
HAL Id: lirmm-00607882
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00607882v1

Submitted on 11 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Best Position Algorithms for Efficient Top-k Query
Processing

Reza Akbarinia, Esther Pacitti, Patrick Valduriez

To cite this version:
Reza Akbarinia, Esther Pacitti, Patrick Valduriez. Best Position Algorithms for Efficient Top-k
Query Processing. Information Systems, 2011, 36 (6), pp.973-989. �10.1016/j.is.2011.03.010�. �lirmm-
00607882�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00607882v1
https://hal.archives-ouvertes.fr

1

Best Position Algorithms for Efficient Top-k Query Processing

Reza Akbarinia1, Esther Pacitti2, Patrick Valduriez1
1INRIA and LIRMM, Montpellier, France
2 LIRMM and INRIA, Univ. Montpellier, France
Email: {1Firstname.Lastname@inria.fr, 2pacitti@lirmm.fr }

Abstract. The general problem of answering top-k queries
can be modeled using lists of data items sorted by their local
scores. The main algorithm proposed so far for answering
top-k queries over sorted lists is the Threshold Algorithm
(TA). However, TA may still incur a lot of useless accesses
to the lists. In this paper, we propose two algorithms that are
much more efficient than TA. First, we propose the best
position algorithm (BPA). For any database instance (i.e. set
of sorted lists), we prove that BPA stops as early as TA, and
that its execution cost is never higher than TA. We show that
there are databases over which BPA executes top-k queries
O(m) times faster than that of TA, where m is the number of
lists. We also show that the execution cost of our algorithm
can be (m-1) times lower than that of TA. Second, we
propose the BPA2 algorithm which is much more efficient
than BPA. We show that the number of accesses to the lists
done by BPA2 can be about (m-1) times lower than that of
BPA. We evaluated the performance of our algorithms
through extensive experimental tests. The results show that
over our test databases, BPA and BPA2 achieve significant
performance gains in comparison with TA.
Keywords: Query processing; top-k queries; threshold
algorithm; instance optimality.

1 Introduction
Top-k queries have attracted much interest in many different
areas such as network and system monitoring [8][23],
information retrieval [18][22][32][36], sensor networks
[34][39], multimedia databases [9][17][31], spatial data
analysis [10], P2P systems [3][4], data stream management
systems [13][21][27][30], probabilistic databases
[33][35][40], temporal databases[26], etc. The main reason
for such interest is that they avoid overwhelming the user
with large numbers of uninteresting answers which are
resource-consuming.
The problem of answering top-k queries can be modeled as
follows [14][16]. Suppose we have m lists of n data items
such that each data item has a local score in each list and the
lists are sorted according to the local scores of their data
items. Each data item has an overall score computed based on
its local scores in all lists using a given scoring function.
Then, the problem is to find the k data items whose overall
scores are the highest. This problem model is simple and
general. Let us illustrate with the following examples.
Suppose we want to find the top-k tuples in a relational table
according to some scoring function over its attributes. To
answer this query, it is sufficient to have a sorted (indexed)

list of the values of each attribute involved in the
scoring function, and return the k tuples whose overall
scores in the lists are the highest. As another example,
suppose we want to find the top-k documents whose
aggregate rank is the highest wrt. some given
keywords. To answer this query, the solution is to
have for each keyword a ranked list of documents, and
return the k documents whose aggregate rank in all
lists are the highest.
There has been much work on efficient top-k query
processing over sorted lists. A naïve algorithm is to
scan all lists from beginning to end, maintain the local
scores of each data item, compute the overall scores,
and return the k highest scored data items. However,
this algorithm is executed in O(m∗n) and thus it is
inefficient for very large lists.
In related work, the main efficient algorithm for
answering top-k queries over sorted lists is the
Threshold Algorithm (TA) [15][17][31]. TA is
applicable for queries where the scoring function is
monotonic. It is simple and elegant. Based on TA,
many algorithms have been proposed for top-k query
processing in centralized and distributed applications,
e.g. [5][13][28]. The basic difference between TA and
previously designed algorithms, e.g. Fagin’s algorithm
(FA) [14], is its stopping mechanism that enables TA
to stop scanning the lists very soon. However, there
are many database instances over which TA
continuous scanning the lists although it has seen all
top-k answers (see Example 2 in Section 3.2), while it
is possible to stop much sooner.
In this paper, we propose two new algorithms for
processing top-k queries over sorted lists. First, we
propose the best position algorithm (BPA) which
executes top-k queries much more efficiently than TA.
The key idea of BPA is that its stopping mechanism
takes into account special seen positions in the lists,
the best positions. For any database instance (i.e. set of
sorted lists), we prove that BPA stops as early as TA,
and that its execution cost (called middleware cost in
[16]) is never higher than TA. We prove that the
position at which BPA stops can be O(m) times lower
than that of TA, where m is the number of lists. We
also prove that the execution cost of our algorithm can
be (m-1) times lower than that of TA. Second, based
on BPA, we propose the BPA2 algorithm which is
much more efficient than BPA. We show that the
number of accesses to the lists done by BPA2 can be
up to about (m-1) times lower than that of BPA. To
validate our contributions, we implemented our

* Work partially funded by the ANR DataRing projet.

2

algorithms. The performance evaluation shows that over our
test databases, BPA and BPA2 outperform TA by factors of
about (m+6)/8 and (m+1)/2 respectively, e.g. for m=10, the
factor is about 2 and 5.5, respectively.
This paper is a major extension of [2], with the following
new material. In addition to a more complete related work
and bibliography study, this paper contains two new sections.
First, in Section 6, we propose several techniques using
different data structures for best position management which
is crucial for correct and efficient execution of our
algorithms. We analyze the time and space complexity of the
proposed techniques and compare them. Second, in Section 7
we provide a complete discussion on the instance optimality
of TA and BPA. Instance optimality has been advocated as a
main feature of TA [16], i.e. TA is optimal over all database
instances. In [2], by using the instance optimality of TA and
the fact that BPA stops always before TA, we proved the
instance optimality of BPA. But as we will illustrate in
Section 7, the existence of deterministic algorithms such as
BPA shows that if we are aware of positions of seen data,
then one of the main arguments used for proving the instance
optimality of TA (in [16]) is invalidated. Therefore, in this
case the proof of TA’s instance optimality is incorrect, and
must be revisited.
The rest of this paper is organized as follows. In Section 2,
we define the problem which we address in this paper.
Section 3 presents some background on FA and TA. In
Sections 4 and 5, we present the BPA and BPA2 algorithms,
respectively, with a cost analysis. In Section 6, we propose
several efficient techniques for managing best positions.
Section 7 gives a discussion on the instance optimality of TA.
Section 8 reports a performance evaluation of our algorithms.
In Section 9, we discuss related work. Section 10 concludes.

2 Problem definition
Let D be a set of n data items, and L1, L2, …, Lm be m lists
such that each list Li contains n pairs of the form (d, si(d))
where d∈D and si(d) is a non-negative real number that
denotes the local score of d in Li. Any data item d∈D appears
once and only once in each list. Each list Li is sorted in
descending order of its local scores, hence called “sorted
list”. Let j be the number of data items which are before a
data item d in a list Li, then the position of d in Li is equal to
(j + 1).
The set of m sorted lists is called a database. In a distributed
system, sorted lists may be maintained at different nodes. A
node that maintains a list is called a list owner. In centralized
systems, the owner of all lists is only one node.
The overall score of each data item d is computed as f(s1(d),
s2(d), …, sm(d)) where f is a given scoring function. In other
words, the overall score is the output of f where the input is
the local scores of d in all lists. In this paper, we assume that
the scoring function is monotonic. A function f is monotonic
if f(x1, …, xm) ≤ f(x'1, …, x'm) whenever xi ≤ x'i for every i.

Many of the popular aggregation functions, e.g. Min,
Max, Average, are monotonic. The k data items whose
overall scores are the highest among all data items, are
called the top-k data items.
As defined in [16], we consider two modes of access
to a sorted list. The first mode is sorted (or sequential)
access by which we access the next data item in the
sorted list. Sorted access begins by accessing the first
data item of the list. The second mode of access is
random access by which we lookup a given data item
in the list. Let cs be the cost of a sorted access, and cr
be the cost of a random access. Then, if an algorithm
does as sorted accesses and ar random accesses for
finding the top-k data items, then its execution cost is
computed as as∗cs + ar∗cr. The execution cost (called
middleware cost in [16]) is a main metric to evaluate
the performance of a top-k query processing algorithm
over sorted lists [16].
Let us now state the problem we address. Let L1, L2,
…, Lm be m sorted lists, and D be the set of data items
involved in the lists. Given a top-k query which
involves a number k≤n and a monotonic scoring
function f, our goal is to find a set D'⊆D such that
⎪D'⎪=k, and ∀d1∈D' and∀d2∈(D-D') the overall score
of d1 is at least the overall score of d2, while
minimizing the execution cost.

3 Background
The background for this paper is the TA algorithm
which is itself based on Fagin's Algorithm (FA). FA
and TA are designed for processing top-k queries over
sorted lists. In this section, we briefly describe and
illustrate FA and TA.

3.1 FA

The basic idea of FA is to scan the lists until having at
least k data items which have been seen in all lists,
then there is no need to continue scanning the rest of
the lists [14]. FA works as follows:
1. Do sorted access in parallel to each of the m

sorted lists, and maintain each seen data item in a
set S. If there are at least k data items in S such
that each of them has been seen in each of the m
lists, then stop doing sorted access to the lists.

2. For each data item d involved in S, do random

access as needed to each of the lists Li to find the
local score of d in Li, compute the overall score of
d, and maintain it in a set Y if its score is one of
the k highest scores computed so far.

3

3. Return Y.

The correctness proof of FA can be found in [14]. Let us
illustrate FA with the following example.
Example 1. Consider the database (i.e. three sorted lists)
shown in Figure 1.a. Assume a top-3 query Q, i.e. k=3, and
suppose the scoring function computes the sum of the local
scores of the data item in all lists. In this example, before
position 7, there is no data item which can be seen in all lists,
so FA cannot stop before this position. After doing the
sorted access at position 7, FA sees d5 and d8 which are seen
in all lists, but this is not sufficient for stopping sorted access.
At position 8, the number of data items which are seen in all
lists is 5, i.e. d1, d3, d5, d6 and d8. Thus, at position 8, there are
at least k data items which are seen by FA in all lists, thus FA
stops doing sorted access to the lists. Then, for the data items
which are seen only in some of the lists, e.g. d2, FA does
random access and finds their local scores in all lists, e.g. d2
is not seen in L1 so FA needs a random access to L1 to find
the local score of d2 in this list. It computes the overall score
of all seen data items, and returns to the user the k highest
scored ones.

3.2 TA

The main difference between TA and FA is their stopping
mechanism which decides when to stop doing sorted access
to the lists. The stopping mechanism of TA uses a threshold
which is computed using the last local scores seen under
sorted access in the lists. Thanks to its stopping mechanism,

over any database, TA stops at a position (under sorted
access) which is less than or equal to the position at
which FA stops [16]. TA works as follows:
1. Do sorted access in parallel to each of the m

sorted lists. As a data item d is seen under sorted
access in some list, do random access to the other
lists to find the local score of d in every list, and
compute the overall score of d. Maintain in a set Y
the k seen data items whose overall scores are the
highest among all data items seen so far.

2. For each list Li, let si be the last local score seen

under sorted access in Li. Define the threshold to
be δ = f(s1, s2, …, sm). If Y involves k data items
whose overall scores are higher than or equal to δ,
then stop doing sorted access to the lists.
Otherwise, go to 1.

3. Return Y.

The correctness proof of TA can be found in [16]. Let
us illustrate TA with the following example.
Example 2. Consider the three sorted lists shown in
Figure 1.a and the query Q of Example 1, i.e. k=3 and
the scoring function computes the sum of the local
scores. The thresholds of the positions and the overall
score of data items are shown in Figure 1.b and 1.c,
respectively. TA first looks at the data items which are
at position 1 in all lists, i.e. d1, d2, and d3. It looks up
the local score of these data item in other lists using
random access and computes their overall scores. But,

List 1 List 2 List 3 f = s1 + s2 + s3

Position Data
item

Local
score

s1

 Data
item

Local
score

s2

 Data
item

Local
score

s3

 TA
Threshold

 Data
item

Overall
Score

1 d1 30 d2 28 d3 30 88 d1 65

2 d4 28 d6 27 d5 29 84 d2 63

3 d9 27 d7 25 d8 28 80 d3 70

4 d3 26 d5 24 d4 25 75 d4 66

5 d7 25 d9 23 d2 24 72 d5 70

6 d8 23 d1 21 d6 19 63 d6 60

7 d5 17 d8 20 d13 15 52 d7 61

8 d6 14 d3 14 d1 14 42 d8 71

9 d2 11 d4 13 d9 12 36 d9 62

10 d11 10 d14 12 d7 11 33 … …

11 d14 9 d11 10 d11 8 27 … …

… … … … … … … … … …

(a) (b) (c)

Figure 1. Example database. a) 3 sorted lists. b) TA threshold at positions 1 to 10. c) The overall score of each data item.

4

the overall score of none of them is as high as the threshold
of position 1. Thus, at position 1, TA does not stop. At this
position, we have Y={d1, d2, d3}, i.e. the k highest scored data
items seen so far. At positions 2 and 3, Y involves {d3, d4, d5}
and {d3, d5, d8} respectively. Before position 6, none of the
data items involved in Y has an overall score higher than or
equal to the threshold value. At position 6, the threshold
value gets 63, which is less than the overall score of the three
data items involved in Y, i.e. Y={d3, d5, d8}. Thus, there are k
data items in Y whose overall scores are higher than or equal
to the threshold value, so TA stops at position 6. The contents
of Y at position 6 are exactly equal to its contents at position
3. In other words, at position 3, Y already contains all top-k
answers. But TA cannot detect this and continues until
position 6. In this example, TA does three useless sorted
accesses in each list, thus a total of 9 useless sorted accesses
and 9∗2 useless random accesses.
In the next section, we propose an algorithm that always
stops as early as TA, so it is as fast as TA. Over some
databases, our algorithm can stop at a position which is (m-1)
times lower than the stopping position of TA.

4 Best position algorithms
In this section, we first propose our Best Position Algorithm
(BPA), which is an efficient algorithm for the problem of
answering top-k queries over sorted lists. Then, we analyze
its execution cost and compare it with TA.

4.1 Algorithm

BPA works as follows:
1. Do sorted access in parallel to each of the m sorted lists.

As a data item d is seen under sorted access in some list,
do random access to the other lists to find the local score
and the position of d in every list. Maintain the seen
positions and their corresponding local scores. Compute
the overall score of d. Maintain in a set Y the k seen data
items whose overall scores are the highest among all
data items seen so far.

2. For each list Li, let Pi be the set of positions which are

seen under sorted or random access in Li. Let bpi, called
best position1 in Li, be the greatest position in Pi such
that any position of Li between 1 and bpi is also in Pi. Let
si(bpi) be the local score of the data item which is at
position bpi in list Li .

3. Let best positions overall score be λ = f(s1(bp1), s2(bp2),

…, sm(bpm)). If Y involves k data items whose overall
scores are higher than or equal to λ, then stop doing
sorted access to the lists. Otherwise, go to 1.

4. Return Y.

1 bpi is called best because we are sure that all positions of Li

between 1 and bpi have been seen under sorted or random
access.

Example 3. To illustrate our algorithm, consider again
the three sorted lists shown in Figure 1.a and the query
Q in Example 1. At position 1, BPA sees the data
items d1, d2, and d3. For each seen data item, it does
random access and obtains its local score and position
in all lists. Therefore, at this step, the positions which
are seen in list L1 are the positions 1, 4, and 9 which
are respectively the positions of d1, d3 and d2. Thus, we
have P1={1, 4, 9} and the best position in L1 is bp1 = 1
(since the next position in P1 is 4 meaning that
positions 2 and 3 have not been seen). For L2 and L3
we have P2={1, 6, 8} and P3={1, 5, 8}, so bp2 = 1 and
bp3 = 1. Therefore, the best positions overall score is λ
= f(s1(1), s2(1), s3(1)) = 30 + 28 +30 = 88. At position
1, the set of three highest scored data items is Y={d1,
d2, d3}, and since the overall score of these data items
is less than λ, BPA cannot stop. At position 2, BPA
sees d4, d5, and d6. Thus, we have P1={1, 2, 4, 7, 8, 9},
P2={1, 2, 4, 6, 8, 9} and P3={1, 2, 4, 5, 6, 8}.
Therefore, we have bp1=2, bp2=2 and bp3=2, so λ =
f(s1(2), s2(2), s3(2)) = 28 + 27 + 29 = 84. The overall
score of the data items involved in Y={d3, d4, d5} is
less than 84, so BPA does not stop. At position 3, BPA
sees d7, d8, and d9. Thus, we have P1 = P2 ={1, 2, 3, 4,
5, 6, 7, 8, 9}, and P3 ={1, 2, 3, 4, 5, 6, 8, 9, 10}. Thus,
we have bp1=9, bp2=9 and bp3=6. The best positions
overall score is λ = f(s1(9), s2(9), s3(6)) = 11 + 13 +
19 = 43. At this position, we have Y={d3, d5, d8}.
Since the score of all data items involved in Y is higher
than λ, our algorithm stops. Thus, BPA stops at
position 3, i.e. exactly at the first position where BPA
has all top-k answers. Remember that over this
database, TA and FA stop at positions 6 and 8
respectively.
The following theorem provides the correctness of our
algorithm.
Theorem 1. If the scoring function f is monotonic,
then BPA correctly finds the top-k answers.
Proof. For each list Li, let bpi be the best position in Li
at the moment when BPA stops. Let Y be the set of the
k data items found by BPA, and d be the lowest scored
data item in Y. Let s be the overall score of d, then we
show that each data item, which is not involved in Y,
has an overall score less than or equal to s. We do the
proof by contradiction. Assume there is a data item
d'∉Y with an overall score s' such that s' >s. Since d' is
not involved in Y and its overall score is higher than s,
we can imply that d' has not been seen by BPA under
sorted or random access. Thus, its position in any list
Li is greater than the best position in Li, i.e. bpi.
Therefore, the local score of d' in any list Li is less
than the local score which is at bpi, and since the
scoring function is monotonic, the overall score of d' is
less than or equal to the best positions overall score,
i.e. s'≤λ. Since the score of all data items involved in
Y is higher than or equal to λ,, we have s≥λ. By
comparing the two latter inequalities, we have s≥ s',
which yields to a contradiction. □

5

4.2 Cost analysis

In this section, we compare the execution cost of BPA and
TA. Since TA and BPA are designed for monotonic scoring
functions, we implicitly assume that the scoring function is
monotonic.
The two following lemmas compare the number of
sorted/random accesses done by BPA and TA.
Lemma 1. The number of sorted accesses done by BPA is
always less than or equal to that of TA. In other words, BPA
stops always as early as TA.
Proof. Let Y be the set of answers found by TA, and δ be the
value of TA's threshold at the time it stops. We know that the
overall score of any data item involved in Y is less than or
equal to δ. For each list Li, let pi be the position of the last
data item seen by TA under sorted access. Since any position
less than or equal to pi has been seen under sorted access, the
best position in Li, i.e. bpi, is greater than or equal to pi. Thus,
the local score which is at pi is higher than or equal to the
local score at bpi. Therefore, considering the monotonicity of
the scoring function, the TA's threshold, i.e. δ, is higher than
or equal to the best positions overall score which is used by
BPA, i.e. λ,. Thus, the overall scores of the data items
involved in Y get higher than or equal to λ when the position
of BPA under sorted access is less than or equal to pi.
Therefore, BPA stops with a number of sorted accesses less
than or equal to TA. □
Lemma 2. The number of random accesses done by BPA is
always less than or equal to that of TA.
Proof. The number of random accesses done by both BPA
and TA is equal to the number of sorted accesses multiplied
by (m-1) where m is the number of lists. Thus, the proof is
implied by Lemma 1. □
Using the two above lemmas, the following theorem
compares the execution cost of BPA and TA.
Theorem 2. The execution cost of BPA is always less than or
equal to that of TA.
Proof. Considering the definition of execution cost, the proof
is implied using Lemma 1 and Lemma 2. □
Lemmas 1 and 2 show that BPA always stops as early as TA.
But how much faster than TA can it be? In the following, we
answer this question. Assume that when BPA stops, its
position in all lists is u. Then, during its execution, BPA has
seen u∗m positions in each list, i.e. u positions under sorted
access and u∗(m-1) under random access. If these are the
positions from 1 to u∗m, then the best position in each list is
the (u∗m)th position. In other words, the best position can be
m times greater than the position under sorted access. Based
on this observation, we may conclude that BPA can stop at a
position which is m times lower than TA. However, we did
not find any case where this happens. Instead, we can prove
that there are cases where BPA stops at a position which is
(m-1) times smaller than TA. In other words, the number of
sorted accesses done by BPA can be (m-1) times lower than
TA. This is shown by the following lemma.

Lemma 3. Let m be the number of lists, then the
number of sorted accesses done by BPA can be (m-1)
times lower than that of TA.
Proof. To prove this lemma, it is sufficient to show
that there are databases over which the number of
sorted accesses done by BPA is (m-1) times lower than
that of TA. In other words, under sorted access, BPA
stops at a position which is (m-1) times lower than the
position at which TA stops. Let δ be the value of TA's
threshold at the moment when it stops. For each list Li,
let pi be the position (under sorted access) at which TA
stops. Without loss of generality, we assume
p1=p2=…=pm=j, i.e. when TA stops its position in all
lists is j. For simplicity assume that j=(m-1)∗u where
u is an integer. Consider all cases where the two
following conditions hold:
1) Each of the top-k answers have a local score at a
position which is less than or equal to j/(m-1), i.e. each
of the top-k answers are seen under sorted access at a
position which is less than or equal to j/(m-1).
2) If a data item is at a position in interval [1 .. (j/(m-
1))] in any list Li, then m-2 of its corresponding local
scores in other lists are at positions which are in
interval [((j/(m-1) + 1) .. j], and one1 of its
corresponding local scores is in a position higher than
j.
In all cases where the two above conditions hold, we
can argue as follows. After doing its sorted access and
random access at position j/(m-1), BPA has seen all
positions in interval [1 .. (j/(m-1))], i.e. under sorted
access, and for each seen data item it has seen m-2
positions in interval [((j/(m-1) + 1) .. j], i.e. under
random access. Let ns be the total number of seen
positions in interval [1..j], then we have:
ns = (number of seen positions in [1..(j/(m-1))]) +
(number of seen positions in [((j/(m-1) + 1) .. j])
After replacing the number of seen positions, we have:
ns = ((j/(m-1)∗m) + (((j/(m-1) ∗m) ∗ (m-2))
After simplifying the right side of the equation, we
have ns=m∗j. Thus, when BPA is at position j/(m-1), it
has seen all positions in interval [1 .. j] in all lists.
Therefore, the best position in each list is at least j.
Hence, the best positions overall score, i.e. λ, is higher
than or equal to the value of TA's threshold at position
j, i.e. δ. In other words, we have λ≥δ. Since at
position j/(m-1), all top-k answers are in the set Y (see
the first condition above) and their scores are less than
or equal to δ (i.e. this is enforced by TA's stopping
mechanism), the score of all data items involved in Y
is less than or equal to λ. Thus, BPA stops at j/(m-1),

1 Choosing one of the corresponding local scores at a

position greater than j allows us to adjust the local
scores of top-k answers such that their overall
scores do not get higher than TA's threshold at a
position smaller than j, i.e. TA does not stop before
j.

6

i.e. at a position which is (m-1) times lower than the position
of TA. □
Lemma 4. Let m be the number of lists, then the number of
random accesses done by BPA can be (m-1) times lower than
that of TA.
Proof. Since the number of random accesses done by both
BPA and TA is proportional to the number of sorted
accesses, the proof is implied by Lemma 3. □
The following theorem shows that the execution cost of BPA
can be (m-1) times lower than that of TA.
Theorem 3. Let m be the number of lists, then the execution
cost of BPA can be (m-1) times lower than that of TA.

Proof. The proof is implied by Lemma 3 and Lemma 4. □
Example 3 (i.e. the database shown in Figure 1) is one of the
cases where the execution cost of BPA is (m-1) times lower
than TA. In that example, m=3 and TA stops at position 6,
whereas BPA stops at position 3, i.e. (m-1) times lower than
TA. For TA, the total number of sorted accesses is 6∗3=18
and the number of random accesses is 18∗2=36, i.e. for each
sorted access (m-1) random accesses. With BPA, the number
of sorted accesses and random accesses is 3∗3=9 and
9∗2=18, respectively.

5 BPA2
Although BPA is quite efficient, it still does redundant work.
One of the redundancies with BPA (and also TA) is that it
may access some data items several times under sorted access
in different lists. For example, a data item, which is accessed
at a position in a list through sorted access and thus accessed
in other lists via random access, may be accessed again in the
other lists by sorted access at the next positions. In this
section, based on BPA, we propose BPA2, an algorithm
which avoids re-accessing data items via sorted or random

access. BPA2 is much more efficient than BPA. As we
will show, the number of accesses to the sorted lists
done by BPA2 can be about (m - 1) times lower than
that of BPA.

5.1 Algorithm

Let direct access be a mode of access that reads the
data item which is at a given position in a list. Recall
from the previous section that the best position bp in a
list is the greatest seen position of the list such that any
position between 1 and bp is also seen. Then, BPA2
works as follows:
1. For each list Li, let bpi be the best position in Li.

Initially set bpi=0.

2. For each list Li and in parallel, do direct access to

position (bpi + 1) in list Li. As a data item d is
seen under direct access in some list, do random
access to the other lists to find d's local score in
every list. Compute the overall score of d.
Maintain in a set Y the k seen data items whose
overall scores are the highest among all data items
seen so far.

3. If a direct access or random access to a list Li

changes the best position of Li, then along with
the local score of the accessed data item, return
also the local score of the data item which is at the
best position. Let si(bpi) be the local score of the
data item which is at the best position in list Li .

4. Let best positions overall score be λ = f(s1(bp1),

s2(bp2), …, s3(bpm)). If Y involves k data items
whose overall scores are higher than or equal to λ,
then stop doing sorted access to the lists.
Otherwise, go to 1.

7

5. Return Y.

At each time, BPA2 does direct access to the position which
is just after the best position. This position, i.e. bpi + 1, is
always the smallest unseen position in the list.
BPA2 has the same stopping mechanism as BPA. Thus, they
both stop at the same (best) position. In addition, they see the
same set of data items, i.e. those that have at least one local
score before the best position in some list. Thus, they see the
same set of positions in the lists.
However, there is a main difference between BPA2 and BPA.
With BPA some seen positions of a list may be accessed
several times, i.e. up to m times, but with BPA2 each seen
position of a list is accessed only once. The reason is that
BPA2 does direct access to the position which is just after the
best position and this position is always an unseen position in
the list.
Theorem 4. No position in a list is accessed by BPA2 more
than once.
Proof. Implied by the fact that BPA2 always does direct
access to an unseen position, i.e. bpi + 1, so no seen position
is accessed via direct access, and thus by random access. □

5.2 Correctness and cost analysis

The following theorem provides the correctness of BPA2.
Theorem 5. If the scoring function is monotonic, then BPA2
correctly finds the top-k answers.
Proof. Since BPA2 has the same stopping mechanism as
BPA, the proof is similar to that of Theorem 1 which proves
the correctness of BPA. □

In many systems, in particular distributed systems, the
total number of accesses to the lists (composed of
sorted/direct and random accesses) is a main metric for
measuring the cost of a top-k query processing
algorithm. Below, using two theorems we compare
BPA and BPA2 from the point of the view of this
metric.
Theorem 6. The number of accesses to the lists done
by BPA2 is always less than or equal to that of BPA.
Proof. BPA and BPA2 access the same set of
positions in the lists. However, BPA2 accesses each of
these positions only once, but BPA may access some
of the positions more than once. Therefore, the
number of accesses to the lists by BPA is less than or
equal to BPA. □
Theorem 7. Let m be the number of lists, then the
number of accesses to the lists done by BPA2 can be
about (m-1) times lower than that of BPA.
Proof. To do the proof, we show that there are
databases over which the number of accesses done by
BPA is about (m-1) times higher that of BPA2. For
each list Li, let bpi be the best position at which BPA
stops. Without loss of generality, we assume
bp1=bp2=…=bpm=j, i.e. when BPA stops, the best
position in all lists is j. For simplicity, assume that j-
1=(m-1)∗u where u is an integer. We know that BPA2
stops at the same best position as BPA, so it also stops
at j. Consider all databases at which the following
condition holds:
1) If a data item is at a position in interval [1 .. j] in
any list Li, then m-2 of its corresponding local scores
in other lists are at positions which are in interval [1 ..

List 1 List 2 List 3 f = s1 + s2 + s3

Position
 Data

item
Local
score

 Data
item

Local
score

 Data
item

Local
score

 Sum of
local
scores

 Data
item

Overall
Score

1 d1 30 d2 28 d3 30 88 d1 65

2 d4 28 d6 27 d5 29 84 d2 65

3 d9 27 d7 25 d8 28 80 d3 70

4 d3 26 d5 24 d4 27 77 d4 68

5 d7 25 d9 23 d2 26 74 d5 63

6 d8 24 d1 22 d6 25 71 d6 66

7 d11 17 d14 20 d13 15 52 d7 61

8 d6 14 d3 14 d1 13 41 d8 64

9 d2 11 d4 13 d9 12 36 d9 62

10 d5 10 d8 12 d7 11 33 … …

… … … … … … … … … …

Figure 2. Example database over which the number of accesses to the lists done by BPA2 is about 1/(m-1) that of BPA.

8

(j-1)], and one1 of its corresponding local scores is in a
position higher than j.
The above condition assures that BPA does not see the data
items which are at position j by a random access. Thus, it
continues doing sorted access until the position j. In all
databases that hold the above condition, we can argue as
follows. Let nd be the number of distinct data items which
are in interval [1 .. (j-1)]. Since the total number of positions
in interval [1 .. (j-1)] is m∗ (j-1), i.e. j-1 times the number of
lists, and each distinct data item occupies (m-1) positions in
interval [1 .. (j-1)] (see the above condition), we have nd=
m∗ (j-1)/(m-1). In other words, we have nd = m∗u. BPA2
sees each distinct data item by doing one direct access. It
also does m direct accesses at position j, i.e. one per list.
Thus, BPA2 does a total of (u+1)∗m direct accesses. After
each direct access, BPA2 does (m-1) random accesses, thus
a total of (u+1)∗m∗(m-1) random accesses. Therefore, the
total number of accesses done by BPA2 is nbpa2 = (u+1)∗m2.
BPA sees all positions in interval [1 .. j] by sorted access,
thus a total of (j∗m) sorted accesses. After each sorted
access, it does (m-1) random accesses, thus a total of
j∗m∗(m-1) random accesses. Therefore, the total number of
accesses done by BPA is nbpa = (j)∗m2. By comparing nbpa2
and nbpa, we have nbpa = nbpa2 ∗ (j / (u+1)) ≈ nbpa2 ∗ (m-1). □
As an example, consider the database (i.e. the three sorted
lists) shown in Figure 2, and suppose k=3 and the scoring
function computes the sum of the local scores. If we apply
BPA on this example, it stops at position 7, so it does 7∗3
sorted accesses and 7∗3∗2 random accesses. Thus, the total
number of accesses done by BPA is nbpa = 63. If we apply
BPA2, it does direct access to positions 1, 2, 3 and 7 in all
lists, so a total of 4∗3 direct accesses and 4∗3∗2 random
accesses. Thus, the total number of accesses done by BPA2 is
nbpa2 = 36. Therefore, we have nbpa ≈ 2∗ nbpa2.

6 Managing best positions
After each access to a list, BPA and BPA2 need to determine
the best position in the list. A simple method for managing
the best positions is to maintain the seen positions in a set.
Then finding the best position is done by scanning the set and
for each position p, verifying if all positions which are less
than p belong to the set. This method is not efficient because
finding the best position is done in O(u2) where u is the
number of seen positions. Note that in the worst case, u can
be equal to n, i.e. the number of data items in the list.
In this section, we address the problem of managing best
positions in the lists and propose several efficient techniques.
Each technique takes advantage of one of the following data
structures: Bit array, Priority Queue, Bloom filter and B+tree.
For each technique, we study its performance in terms of
access time, space requirement and accuracy.

1 This allows us to adjust the local scores of top-k answers

such that BPA does not stop at a position smaller than j.

6.1 Bit array

In this approach, to remember the positions which are
seen, each list owner uses an array of n bits where n is
the size of the sorted list. Initially, all bits of the array
are set to 0. There is a variable bp which points to the
best position. Initially bp is set to 1. Let Bi be the bit
array which is used by the owner of list Li. After doing
an access to a data item that is at position j in Li, the
following instructions are done by the list owner for
determining the new best position:

Bi[j] := 1;

While ((bp < n) and (Bi[bp + 1] = 1))
do

 bp := bp + 1;
The total time needed for determining the best
positions during the execution of the top-k query is
O(n), i.e. bp can be incremented up to n. Let u be the
total number of seen positions in the list Li, then the
average time for determining the best position after
each access is O(n/u). The space needed for this
approach is an array of n bits plus a variable, which is
typically very small.

6.2 Priority queue

In this approach, we take advantage of priority queues
for determining best positions. A priority queue Q
usually has three main operations: 1) Insert(x) for
adding a new element x to the queue; 2) Min() that
returns the element with lowest priority from the
queue; 3) Delete-Min() that removes from queue the
element whose priority is the lowest.
For maintaining the seen positions of each sorted list,
we use a priority queue. Let Qi be the priority queue
that maintains the seen positions of a list Li. Let bp be
a variable that points to the best position in list Li.
Initially we set bp=0. When a position p is seen in Li,
p is inserted to Qi, and the following instructions are
performed in order to update the best position:
While (Qi.Min() = (bp + 1)) do

{

bp := bp + 1;

Qi.DeleteMin();

}

One of the main advantages of this approach is that it
maintains only the seen positions which are greater
than the best position. Therefore, all positions which
are lower than the current position under sorted access
are deleted from the queue. In the best case, the space
used by this approach is O(1), i.e. when the best
position is near to the position under sorted access. Let
u be the number of seen positions in Li. At least 1/m of
these positions are seen under sorted access. Thus, in
the worst case, the number of positions which are
maintained by the queue is u∗(1 – (1/m)).

9

The execution time of this approach depends on the data
structure which is used for implementing the priority queue.
A simple data structure that is typically used for
implementing a priority queue is the heap tree [12]. Using
structure heap tree, the operations Insert() and DeleteMin()
are done in O(log n) where n is the number of queue’s
members, and the execution time of Min() is constant.
Therefore, by using heap trees the average time per access is
O(log u) where u is the number of seen positions. For the
cases where the members of the priority queue are integer
numbers, which is our case, there are more efficient data
structures. For example, when the members are chosen from
a set {1,2, …, C}, then the data structure proposed in [38]
supports all three operations of priority queue in O(log log
C). Therefore, by using this data structure, the average time
for determining best positions is O(log log n) where n is the
size of the sorted lists.

6.3 Bloom filter

In this section, we show how we can use Bloom filters in
order to determine best positions. Bloom filter [6] is a
probabilistic data structure that has two distinguishing
features: (1) represent in a compact way the contents of a set
and, (2) efficiently test whether a given item is a member of
the set.
Briefly, a Bloom filter is an array of b bits, initially all set to
0. For representing a set S = {s1, s2, . . . , sn} of n elements,
the Bloom filter uses a set of h independent hash functions f1,
. . . ,fh with range {0, . . . , b− 1}, and for each element s ∈S,
the bits fi(s) are set to 1 for 1 ≤ i ≤ h. A bit in the Bloom filter
can be set to 1 multiple times, but only the first change has an
effect. To check if an item s is in S, we check whether all fi(s)
are set to 1, for 1 ≤ i ≤ h. If not, then clearly s is not a
member of S. If all fi(s) are set to 1, we assume that s is in S,
although there is a small probability that we are wrong, i.e.
this is referred to as a "false positive". Let IsMember(BF, s)
be a function that returns true if s is assumed to be a member
of the Bloom filter BF, otherwise it returns false.
In this approach, the seen positions of each sorted list Li are
represented by a Bloom filter, e.g. BFi. A variable bp points
to the best position in Li. Initially bp is set to 0. After
accessing a position p in Li, p is inserted to BFi. Then the
following instructions are executed in order to determine the
new best position:

While (IsMember(BFi, bp + 1) = true)

 bp := bp + 1;

The advantage of using a Bloom filter is that it is
efficient both in space and execution time. The time
needed for executing the function IsMember is O(h)
where h is the number of hash functions used by the
Bloom filter. Let u be the number of accesses to Li, the
total time for determining best positions is O(h∗ u),
thus the average time per access is O(h). The space
needed for this approach is an array of b bits.
The disadvantage of Bloom filters is the possibility of
false positives. The probability of a false positive is
equal to PFP = (1 − e−hn/b)h [29]. By well adjusting the
parameters h and b we can minimize the possibility of
false positives. Suppose we are given b and n and we
want to minimize the probability of false positives by
choosing an optimal value for the number of hash
functions h. For this, we must compute the derivative
of PFP with respect to h, and set it to zero, i.e. d(1 −
e−hn/b)h / d h = 0. By solving this equation, the
minimum value for PFP is obtained when the number
of hash functions is equal to h = (ln 2)∗(b/n) [29].
Using this number of hash functions, the minimum
value for the probability of false positives is PFP =
(1/2)h ≈ (0.6185)b/n. By increasing b, i.e. the number of
bits of the Bloom filter, we can arbitrarily minimize
the probability of false positives. To have a very small
PFP, we have to choose a large value for b, e.g. if we
want to have FPF <0.0001 then we must set b to at
least 20∗n. Therefore, to provide a low false positive
probability for the Bloom filter, we have to choose
values for b which are much greater than n. Therefore,
although the execution cost of the Bloom filter
approach is much better than that of the bit array
approach, its space requirement is higher.

6.4 B+tree

In this approach, each list owner uses a B+tree for
maintaining the seen positions. In a B+tree, all data are
saved in the leaves, and the leaf nodes are at the same
level, so any operation of insert/delete/lookup is
logarithmic in the number of data items. The leaf
nodes are also linked together as a linked list. Let c be
a cell of the linked list, i.e. a leaf of the B+tree, then

Table 1. Performance of techniques for best position management (n: number of data items in each sorted list; u:
number of positions seen by BPA).

Technique Execution time
per access

Space requirement Accuracy

Bit array O(n/u) O(n) 100%
Priority queue O(log log n) O(u) 100%
Bloom filter O(1) O(n) probabilistic
B+tree O(log u) O(u) 100%

10

there is a pointer c.next that points to the next cell of the
linked list. Let c.element be a variable that maintains the data
in c.
Let BTi be the B+tree which the owner of list Li uses for
maintaining the seen positions of Li. The list owner also uses
a pointer bp that points to the cell, i.e. leaf of BTi, which
maintains the seen position which is the best position. After
an access to a position p in Li, the list owner adds p to BTi.
Then, it performs the following instructions to determine the
new best position:

While ((bp.next ≠ null) and
(bp.next.element = bp.element + 1)) do
bp := bp.next;

The above instructions assure that the pointer bp points
always to the cell that maintains the best position. Let u be
the total number of accesses to the list Li during the execution
of the query, then the total time for determining the best
positions is O(u), i.e. in the worst case bp moves from the
head to the end of the linked list. Thus, the average time per
access is O(1). The time needed for adding a seen position to
the B+tree is O(log u). Therefore, with the B+tree approach,
the average time for storing a seen position and determining
the best position is O(log u). The space needed for this
approach is O(u).

6.5 Summary

Table 1 summarizes the performance of the four techniques
we propose for managing best position. In this table, n is the
total number of data items in each sorted list, and u is the
number of positions which are seen by BPA (or BPA2)
during their execution. Note that although the space
requirement for the Bloom Filter approach is b, i.e. the
number of bits of the filter, to have a low false positive
probability, b must be higher than n. This is why in this table,
the space requirement of Bloom filter is O(n).

7 Instance optimality
In this section, we discuss instance optimality which is
considered as one of the main features of the TA
algorithm. We first give the definition of instance
optimality as in [16]. Then, we review the proof of
TA’s instance optimality done in [16] and show that if
the positions of the data items are taken into account,
then one of the main arguments of the instance
optimality proof gets incorrect. In other words, we
show that in this case TA may not be instance optimal.
Instance optimality is defined as follows [16]. Let AL
be a class of algorithms, DB a class of databases, and
cost(A, D) be the execution cost incurred by running
algorithm A over database D. An algorithm A ∈ AL is
instance optimal over AL and DB if for every B ∈ AL
and every D ∈ DB we have:
cost(A, D) = O(cost(B, D))
The above equation says that there are two constants c1
and c2 such that cost(A, D) ≤ c1∗cost(B, D) + c2 for
every choice of B ∈ AL and D ∈ DB. The constant c1
is called the optimality ratio of A.
In [16], Theorem 6.1 claims that TA is instance
optimal over the class of all databases, and the class of
all deterministic top-k query processing algorithms,
i.e. those that do not make lucky guesses. This
theorem assumes that m, i.e. the number of sorted lists,
is a constant. Thus, although the execution cost of
BPA can be (m-1) times better than TA, if m is a
constant then we can not say that BPA is an example
showing the incorrectness of TA’s instance optimality.

11

However, by reviewing the proof of TA’s instance optimality
(i.e. Theorem 6.1 in [16]), we observed that the proof is
incorrect if we memorize the positions of seen data items. In
the following, we show what is wrong with that proof.
Let us first review the proof of Theorem 6.1 in [16] which
proceeds as follows. Assume A is a deterministic top-k
algorithm that finds correctly the top-k data items of a
database D. Let d be the position (depth in [16]) at which A
stops, and a be the number of distinct data items which are
seen by A before its stop. Let Y be the set of the outputs of A
(i.e. the top-k data items). Let τA be the value of threshold at
d. The proof is done by showing that TA stops at most at
position (a + k). For this, it considers the two following
cases: 1) The number of data items, which are not seen by A
during its execution, is at most k; 2) There are at least (k + 1)
data items which are not seen by A during its execution. In
the first case, it can be easily shown that TA stops at most at
(k+a), i.e. in the worst case TA reads all data items of the
database. For the second case, the proof of Theorem 6.1
claims that every member of Y has an overall score higher
than or equal to τA, and by using this claim it shows that TA
stops at most at position (a + k). To prove this claim, it
argues as follows. Since at least (k + 1) data items which are

not seen by A, there is some unseen data item v that is
not in the output1 of A, i.e. v∉Y. Let xi be the score of
the last data item seen by A under sorted access in list
Li, for 1≤i≤m. Define a database D' to be just like D,
except that data item v has a score xi in list Li, for
1≤i≤m. In D', put v in the list Li below all other data
items whose score in Li is xi (for 1≤i≤m). Then, the
proof of Theorem 6.1 in [16] argues that: Algorithm A
performs exactly the same, and in particular gives the
same output, for databases D and D'. Therefore,
algorithm A does not have v in its output for database
D'. Since the overall score of v in D' is equal to τA, the
correctness of A implies that the overall score of any
member of A is at least that of v, and therefore at least
τA.
As we see, the proof is based on the argument that if
we change the position of a data item v, which is not
seen by an algorithm A, then the behaviour of A over
the new database remains unchanged, and it gives the

1 Notice that there may be algorithms whose output

involves data items which are not unseen by them.

 List 1

List 2 List 3 f = s1 + s2 + s3
Position Data

item
Local
score

s1

 Data
item

Loca
l

scor
e s2

 Dat
a
ite
m

Local
score

s3

 Threshol
d

 Dat
a
item

Overall
Score

1 d1 30 d2 28 d3 30 88 d1 65
2 d4 28 d6 27 d5 29 84 d2 63
3 d9 27 d7 25 d8 28 80 d3 70
4 d11 27 d11 25 d11 28 80 d4 66
5 d3 26 d5 24 d4 25 75 d5 70
6 d7 25 d9 23 d2 24 72 d6 60
7 d8 23 d1 21 d6 19 63 d7 61
8 d5 17 d8 20 d13 15 52 d8 71
9 d6 14 d3 14 d1 14 42 d9 62

10 d2 11 d4 13 d9 12 36 d11 80
11 d14 9 d14 12 d7 11 33 … …
… … … … … … … … … …

(a) (b) (c)

Figure 3. This database, say D', is just like the database of Figure 1, say D, except that data item d11, which is not seen by
BPA over D, is deposited just below the position 3 which is the stopping position of BPA over D. If we apply BPA over D'
its output is different of its output over D.

12

same output. However, this is not true with BPA as shown as
follows. Let Li be a list, and d be the position at which BPA
stops. As we know, the best position in Li, say bpi, is always
higher than or equal to the position at which BPA stops, i.e.
bpi ≥ d. Let p be the position of an unseen data item v in the
list Li. Then the definition of best position implies that bpi <
p. If we change the position of v to a position q such that d ≤
q ≤ bpi, then bpi changes to (q - 1), i.e. because q is an unseen
position and all positions before it are seen. This
modification in the best position may modify the best
position overall score. Thus BPA may not stop at d and
generate a different output. Let us illustrate this by the
following example.
Example 4. As an example, suppose a top-3 query, i.e. k=3
such that the scoring function computes the sum of the local
scores. Consider the database (i.e. the three sorted lists)
shown in Figure 3, which we denote by D'. This database is
just like the database of Figure 1, say D, except that data item
d11, which is not seen by BPA over D, is put just below the
position 3 which is the stopping position of BPA over D. The
local scores of d11 are exactly the same as the local scores
which are at position 3 in the lists. If we apply BPA on D', it
stops at position 4, and its output is Y'={d11, d8, d3} which is
different from the output over database D, i.e. Y={d3, d5, d8}.
Thus, we created the database D' exactly in the same way as
mentioned in the proof of Theorem 6.1 in [16], but over D'
both stopping position and output of BPA are different from
those over D.
As shown above, there are deterministic top-k algorithms
(e.g. BPA) whose behaviour changes by changing the
position of data items, which are not seen by the algorithms
during their execution. As a result, Theorem 6.1 in [16]
which claims the instance optimality of TA over all
deterministic algorithms has to be revised.

8 Performance evaluation
In the previous sections, we analytically compared our
algorithms with TA, i.e. BPA directly and BPA2 indirectly.
In this section, we compare these three algorithms through
experimentation over randomly generated databases. The rest
of this section is organized as follows. We first describe our
experimental setup. Then, we compare the performance of
our algorithms with TA by varying experimental parameters
such as the number of lists, i.e. m, the number of top data
items requested, i.e. k, and the number of data items of each
list, i.e. n. Finally, we summarize the performance results.

8.1 Experimental setup

We implemented TA, BPA and BPA2 in Java1. To evaluate
our algorithms, we tested them over both independent and
correlated databases, thus covering all practical cases. The
independent databases are uniform and Gaussian databases
generated using the two main probability distributions (i.e.
uniform and Gaussian). With Uniform database, the positions
of a data item in any two lists are independent of each other.

1 The code is available at http://www-

sop.inria.fr/teams/zenith/pmwiki/pmwiki.php/Other/BPAal
gorithms

To generate this database, the scores of the data items
in each list are generated using a uniform random
generator, and then the list is sorted. This is our
default setting. With Gaussian database, the positions
of a data item in any two lists are also independent of
each other. To generate this database, the scores of the
data items in each list are Gaussian random numbers
with a mean of 0 and a standard deviation of 1.
In addition to these independent databases, we also use
correlated databases, i.e. databases where the positions
of a data item in the lists are correlated. We use this
type of database for taking into account the
applications where there are correlations among the
positions of a data item in different lists. In real-world
applications, there are usually such correlations [28].
Inspired from [28], we use a correlation parameter α
(0 ≤α ≤ 1), and we generate the correlated databases as
follows. For the first list, we randomly select the
position of data items. Let p1 be the position of a data
item in the first list, then for each list Li (2 ≤ i ≤ m) we
generate a random number r in interval [1 .. n∗α]
where n is the number of data items, and we put the
data item at a position p whose distance from p1 is r. If
p is not free, i.e. occupied previously by another data
item, we put the data item at the free position closest
to p. By controlling the value of α, we create
databases with stronger or weaker correlations. After
setting the positions of all data items in all lists, we
generate the scores of the data items in each list in
such a way that they follow the Zipf law [41] with the
Zipf parameter θ = 0.7. The Zipf law states that the
score of an item in a ranked list is inversely
proportional to its rank (position) in the list. It is
commonly observed in many kinds of phenomena, e.g.
the frequency of words in a corpus of natural language
utterances.
Our default settings for different experimental
parameters are as follows. In our tests, the default
number of data items in each list is 100,000.
Typically, users are interested in a small number of
top answers, thus unless otherwise specified we set
k=20. Like many previous works on top-k query
processing, e.g. [8], we use a scoring function that
computes the sum of the local scores. In most of our
tests, the number of lists, i.e. m, is a varying
parameter. When m is a constant, we set it to 8 which
is rather small but quite sufficient to show significant
performance gains of our algorithms. Note that, in
some important applications such as network
monitoring [8], m can be much higher.
To evaluate the performance of the algorithms, we
measure the following metrics.
1) Execution cost. As defined in Section 2, the
execution cost is computed as c = as∗cs + ar∗cr where
as is the number of sorted accesses that an algorithm
does during execution, ar is the number of random
accesses, cs is the cost of a sorted access, and cr is the
cost of a random access. For the BPA2 algorithm, we
consider each direct access equivalent to a random
access. For each sorted access we consider one unit of
cost, i.e. we set cs = 1. For the cost of each random

13

access, we set cr = log n where n is the number of data items,
i.e. we assume that there is an index on data items such that
each entry of index points to the position of data item in the
lists. The execution time which we consider here is a good
metric for comparing the performance of the algorithms in a
centralized system. For distributed systems, we use the next
metric.
2) Number of accesses. This metric measures the total
number of accesses to the lists done by an algorithm during
execution. It involves the sorted, direct and random accesses.
In distributed systems, particularly in the cases where
message size is small (which is the case of our algorithms),
the main cost factor is the number of messages
communicated between nodes. The number of messages,
which our algorithms (and TA) communicate between the
query originator and list owners in a distributed system, is
proportional to the number of accesses done to the lists.
Thus, the number of accesses is a good metric for comparing
the performance of the algorithms in distributed systems. For
TA and BPA, the number of accesses is also a good indicator
of their stopping position under sorted access, i.e. the number
of accesses is m2 multiplied by the stopping position.
3) Response time. This is the total time (in millisecond) that
an algorithm takes for finding the top-k data items. We
conducted our experiments on a machine with a 2.4 GHz
Intel Pentium 4 processor and 2GB memory. In the code of
BPA and BPA2, the best positions are managed using the Bit
Array approach which is simpler than the B+-tree approach.

8.2 Performance results

8.2.1 Effect of the number of lists

In this section, we compare the performance of our
algorithms with TA over the three database types while
varying the number of lists.
Over the uniform database, with the number of lists
increasing up to 18 and the other parameters set as in Section
8.1, Figures 4, 5 and 6 show the results measuring execution
cost, number of accesses, and response time, respectively.
The execution cost of BPA is much better than that of TA; it
outperforms TA by a factor of approximately (m+6)/8 for

m>2. BPA2 is the strongest performer; it outperforms
TA by a factor of approximately (m+1)/2 for m>2. On
the second metric, i.e. number of accesses, the results
are similar to those on execution cost. However, BPA2
outperforms TA by a factor which is (a little) higher
than that for execution cost, i.e. about 1/m higher. The
reason is that for measuring execution cost, we assume
an expensive cost (i.e. log n units) for direct accesses
which are done by BPA2. On response time, BPA2
(and BPA) outperforms TA by a factor which is a little
lower than that on execution cost, just because of the
time they need for managing the best positions.
Over the Gaussian database, with the number of lists
increasing up to 18 and the other parameters set as in
Section 8.1, Figures 7, 8 and 9 show the results for
execution cost, number of accesses, and response time
respectively. Over the Gaussian database, the
performance of the three algorithms is a little better
than their performance over the uniform database.
BPA and BPA2 do much better than TA, and they
outperform it by a factor close to that over the uniform
database.
Overall, the performance results on the three metrics
are qualitatively similar, in particular on execution
cost and number of accesses. Thus, in the rest of this
paper, we only report the results on execution cost.
Figures 10, 11 and 12 show the execution cost of the
algorithms over three correlated databases with
correlation parameter α set to 0.001, 0.01 and 0.1
respectively, and the other parameters set as in Section
8.1. Over these databases, the performance of the three
algorithms is much better than that over Gaussian and
uniform databases. In fact, the more correlated is the
database; the lower is the execution cost of all three
algorithms. The reason is that in a highly correlated
database, the top-k data items are distributed over low
positions of the lists, so the algorithms do not need to
go much down in the lists, and they stop soon.
However, due to their efficient stopping mechanism,
BPA and BPA2 stop much sooner than TA.

14

 Figure 4. Execution cost vs. number
of lists over uniform database

Figure 5. Number of accesses vs.
number of lists over uniform database

Figure 6. Response time vs. number
of lists over uniform database

 Figure 7. Execution cost vs. number
of lists over Gaussian database

Figure 8. Number of accesses vs.
number of lists over Gaussian database

Figure 9. Response time vs. number
of lists over Gaussian database

Figure 10. Execution cost vs. number
of lists over correlated database with
α=0.001

Figure 11. Execution cost vs. number
of lists over correlated database with
α=0.01

Figure 12. Execution cost vs. number
of lists over correlated database with
α=0.1

 Figure 13. Execution cost vs. k over
uniform database

Figure 14. Execution cost vs. k over
correlated database with α=0.01

Figure 15. Execution cost vs. k over
correlated database with α=0.001

15

8.2.2 Effect of k

In this section, we study the effect of k, i.e. the number of top
data items requested, on performance. Figure 13 shows how
execution cost increases over the uniform database, with
increasing k up to 100, and the other parameters set as in
Section 8.1. The execution cost of all three algorithms
increases with k because more data items are needed to be
returned in order to obtain the top-k data items. However, the
increase is very small. The reason is that over the uniform
database, when an algorithm (i.e. any of the three algorithms)
stops its execution for a top-k query, with a high probability,
it has seen also the (k + 1)th data item. Thus, with a high
probability, it stops at the same position for a top-(k+1)
query.
Figures 14 and 15 show how execution cost increases with
increasing k over two correlated databases with correlation
parameter set to α=0.01 and α=0.001 respectively. For the
database with α=0.01, i.e. the one which is less correlated,
the impact of k is smaller. The reason is that when we run
one of the three algorithms over a database with low
correlation, it sees a lot of data items before stopping its
execution. Thus, when it stops at a position for a top-k query,
there is a high probability that it stops at the same position
for a top-(k + 1) query. But, for a highly correlated database,
this probability is lower because the algorithm sees a small
number of data items before stopping its execution.

8.2.3 Effect of the number of data items

In this section, we vary the number of data items in each list,
i.e. n, and investigate its effect on execution cost. Figure 16
shows how execution cost increases over the uniform
database with increasing n up to 200,000, and with the other
parameters set as in Section 8.1. Increasing n has a
considerable impact on the performance of the three
algorithms over a uniform database. The reason is that when
we enlarge the lists and generate uniform random data for
them, the top-k data items are distributed over higher
positions in the list.
Figures 17 and 18 show how execution cost increases with
increasing n over two correlated databases with correlation
parameter set to α=0.01 and α=0.001 respectively, and the
other parameters set as in Section 8.1. The results show that n
has a smaller impact on a highly correlated database rather
than a database with a low correlation.

8.2.4 Concluding remarks

The performance results show that, over all test
databases and wrt all the metrics, the performance of
our algorithms is much better than that of TA. For
example, they show that wrt execution cost, BPA and
BPA2 outperform TA by a factor of approximately
(m+6)/8 and (m+1)/2 for m>2. Thus, as m increases,
the performance gains of our algorithms versus TA
increase significantly.

9 Related work
The problem of finding top-k data over sorted lists is a
fundamental problem which can be used in both top-k
selection and top-k join queries.
A first important paper is [14] which models the
general problem of answering top-k queries using
sorted lists, and proposes a simple yet efficient
algorithm, called Fagin’s algorithm (FA). The most
efficient algorithm over sorted lists is the TA
algorithm which was proposed by several groups1
[15][17][31]. TA is simple, elegant and efficient [16]
and provides a significant performance improvement
over FA. We already discussed much TA in this paper.
However, because of its stopping mechanism (based
on the last seen scores under sorted access), TA can
still perform useless work (see Section 3). The
fundamental differences between BPA and TA are the
following. BPA takes into account the positions and
scores of the seen data whereas TA only takes into
account their scores. Using information about the
position of the seen data, BPA develops a more
intelligent stopping mechanism that allows choosing a
much better time to stop (such choice is correct as
proved in Lemma 1). This allows BPA to gain much
reduction in the number of sorted accesses and thus
much reduction in the number of random accesses.
Even if TA were keeping track of all seen data items,
it could not stop at a smaller position under sorted
access, because its threshold does not allow it.

1 The second author of [15] first defined TA and

compared it with FA at the University of Maryland
in the Fall of 1997.

 Figure 16. Execution cost vs. n over
uniform database

Figure 17. Execution cost vs. n over
correlated database with α=0.01

Figure 18. Execution cost vs. n over
correlated database with α=0.0001

16

Several TA-style algorithms (i.e. extensions of TA) have
been proposed, particularly for processing top-k selection
queries in distributed environments, e.g. [5][13][28]. Overall,
most of the TA-style algorithms focus on extending TA with
the objective of minimizing communication cost of top-k
query processing in distributed systems. For example, in the
context of the KLEE framework [28], the authors propose an
approximate TA-style algorithm aiming at gaining much
reduction in communication cost at low result-quality
penalties. In KLEE, the m sorted lists are distributed over m
nodes, and each node divides its list into c cells and
maintains statistical information describing the cells, e.g.
lower, upper, average and frequency of local scores which
fall in the cell. This information on cells contribute to reduce
the number of local scores which should be communicated
over the network.
The Three Phase Uniform Threshold (TPUT) [8] is an
efficient algorithm to answer top-k queries in distributed
systems. The algorithm reduces communication cost by
pruning away ineligible data items and restricting the number
of round-trip messages between the query originator and the
other nodes. However, there are databases over which TPUT
is not efficient. For example, if one of the lists has n data
items with a fixed value that is just over the threshold of
TPUT, then all data items must be retrieved by the query
originator, while a more adaptive algorithm might avoid
retrieving all n data items.
There have been multiple algorithms devoted to top-k join
queries, i.e. top-k queries in which there are several joined
relations. Most of these algorithms are designed based on the
top-k selection algorithms, e.g. TA. In [20], the authors
introduce an efficient top-k join algorithm and two rank-join
operators that can be deployed in existing query execution
interfaces. Proposed in [31], J* is another efficient algorithm
for processing top-k join queries over ranked inputs. J* maps
the top-k join problem to a search problem in the Cartesian
space of the ranked inputs. It uses a version of the A* search
algorithm to guide navigation in this space to produce the
results. In [37], ranked join indices are proposed for the
efficient evaluation of top-k join queries. The indices need to
be pre-produced, and make the number of requested results,
i.e. k, limited to a predefined number. In [24], the relational
algebra is extended to support rank queries as a first-class
construct. In [25], top-k join query processing is extended to
aggregate queries. Approximate ranked query processing
techniques, which are proposed in [7], deal with the cases
where the system is not able to return a complete answer to
the top-k query.
Recently, uncertain data management has received much
attention in the database community (see [1] for a survey).
One of the well-studied problems in uncertain databases is
the evaluation of top-k queries that have more complex
semantics than in exact databases. There have been multiple
definitions for uncertain top-k queries (e.g. see [11][19][35]).
In [35], two main first definitions, namely U-Top-k and U-
kRank, have been proposed. U-Top-k returns the most
probable top-k set that belong to possible worlds (possible
databases), and U-kRank considers the winner in every
individual rank. In [19], PT-k queries are defined that return
the top-k sets whose probability of being one of the top-k
results is higher than a given threshold. Another definition in
[11] is based on expected rank, and returns the tuples whose
expected rank in all possible worlds is less than k.

10 Conclusion
The most efficient algorithm proposed so far for
answering top-k queries over sorted lists is the
Threshold Algorithm (TA). However, TA may still
incur a lot of useless accesses to the lists. In this paper,
we proposed two algorithms which stop much sooner
and thus are more efficient than TA.
First, we proposed the BPA algorithm whose stopping
mechanism takes into account the seen positions in the
lists. For any database instance (i.e. set of sorted lists),
we proved that BPA stops at least as early as TA. We
showed that the number of sorted/random accesses
done by BPA is always less than or equal to that of
TA, and thus its execution cost is never higher than
TA. We also showed that the number of sorted/random
accesses done by BPA can be (m-1) times lower than
that of TA. Thus, its execution cost can be (m-1) times
lower than that of TA.
Second, based on BPA, we proposed the BPA2
algorithm which is much more efficient than BPA. In
addition to its efficient stopping mechanism, BPA2
avoids re-accessing data items via sorted and random
access, without having to keep data at the query
originator. We showed that the number of accesses to
the lists done by BPA2 can be about (m-1) times lower
than that of BPA.
Third, we proposed several techniques using different
data structures for managing best positions in BPA
and BPA2 and analyzed their performance in terms of
access time, space requirements and accuracy.
Although the superiority of BPA against TA by a
factor of O(m) does not invalidate the TA’s instance
optimality (because it assumes that m is a constant),
we showed that the existence of deterministic
algorithms such as BPA proves that the main
argument, which is used for proving the instance
optimality of TA in [16], is incorrect. In other words,
the proof of TA’s instance optimality is incorrect, and
thus TA may not be instance optimal.
To validate our contributions, we implemented our
algorithms as well as TA as baseline. We evaluated
the performance of the algorithms over both
independent and correlated databases wrt three
representative metrics (execution cost, number of
accesses and response time). The performance
evaluations show that, over all test databases and wrt
all the metrics, our algorithms always outperform TA
significantly. For example, wrt execution cost, BPA
and BPA2 outperform TA by a factor of
approximately (m+6)/8 and (m+1)/2 respectively (for
m>2). e.g. for m=10, the factor is 2 and 5.5,
respectively. Thus, as m increases, the performance
gains of our algorithms versus TA increase
significantly. Note that in some applications, the
number of lists, i.e. m, is very large, e.g. it may range
from a few tens to a few thousands [8]. For example,
consider a network monitoring application that
monitors the activities of the users of some specified
IP locations. The specified locations may be
numerous. For each location, the application maintains

17

a list of the accessed URLs ranked by their frequency of
access. In this application, an interesting query for the
network administrator is “what are the top-k popular
URLs?”.

References
[1] Aggarwal, C.C., S. Yu, P.: A Survey of Uncertain Data

Algorithms and Applications. IEEE Trans. Knowl. Data
Eng., 21(5) (2009) 609-623.

[2] Akbarinia, R., Pacitti E., Valduriez, P.: Best position
algorithms for top-k queries. Int. Conf. on Very Large
Databases (VLDB), 2007, pp. 495-506.

[3] Akbarinia, R., Pacitti E., Valduriez, P.: Reducing network
traffic in unstructured P2P systems using Top-k queries.
Distributed and Parallel Databases, 19(2) (2006) 67-86.

[4] Balke, W.-T., Nejdl, W., Siberski, W., Thaden, U.:
Progressive distributed top-k retrieval in peer-to-peer
networks. Int. Conf. on Data Engineering (ICDE), 2005, pp.
174-185

[5] Bast, H., Majumdar, D., Schenkel, R., Theobald, M.,
Weikum, G.: IO-Top-k: index-access optimized top-k query
processing. Int. Conf. on Very Large Databases (VLDB),
2006, pp. 475-486.

[6] Bloom, B.: Space/time tradeoffs in hash coding with
allowable errors. Communications of the ACM, 13(7) (1970)
422-426.

[7] Candan, K.S., Li, W.-S., Priya, M.L.: Similarity-based
ranking and query processing in multimedia databases. Data
& Knowledge Engineering, 35(3) (2000) 259-298.

[8] Cao, P., Wang, Z.: Efficient top-k query calculation in
distributed networks. ACM Symp. on Principles of
Distributed Computing (PODC), 2004, pp. 206-215.

[9] Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k
selection queries over multimedia repositories. IEEE Trans.
on Knowledge and Data Engineering, 16(8) (2004) 992-
1009.

[10] Ciaccia, P., Patella, M.: Searching in metric spaces with user-
defined and approximate distances. ACM Transactions on
Database Systems (TODS), 27(4) (2002) 398-437.

[11] Cormode, G., Li, F., Yi., K.: Semantics of Ranking Queries
for Probabilistic Data and Expected Ranks. Int. Conf. on
Data Engineering (ICDE), 2009, pp. 305-316.

[12] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to
algorithms. MIT Press / McGraw-Hill (1990).

[13] Das, G., Gunopulos, D., Koudas, N., Sarkas, N.: Ad-hoc Top-
k Query Answering for Data Streams. Int. Conf. on Very
Large Databases (VLDB), 2007, pp. 183-194.

[14] Fagin, R.: Combining fuzzy information from multiple
systems. J. of Computer and System Sciences, 58 (1) (1999)
83-99.

[15] Fagin, R., Lotem, A., Naor, M.: Optimal aggregation
algorithms for middleware. ACM Symp. on Principles of
Database Systems (PODS), 2001, pp. 102-113.

[16] Fagin, R., Lotem, J., Naor, M.: Optimal aggregation
algorithms for middleware. J. of Computer and System
Sciences, 66(4) (2003) 614-656.

[17] Güntzer, U., Kießling, W., Balke, W.-T.: Towards efficient
multi-feature queries in heterogeneous environments. IEEE
Int. Conf. on Information Technology, Coding and
Computing (ITCC), 2001, pp. 622-628.

[18] Hou U, L., Mamoulis, N., Berberich, K., Bedathur, S. J.:
Durable top-k search in document archives. ACM Int. Conf.
on Management of Data (SIGMOD), 2010, pp. 555-566.

[19] Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries
on uncertain data: a probabilistic threshold approach.
ACM Int. Conf. on Management of Data (SIGMOD),
2008, pp. 673-686.

[20] Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting
Top-k Join Queries in Relational Databases. Int.
Conf. on Very Large Databases (VLDB), 2003, pp.
754-765.

[21] Jin, C., Yi, K., Chen, L., Xu Yu, J., Lin, X.: Sliding-
window top-k queries on uncertain streams. VLDB
Journal, 19(3) (2010) 411-435.

[22] Kimelfeld, B., Sagiv, Y.: Finding and approximating
top-k answers in keyword proximity search. ACM
Symp. on Principles of Database Systems (PODS),
2006, pp. 173-182.

[23] Koudas, N., Ooi, B.C., Tan, K.L., Zhang, R.:
Approximate NN queries on streams with
guaranteed error/performance bounds. Int. Conf. on
Very Large Databases (VLDB), 2004, pp. 804-815.

[24] Li, C., Chang, K. C.-C., Ilyas, I.F., Song, S.:
RankSQL: Query Algebra and Optimization for
Relational Top-k Queries. ACM Int. Conf. on
Management of Data (SIGMOD), 2005, pp. 131-
142.

[25] Li, C., Chang, K. C.-C., Ilyas, I.F.: Supporting ad-hoc
ranking aggregates. ACM Int. Conf. on Management
of Data (SIGMOD), 2006, pp. 61-72.

[26] Li, F., Yi, K., Le, W.: Top- queries on temporal data.
VLDB Journal, 19(5) (2010) 715-733.

[27] Metwally, A., Agrawal, D., El Abbadi, A.: An
integrated efficient solution for computing frequent
and top-k elements in data streams. J. ACM
Transactions on Database Systems (TODS), 31(3)
(2006) 1095-1133.

[28] Michel, S., Triantafillou, P., Weikum, G.: KLEE: A
framework for distributed top-k query algorithms.
Int. Conf. on Very Large Databases (VLDB), 2005,
pp. 637-648.

[29] Mitzenmacher, M.: Compressed bloom filters. ACM
Symp. on Principles of Distributed Computing
(PODC), 2001, pp. 144-150.

[30] Mouratidis, K., Bakiras, S., Papadias, D.: Continuous
monitoring of top-k queries over sliding windows.
ACM Int. Conf. on Management of Data (SIGMOD),
2006, pp. 635-646.

[31] Natsev, A., Chang, Y.-C., Smith, J. R., Li, C.-S.,
Vitter, J. S.: Supporting incremental join queries on
ranked input. Int. Conf. on Very Large Databases
(VLDB), 2001, pp. 281-290.

[32] Persin, M., Zobel, J., Sacks-Davis, R.: Filtered
document retrieval with frequency-sorted indexes. J.
of the American Society for Information Science,
47(10), pp. 749-764 (1996)

[33] Re, C., Dalvi, N.N., Suciu, D.: Efficient Top-k Query
Evaluation on Probabilistic Data. Int. Conf. on Data
Engineering (ICDE), pp. 886-895 (2007)

[34] Silberstein, A., Braynard, R., Ellis, C.S., Munagala,
K., Yang, J.: A sampling-based approach to
optimizing top-k queries in sensor networks. Int.
Conf. on Data Engineering (ICDE) (2006)

[35] Soliman, M.A., Ilyas, I.F., Chang, K. C.-C.: Top-k
Query Processing in Uncertain Databases. Int. Conf.
on Data Engineering (ICDE), 2007, pp. 896-905.

[36] Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k
Exploration of Query Candidates for Efficient
Keyword Search on Graph-Shaped (RDF) Data. Int.

18

Conf. on Data Engineering (ICDE), 2009, pp. 405-416.
[37] Tsaparas, P., Palpanas, T., Kotidis, Y., Koudas, N.,

Srivastava, D.: Ranked Join Indices. Int. Conf. on Data
Engineering (ICDE), 2003.

[38] Van Emde Boas, P.: Preserving order in a forest in less than
logarithmic time. 16th Annual Symposium on Foundations
of Computer Science (FOCS), 1975, pp. 75-84.

[39] Wu, M., Xu, J., Tang, X., Lee, W-C.: Monitoring top-k query
in wireless sensor networks. Int. Conf. on Data Engineering
(ICDE), 2006.

[40] Zhang, W., Lin, X., Zhang, Y., Pei, J., Wang, W.: Threshold-
based probabilistic top- dominating queries. VLDB Journal,
19(2) (2010) 283-305.

[41] Zipf, G.K.: Human Behavior and the Principle of Least
Effort. Addison-Wesley Press (1949).

