, each list owner uses an array of n bits where n is 
the size of the sorted list. Initially, all bits of the array 
are set to 0. There is a variable bp which points to the 
best position. Initially bp is set to 1. Let Bi be the bit 
array which is used by the owner of list Li. After doing 
an access to a data item that is at position j in Li, the 
following instructions are done by the list owner for 
determining the new best position: 

Bi[j] := 1; 

While ((bp < n) and (Bi[bp + 1] = 1)) 
do  

     bp := bp + 1; 
The total time needed for determining the best 
positions during the execution of the top-k query is 
O(n), i.e. bp can be incremented up to n. Let u be the 
total number of seen positions in the list Li, then the 
average time for determining the best position after 
each access is O(n/u). The space needed for this 
approach is an array of n bits plus a variable, which is 
typically very small.  

6.2 Priority queue 

In this approach, we take advantage of priority queues 
for determining best positions. A priority queue Q 
usually has three main operations: 1) Insert(x) for 
adding a new element x to the queue; 2) Min() that 
returns the element with lowest priority from the 
queue; 3)  Delete-Min() that removes from queue the 
element whose priority is the lowest. 
For maintaining the seen positions of each sorted list, 
we use a priority queue. Let Qi be the priority queue 
that maintains the seen positions of a list Li. Let bp be 
a variable that points to the best position in list Li. 
Initially we set bp=0. When a position p is seen in Li, 
p is inserted to Qi, and the following instructions are 
performed in order to update the best position: 
While (Qi.Min() = (bp + 1)) do 

{ 

bp := bp + 1; 

Qi.DeleteMin(); 

} 

One of the main advantages of this approach is that it 
maintains only the seen positions which are greater 
than the best position. Therefore, all positions which 
are lower than the current position under sorted access 
are deleted from the queue. In the best case, the space 
used by this approach is O(1), i.e. when the best 
position is near to the position under sorted access. Let 
u be the number of seen positions in Li. At least 1/m of 
these positions are seen under sorted access. Thus, in 
the worst case, the number of positions which are 
maintained by the queue is u∗(1 – (1/m)). 
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The execution time of this approach depends on the data 
structure which is used for implementing the priority queue. 
A simple data structure that is typically used for 
implementing a priority queue is the heap tree [12]. Using 
structure heap tree, the operations Insert() and DeleteMin() 
are done in O(log n) where n is the number of queue’s 
members, and the execution time of Min() is constant. 
Therefore, by using heap trees the average time per access is 
O(log u) where u is the number of seen positions. For the 
cases where the members of the priority queue are integer 
numbers, which is our case, there are more efficient data 
structures. For example, when the members are chosen from 
a set {1,2, …, C}, then the data structure proposed in [38] 
supports all three operations of priority queue in O(log log 
C). Therefore, by using this data structure, the average time 
for determining best positions is O(log log n) where n is the 
size of the sorted lists. 

6.3 Bloom filter  

In this section, we show how we can use Bloom filters in 
order to determine best positions. Bloom filter [6] is a 
probabilistic data structure that has two distinguishing 
features: (1) represent in a compact way the contents of a set 
and, (2) efficiently test whether a given item is a member of 
the set.  
Briefly, a Bloom filter is an array of b bits, initially all set to 
0.  For representing a set S = {s1, s2, . . . , sn} of n elements, 
the Bloom filter uses a set of h independent hash functions f1, 
. . . ,fh with range {0, . . . , b− 1}, and for each element s ∈S, 
the bits fi(s) are set to 1 for 1 ≤ i ≤ h. A bit in the Bloom filter 
can be set to 1 multiple times, but only the first change has an 
effect. To check if an item s is in S, we check whether all fi(s) 
are set to 1, for 1 ≤ i ≤ h. If not, then clearly s is not a 
member of S. If all fi(s) are set to 1, we assume that s is in S, 
although there is a small probability that we are wrong, i.e. 
this is referred to as a "false positive". Let IsMember(BF, s) 
be a function that returns true if s is assumed to be a member 
of the Bloom filter BF, otherwise it returns false. 
In this approach, the seen positions of each sorted list Li are 
represented by a Bloom filter, e.g. BFi. A variable bp points 
to the best position in Li. Initially bp is set to 0. After 
accessing a position p in Li, p is inserted to BFi. Then the 
following instructions are executed in order to determine the 
new best position: 

While (IsMember(BFi, bp + 1) = true) 

     bp := bp + 1; 

The advantage of using a Bloom filter is that it is 
efficient both in space and execution time. The time 
needed for executing the function IsMember is O(h) 
where h is the number of hash functions used by the 
Bloom filter. Let u be the number of accesses to Li, the 
total time for determining best positions is O(h∗ u), 
thus the average time per access is O(h). The space 
needed for this approach is an array of b bits. 
The disadvantage of Bloom filters is the possibility of 
false positives. The probability of a false positive is 
equal to PFP = (1 − e−hn/b)h [29]. By well adjusting the 
parameters h and b we can minimize the possibility of 
false positives. Suppose we are given b and n and we 
want to minimize the probability of false positives by 
choosing an optimal value for the number of hash 
functions h. For this, we must compute the derivative 
of PFP with respect to h, and set it to zero, i.e. d(1 − 
e−hn/b)h / d h = 0. By solving this equation, the 
minimum value for PFP is obtained when the number 
of hash functions is equal to h = (ln 2)∗(b/n) [29]. 
Using this number of hash functions, the minimum 
value for the probability of false positives is PFP = 
(1/2)h ≈ (0.6185)b/n. By increasing b, i.e. the number of 
bits of the Bloom filter, we can arbitrarily minimize 
the probability of false positives. To have a very small 
PFP, we have to choose a large value for b, e.g. if we 
want to have FPF <0.0001 then we must set b to at 
least 20∗n. Therefore, to provide a low false positive 
probability for the Bloom filter, we have to choose 
values for b which are much greater than n. Therefore, 
although the execution cost of the Bloom filter 
approach is much better than that of the bit array 
approach, its space requirement is higher. 

6.4 B+tree 

In this approach, each list owner uses a B+tree for 
maintaining the seen positions. In a B+tree, all data are 
saved in the leaves, and the leaf nodes are at the same 
level, so any operation of insert/delete/lookup is 
logarithmic in the number of data items. The leaf 
nodes are also linked together as a linked list. Let c be 
a cell of the linked list, i.e. a leaf of the B+tree, then 

Table 1. Performance of techniques for best position management (n: number of data items in each sorted list; u: 
number of positions seen by BPA). 

Technique Execution time 
per access 

Space requirement Accuracy 
 

Bit array O(n/u) O(n) 100% 
Priority queue O(log log n) O(u) 100% 
Bloom filter O(1) O(n)  probabilistic 
B+tree O(log u) O(u) 100% 
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there is a pointer c.next that points to the next cell of the 
linked list. Let c.element be a variable that maintains the data 
in c.  
Let BTi be the B+tree which the owner of list Li uses for 
maintaining the seen positions of Li. The list owner also uses 
a pointer bp that points to the cell, i.e. leaf of BTi, which 
maintains the seen position which is the best position. After 
an access to a position p in Li, the list owner adds p to BTi. 
Then, it performs the following instructions to determine the 
new best position: 

While ((bp.next ≠ null) and 
(bp.next.element = bp.element + 1)) do     
bp := bp.next; 

The above instructions assure that the pointer bp points 
always to the cell that maintains the best position. Let u be 
the total number of accesses to the list Li during the execution 
of the query, then the total time for determining the best 
positions is O(u), i.e. in the worst case bp moves from the 
head to the end of the linked list. Thus, the average time per 
access is O(1). The time needed for adding a seen position to 
the B+tree is O(log u). Therefore, with the B+tree approach, 
the average time for storing a seen position and determining 
the best position is O(log u). The space needed for this 
approach is O(u). 

6.5 Summary 

Table 1 summarizes the performance of the four techniques 
we propose for managing best position. In this table, n is the 
total number of data items in each sorted list, and u is the 
number of positions which are seen by BPA (or BPA2) 
during their execution. Note that although the space 
requirement for the Bloom Filter approach is b, i.e. the 
number of bits of the filter, to have a low false positive 
probability, b must be higher than n. This is why in this table, 
the space requirement of Bloom filter is O(n). 

7 Instance optimality 
In this section, we discuss instance optimality which is 
considered as one of the main features of the TA 
algorithm. We first give the definition of instance 
optimality as in [16]. Then, we review the proof of 
TA’s instance optimality done in [16] and show that if 
the positions of the data items are taken into account, 
then one of the main arguments of the instance 
optimality proof gets incorrect. In other words, we 
show that in this case TA may not be instance optimal. 
Instance optimality is defined as follows [16]. Let AL 
be a class of algorithms, DB a class of databases, and 
cost(A, D) be the execution cost incurred by running 
algorithm A over database D. An algorithm A ∈ AL is 
instance optimal over AL and DB if for every B ∈ AL 
and every D ∈ DB we have: 
cost(A, D) = O(cost(B, D)) 
The above equation says that there are two constants c1 
and c2 such that cost(A, D) ≤ c1∗cost(B, D) + c2 for 
every choice of B ∈ AL and D ∈ DB. The constant c1 
is called the optimality ratio of A. 
In [16], Theorem 6.1 claims that TA is instance 
optimal over the class of all databases, and the class of 
all deterministic top-k query processing algorithms, 
i.e. those that do not make lucky guesses. This 
theorem assumes that m, i.e. the number of sorted lists, 
is a constant. Thus, although the execution cost of 
BPA can be (m-1) times better than TA, if m is a 
constant then we can not say that BPA is an example 
showing the incorrectness of TA’s instance optimality. 
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However, by reviewing the proof of TA’s instance optimality 
(i.e. Theorem 6.1 in [16]), we observed that the proof is 
incorrect if we memorize the positions of seen data items. In 
the following, we show what is wrong with that proof.  
Let us first review the proof of Theorem 6.1 in [16] which 
proceeds as follows. Assume A is a deterministic top-k 
algorithm that finds correctly the top-k data items of a 
database D. Let d be the position (depth in [16]) at which A 
stops, and a be the number of distinct data items which are 
seen by A before its stop. Let Y be the set of the outputs of A 
(i.e. the top-k data items). Let τA be the value of threshold at 
d. The proof is done by showing that TA stops at most at 
position (a + k). For this, it considers the two following 
cases: 1) The number of data items, which are not seen by A 
during its execution, is at most k; 2) There are at least (k + 1) 
data items which are not seen by A during its execution. In 
the first case, it can be easily shown that TA stops at most at 
(k+a), i.e. in the worst case TA reads all data items of the 
database. For the second case, the proof of Theorem 6.1 
claims that every member of Y has an overall score higher 
than or equal to τA, and by using this claim it shows that TA 
stops at most at position (a + k). To prove this claim, it 
argues as follows. Since at least (k + 1) data items which are 

not seen by A, there is some unseen data item v that is 
not in the output1 of A, i.e. v∉Y. Let xi be the score of 
the last data item seen by A under sorted access in list 
Li, for  1≤i≤m. Define a database D' to be just like D, 
except that data item v has a score xi in list Li, for 
1≤i≤m. In D', put v in the list Li below all other data 
items whose score in Li is xi (for 1≤i≤m). Then, the 
proof of Theorem 6.1 in [16] argues that: Algorithm A 
performs exactly the same, and in particular gives the 
same output, for databases D and D'. Therefore, 
algorithm A does not have v in its output for database 
D'. Since the overall score of v in D' is equal to τA, the 
correctness of A implies that the overall score of any 
member of A is at least that of v, and therefore at least 
τA. 
As we see, the proof is based on the argument that if 
we change the position of a data item v, which is not 
seen by an algorithm A, then the behaviour of A over 
the new database remains unchanged, and it gives the 
                                                           
1 Notice that there may be algorithms whose output 

involves data items which are not unseen by them. 

 List 1 

 

List 2  List 3  f = s1 + s2 + s3 
Position  Data 

item 
Local 
score    

s1 

 Data 
item 

Loca
l 

scor
e s2 

 Dat
a 
ite
m 

Local 
score 

s3 

 Threshol
d 

 Dat
a 
item 

Overall 
Score 

1  d1 30  d2 28  d3 30  88  d1 65 
2  d4 28  d6 27  d5 29  84  d2 63 
3  d9 27  d7 25  d8 28  80  d3 70 
4  d11 27  d11 25  d11 28  80  d4 66 
5  d3 26  d5 24  d4 25  75  d5 70 
6  d7 25  d9 23  d2 24  72  d6 60 
7  d8 23  d1 21  d6 19  63  d7 61 
8  d5 17  d8 20  d13 15  52  d8 71 
9  d6 14  d3 14  d1 14  42  d9 62 

10  d2 11  d4 13  d9 12  36  d11 80 
11  d14 9  d14 12  d7 11  33  … … 
…  … …  … …  … …  …  … … 

(a)        (b)                         (c)  

Figure 3. This database, say D', is just like the database of Figure 1, say D, except that data item d11, which is not seen by 
BPA over D, is deposited just below the position 3 which is the stopping position of BPA over D. If we apply BPA over D' 
its output is different of its output over D.  
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same output. However, this is not true with BPA as shown as 
follows. Let Li be a list, and d be the position at which BPA 
stops. As we know, the best position in Li, say bpi, is always 
higher than or equal to the position at which BPA stops, i.e. 
bpi ≥ d. Let p be the position of an unseen data item v in the 
list Li. Then the definition of best position implies that bpi < 
p. If we change the position of v to a position q such that d ≤ 
q ≤ bpi, then bpi changes to (q - 1), i.e. because q is an unseen 
position and all positions before it are seen. This 
modification in the best position may modify the best 
position overall score. Thus BPA may not stop at d and 
generate a different output. Let us illustrate this by the 
following example. 
Example 4. As an example, suppose a top-3 query, i.e. k=3 
such that the scoring function computes the sum of the local 
scores. Consider the database (i.e. the three sorted lists) 
shown in Figure 3, which we denote by D'. This database is 
just like the database of Figure 1, say D, except that data item 
d11, which is not seen by BPA over D, is put just below the 
position 3 which is the stopping position of BPA over D. The 
local scores of d11 are exactly the same as the local scores 
which are at position 3 in the lists. If we apply BPA on D', it 
stops at position 4, and its output is Y'={d11, d8, d3} which is 
different from the output over database D, i.e. Y={d3, d5, d8}. 
Thus, we created the database D' exactly in the same way as 
mentioned in the proof of Theorem 6.1 in [16], but over D' 
both stopping position and output of BPA are different from 
those over D. 
As shown above, there are deterministic top-k algorithms 
(e.g. BPA) whose behaviour changes by changing the 
position of data items, which are not seen by the algorithms 
during their execution. As a result, Theorem 6.1 in [16] 
which claims the instance optimality of TA over all 
deterministic algorithms has to be revised. 

8 Performance evaluation 
In the previous sections, we analytically compared our 
algorithms with TA, i.e. BPA directly and BPA2 indirectly. 
In this section, we compare these three algorithms through 
experimentation over randomly generated databases. The rest 
of this section is organized as follows. We first describe our 
experimental setup. Then, we compare the performance of 
our algorithms with TA by varying experimental parameters 
such as the number of lists, i.e. m, the number of top data 
items requested, i.e. k, and the number of data items of each 
list, i.e. n. Finally, we summarize the performance results. 

8.1 Experimental setup 

We implemented TA, BPA and BPA2 in Java1.  To evaluate 
our algorithms, we tested them over both independent and 
correlated databases, thus covering all practical cases. The 
independent databases are uniform and Gaussian databases 
generated using the two main probability distributions (i.e. 
uniform and Gaussian). With Uniform database, the positions 
of a data item in any two lists are independent of each other. 
                                                           
1 The code is available at http://www-

sop.inria.fr/teams/zenith/pmwiki/pmwiki.php/Other/BPAal
gorithms 

To generate this database, the scores of the data items 
in each list are generated using a uniform random 
generator, and then the list is sorted. This is our 
default setting. With Gaussian database, the positions 
of a data item in any two lists are also independent of 
each other. To generate this database, the scores of the 
data items in each list are Gaussian random numbers 
with a mean of 0 and a standard deviation of 1. 
In addition to these independent databases, we also use 
correlated databases, i.e. databases where the positions 
of a data item in the lists are correlated. We use this 
type of database for taking into account the 
applications where there are correlations among the 
positions of a data item in different lists. In real-world 
applications, there are usually such correlations [28]. 
Inspired from [28], we use a correlation parameter α 
(0 ≤α ≤ 1), and we generate the correlated databases as 
follows. For the first list, we randomly select the 
position of data items. Let p1 be the position of a data 
item in the first list, then for each list Li (2 ≤ i ≤ m) we 
generate a random number r in interval [1 .. n∗α] 
where n is the number of data items, and we put the 
data item at a position p whose distance from p1 is r. If 
p is not free, i.e. occupied previously by another data 
item, we put the data item at the free position closest 
to p. By controlling the value of α, we create 
databases with stronger or weaker correlations. After 
setting the positions of all data items in all lists, we 
generate the scores of the data items in each list in 
such a way that they follow the Zipf law [41] with the 
Zipf parameter θ = 0.7. The Zipf law states that the 
score of an item in a ranked list is inversely 
proportional to its rank (position) in the list. It is 
commonly observed in many kinds of phenomena, e.g. 
the frequency of words in a corpus of natural language 
utterances. 
Our default settings for different experimental 
parameters are as follows. In our tests, the default 
number of data items in each list is 100,000. 
Typically, users are interested in a small number of 
top answers, thus unless otherwise specified we set 
k=20. Like many previous works on top-k query 
processing, e.g. [8], we use a scoring function that 
computes the sum of the local scores. In most of our 
tests, the number of lists, i.e. m, is a varying 
parameter. When m is a constant, we set it to 8 which 
is rather small but quite sufficient to show significant 
performance gains of our algorithms. Note that, in 
some important applications such as network 
monitoring [8], m can be much higher. 
To evaluate the performance of the algorithms, we 
measure the following metrics.  
1) Execution cost. As defined in Section 2, the 
execution cost is computed as c = as∗cs + ar∗cr where 
as is the number of sorted accesses that an algorithm 
does during execution, ar is the number of random 
accesses, cs is the cost of a sorted access, and cr is the 
cost of a random access. For the BPA2 algorithm, we 
consider each direct access equivalent to a random 
access. For each sorted access we consider one unit of 
cost, i.e. we set cs = 1. For the cost of each random 
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access, we set cr = log n where n is the number of data items, 
i.e. we assume that there is an index on data items such that 
each entry of index points to the position of data item in the 
lists. The execution time which we consider here is a good 
metric for comparing the performance of the algorithms in a 
centralized system. For distributed systems, we use the next 
metric. 
2) Number of accesses. This metric measures the total 
number of accesses to the lists done by an algorithm during 
execution. It involves the sorted, direct and random accesses. 
In distributed systems, particularly in the cases where 
message size is small (which is the case of our algorithms), 
the main cost factor is the number of messages 
communicated between nodes. The number of messages, 
which our algorithms (and TA) communicate between the 
query originator and list owners in a distributed system, is 
proportional to the number of accesses done to the lists. 
Thus, the number of accesses is a good metric for comparing 
the performance of the algorithms in distributed systems. For 
TA and BPA, the number of accesses is also a good indicator 
of their stopping position under sorted access, i.e. the number 
of accesses is m2 multiplied by the stopping position. 
3) Response time. This is the total time (in millisecond) that 
an algorithm takes for finding the top-k data items. We 
conducted our experiments on a machine with a 2.4 GHz 
Intel Pentium 4 processor and 2GB memory. In the code of 
BPA and BPA2, the best positions are managed using the Bit 
Array approach which is simpler than the B+-tree approach. 

8.2 Performance results 

8.2.1 Effect of the number of lists 

In this section, we compare the performance of our 
algorithms with TA over the three database types while 
varying the number of lists.  
Over the uniform database, with the number of lists 
increasing up to 18 and the other parameters set as in Section 
8.1, Figures 4, 5 and 6 show the results measuring execution 
cost, number of accesses, and response time, respectively. 
The execution cost of BPA is much better than that of TA; it 
outperforms TA by a factor of approximately (m+6)/8 for 

m>2.  BPA2 is the strongest performer; it outperforms 
TA by a factor of approximately (m+1)/2 for m>2. On 
the second metric, i.e. number of accesses, the results 
are similar to those on execution cost. However, BPA2 
outperforms TA by a factor which is (a little) higher 
than that for execution cost, i.e. about 1/m higher. The 
reason is that for measuring execution cost, we assume 
an expensive cost (i.e. log n units) for direct accesses 
which are done by BPA2. On response time, BPA2 
(and BPA) outperforms TA by a factor which is a little 
lower than that on execution cost, just because of the 
time they need for managing the best positions. 
Over the Gaussian database, with the number of lists 
increasing up to 18 and the other parameters set as in 
Section 8.1, Figures 7, 8 and 9 show the results for 
execution cost, number of accesses, and response time 
respectively. Over the Gaussian database, the 
performance of the three algorithms is a little better 
than their performance over the uniform database. 
BPA and BPA2 do much better than TA, and they 
outperform it by a factor close to that over the uniform 
database. 
Overall, the performance results on the three metrics 
are qualitatively similar, in particular on execution 
cost and number of accesses. Thus, in the rest of this 
paper, we only report the results on execution cost. 
Figures 10, 11 and 12 show the execution cost of the 
algorithms over three correlated databases with 
correlation parameter α set to 0.001, 0.01 and 0.1 
respectively, and the other parameters set as in Section 
8.1. Over these databases, the performance of the three 
algorithms is much better than that over Gaussian and 
uniform databases. In fact, the more correlated is the 
database; the lower is the execution cost of all three 
algorithms. The reason is that in a highly correlated 
database, the top-k data items are distributed over low 
positions of the lists, so the algorithms do not need to 
go much down in the lists, and they stop soon. 
However, due to their efficient stopping mechanism, 
BPA and BPA2 stop much sooner than TA.   
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 Figure 4. Execution cost vs. number 
of lists over uniform database 

Figure 5. Number of accesses vs. 
number of lists over uniform database 

Figure 6. Response time vs. number 
of lists over uniform database 

   

 Figure 7. Execution cost vs. number 
of lists over Gaussian database 

Figure 8. Number of accesses vs. 
number of lists over Gaussian database 

Figure 9. Response time vs. number 
of lists over Gaussian database 

   

Figure 10. Execution cost vs. number 
of lists over correlated database with 
α=0.001 

Figure 11. Execution cost vs. number 
of lists over correlated database with 
α=0.01 

Figure 12. Execution cost vs. number 
of lists over correlated database with 
α=0.1 

   

 Figure 13. Execution cost vs. k over 
uniform database 

Figure 14. Execution cost vs. k over 
correlated database with α=0.01 

Figure 15. Execution cost vs. k over 
correlated database with α=0.001 
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8.2.2 Effect of k 

In this section, we study the effect of k, i.e. the number of top 
data items requested, on performance. Figure 13 shows how 
execution cost increases over the uniform database, with 
increasing k up to 100, and the other parameters set as in 
Section 8.1. The execution cost of all three algorithms 
increases with k because more data items are needed to be 
returned in order to obtain the top-k data items. However, the 
increase is very small. The reason is that over the uniform 
database, when an algorithm (i.e. any of the three algorithms) 
stops its execution for a top-k query, with a high probability, 
it has seen also the (k + 1)th data item. Thus, with a high 
probability, it stops at the same position for a top-(k+1) 
query. 
Figures 14 and 15 show how execution cost increases with 
increasing k over two correlated databases with correlation 
parameter set to α=0.01 and α=0.001 respectively. For the 
database with α=0.01, i.e. the one which is less correlated, 
the impact of k is smaller. The reason is that when we run 
one of the three algorithms over a database with low 
correlation, it sees a lot of data items before stopping its 
execution. Thus, when it stops at a position for a top-k query, 
there is a high probability that it stops at the same position 
for a top-(k + 1) query. But, for a highly correlated database, 
this probability is lower because the algorithm sees a small 
number of data items before stopping its execution. 

8.2.3 Effect of the number of data items 

In this section, we vary the number of data items in each list, 
i.e. n, and investigate its effect on execution cost. Figure 16 
shows how execution cost increases over the uniform 
database with increasing n up to 200,000, and with the other 
parameters set as in Section 8.1. Increasing n has a 
considerable impact on the performance of the three 
algorithms over a uniform database. The reason is that when 
we enlarge the lists and generate uniform random data for 
them, the top-k data items are distributed over higher 
positions in the list. 
Figures 17 and 18 show how execution cost increases with 
increasing n over two correlated databases with correlation 
parameter set to α=0.01 and α=0.001 respectively, and the 
other parameters set as in Section 8.1. The results show that n 
has a smaller impact on a highly correlated database rather 
than a database with a low correlation. 

8.2.4 Concluding remarks 

The performance results show that, over all test 
databases and wrt all the metrics, the performance of 
our algorithms is much better than that of TA. For 
example, they show that wrt execution cost, BPA and 
BPA2 outperform TA by a factor of approximately 
(m+6)/8 and (m+1)/2 for m>2. Thus, as m increases, 
the performance gains of our algorithms versus TA 
increase significantly. 

9 Related work 
The problem of finding top-k data over sorted lists is a 
fundamental problem which can be used in both top-k 
selection and top-k join queries.  
A first important paper is [14] which models the 
general problem of answering top-k queries using 
sorted lists, and proposes a simple yet efficient 
algorithm, called Fagin’s algorithm (FA). The most 
efficient algorithm over sorted lists is the TA 
algorithm which was proposed by several groups1 
[15][17][31]. TA is simple, elegant and efficient [16] 
and provides a significant performance improvement 
over FA. We already discussed much TA in this paper. 
However, because of its stopping mechanism (based 
on the last seen scores under sorted access), TA can 
still perform useless work (see Section 3). The 
fundamental differences between BPA and TA are the 
following. BPA takes into account the positions and 
scores of the seen data whereas TA only takes into 
account their scores. Using information about the 
position of the seen data, BPA develops a more 
intelligent stopping mechanism that allows choosing a 
much better time to stop (such choice is correct as 
proved in Lemma 1). This allows BPA to gain much 
reduction in the number of sorted accesses and thus 
much reduction in the number of random accesses. 
Even if TA were keeping track of all seen data items, 
it could not stop at a smaller position under sorted 
access, because its threshold does not allow it. 

                                                           
1 The second author of [15] first defined TA and 

compared it with FA at the University of Maryland 
in the Fall of 1997. 

   

 Figure 16. Execution cost vs. n over 
uniform database 

Figure 17. Execution cost vs. n over 
correlated database with α=0.01 

Figure 18. Execution cost vs. n over 
correlated database with α=0.0001 
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Several TA-style algorithms (i.e. extensions of TA) have 
been proposed, particularly for processing top-k selection 
queries in distributed environments, e.g. [5][13][28]. Overall, 
most of the TA-style algorithms focus on extending TA with 
the objective of minimizing communication cost of top-k 
query processing in distributed systems. For example, in the 
context of the KLEE framework [28], the authors propose an 
approximate TA-style algorithm aiming at gaining much 
reduction in communication cost at low result-quality 
penalties. In KLEE, the m sorted lists are distributed over m 
nodes, and each node divides its list into c cells and 
maintains statistical information describing the cells, e.g. 
lower, upper, average and frequency of local scores which 
fall in the cell. This information on cells contribute to reduce 
the number of local scores which should be communicated 
over the network. 
The Three Phase Uniform Threshold (TPUT) [8] is an 
efficient algorithm to answer top-k queries in distributed 
systems. The algorithm reduces communication cost by 
pruning away ineligible data items and restricting the number 
of round-trip messages between the query originator and the 
other nodes. However, there are databases over which TPUT 
is not efficient. For example, if one of the lists has n data 
items with a fixed value that is just over the threshold of 
TPUT, then all data items must be retrieved by the query 
originator, while a more adaptive algorithm might avoid 
retrieving all n data items.  
There have been multiple algorithms devoted to top-k join 
queries, i.e. top-k queries in which there are several joined 
relations. Most of these algorithms are designed based on the 
top-k selection algorithms, e.g. TA. In [20], the authors 
introduce an efficient top-k join algorithm and two rank-join 
operators that can be deployed in existing query execution 
interfaces. Proposed in [31], J* is another efficient algorithm 
for processing top-k join queries over ranked inputs. J* maps 
the top-k join problem to a search problem in the Cartesian 
space of the ranked inputs. It uses a version of the A* search 
algorithm to guide navigation in this space to produce the 
results. In [37], ranked join indices are proposed for the 
efficient evaluation of top-k join queries. The indices need to 
be pre-produced, and make the number of requested results, 
i.e. k, limited to a predefined number. In [24], the relational 
algebra is extended to support rank queries as a first-class 
construct. In [25], top-k join query processing is extended to 
aggregate queries. Approximate ranked query processing 
techniques, which are proposed in [7], deal with the cases 
where the system is not able to return a complete answer to 
the top-k query.  
Recently, uncertain data management has received much 
attention in the database community (see [1] for a survey). 
One of the well-studied problems in uncertain databases is 
the evaluation of top-k queries that have more complex 
semantics than in exact databases. There have been multiple 
definitions for uncertain top-k queries (e.g. see [11][19][35]). 
In [35], two main first definitions, namely U-Top-k and U-
kRank, have been proposed. U-Top-k returns the most 
probable top-k set that belong to possible worlds (possible 
databases), and U-kRank considers the winner in every 
individual rank. In [19], PT-k queries are defined that return 
the top-k sets whose probability of being one of the top-k 
results is higher than a given threshold. Another definition in 
[11] is based on expected rank, and returns the tuples whose 
expected rank in all possible worlds is less than k. 

10 Conclusion 
The most efficient algorithm proposed so far for 
answering top-k queries over sorted lists is the 
Threshold Algorithm (TA). However, TA may still 
incur a lot of useless accesses to the lists. In this paper, 
we proposed two algorithms which stop much sooner 
and thus are more efficient than TA. 
First, we proposed the BPA algorithm whose stopping 
mechanism takes into account the seen positions in the 
lists. For any database instance (i.e. set of sorted lists), 
we proved that BPA stops at least as early as TA. We 
showed that the number of sorted/random accesses 
done by BPA is always less than or equal to that of 
TA, and thus its execution cost is never higher than 
TA. We also showed that the number of sorted/random 
accesses done by BPA can be (m-1) times lower than 
that of TA. Thus, its execution cost can be (m-1) times 
lower than that of TA.  
Second, based on BPA, we proposed the BPA2 
algorithm which is much more efficient than BPA. In 
addition to its efficient stopping mechanism, BPA2 
avoids re-accessing data items via sorted and random 
access, without having to keep data at the query 
originator. We showed that the number of accesses to 
the lists done by BPA2 can be about (m-1) times lower 
than that of BPA. 
Third, we proposed several techniques using different 
data structures for managing best positions in BPA 
and BPA2 and analyzed their performance in terms of 
access time, space requirements and accuracy. 
Although the superiority of BPA against TA by a 
factor of O(m) does not invalidate the TA’s instance 
optimality (because it assumes that m is a constant), 
we showed that the existence of deterministic 
algorithms such as BPA proves that the main 
argument, which is used for proving the instance 
optimality of TA in [16], is incorrect. In other words, 
the proof of TA’s instance optimality is incorrect, and 
thus TA may not be instance optimal. 
To validate our contributions, we implemented our 
algorithms as well as TA as baseline. We evaluated 
the performance of the algorithms over both 
independent and correlated databases wrt three 
representative metrics (execution cost, number of 
accesses and response time). The performance 
evaluations show that, over all test databases and wrt 
all the metrics, our algorithms always outperform TA 
significantly. For example, wrt execution cost, BPA 
and BPA2 outperform TA by a factor of 
approximately (m+6)/8 and (m+1)/2 respectively (for 
m>2).  e.g. for m=10, the factor is 2 and 5.5, 
respectively. Thus, as m increases, the performance 
gains of our algorithms versus TA increase 
significantly. Note that in some applications, the 
number of lists, i.e. m, is very large, e.g. it may range 
from a few tens to a few thousands [8]. For example, 
consider a network monitoring application that 
monitors the activities of the users of some specified 
IP locations. The specified locations may be 
numerous. For each location, the application maintains 
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a list of the accessed URLs ranked by their frequency of 
access. In this application, an interesting query for the 
network administrator is “what are the top-k popular 
URLs?”. 
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