
HAL Id: lirmm-00607898
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00607898

Submitted on 11 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building a Peer-to-Peer Content Distribution Network
with High Performance, Scalability and Robustness

Manal El Dick, Esther Pacitti, Reza Akbarinia, Bettina Kemme

To cite this version:
Manal El Dick, Esther Pacitti, Reza Akbarinia, Bettina Kemme. Building a Peer-to-Peer Content
Distribution Network with High Performance, Scalability and Robustness. Information Systems, 2011,
36 (2), pp.222-247. �10.1016/j.is.2010.08.007�. �lirmm-00607898�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00607898
https://hal.archives-ouvertes.fr

Building a Peer-to-Peer Content Distribution Network with High Performance, Scalability
and Robustness

Manal El Dicka,∗, Esther Pacittib, Reza Akbariniac, Bettina Kemmed

aINRIA & LINA, University of Nantes
bINRIA & LIRMM, University of Montpellier 2

cINRIA & LINA, Nantes
dMcGill University, Montreal, Canada

Abstract

Content Distribution Networks (CDN) are fundamental, yet expensive technologies for distributing the content of web-servers to
large audiences. The P2P model is a perfect match to build a low-cost and scalable CDN infrastructure for popular websites by
exploiting the underutilized resources of their user communities. However, building a P2P-based CDN is not a straightforward
endeavor. In contrast to traditional CDNs, peers are autonomous and volunteer participants with their own heterogeneous interests
that should be taken into account in the design of the P2P system. Moreover, churn rate is much higher than in dedicated CDN
infrastructures, which can easily destabilize the system and severely degrade the performance. Finally and foremostly, while many
P2P systems abstract any topological information about the underlying network, a top priority of a CDN is to incorporate locality-
awareness in query routing in order to locate close-by content. This paper aims at building a P2P CDN with high performance,
scalability and robustness. Our proposed protocols combine DHT efficiency with gossip robustness and take into account the
interests and localities of peers. In short, Flower-CDN provides a hybrid and locality-aware routing infrastructure for user queries.
PetalUp-CDN is a highly scalable version of Flower-CDN that dynamically adapts to variable rates of participation and prevent
overload situations. In addition, we ensure the robustness of our P2P CDN via low-cost maintenance protocols that can detect and
recover from churn and dynamicity. Our extensive performance evaluation shows that our protocols yield high performance gains
under both static and highly dynamic environments. Furthermore, they incur acceptable and tunable overhead. Finally we provide
main guidelines to deploy Flower-CDN for the public use.

Keywords: P2P, CDN, locality-awareness, interest-awareness, robustness, scalability

1. Introduction

Content Distribution Networks (CDN) such as Akamai are
well-known technologies for distributing the content of web-
servers to large audiences. The main mechanism is to replicate
requested content at strategically placed dedicated machines.
As they intercept and serve the clients’ queries, these technolo-
gies decrease the workload on the original web-servers, reduce
bandwidth costs, and keep the client’s perceived latency low.
Unfortunately, non-profit websites (e.g., related to charities, so-
cial organizations, scientific associations, etc.) often cannot af-
ford the expenses of deploying and administrating a dedicated
CDN infrastructure. Nevertheless, such websites often attract
substantial loads, either due to their international audience or by
being referenced by other popular websites. Thus, their under-
provisioned servers become easily overloaded with queries and
may fail to maintain an acceptable quality of service to their
clients. Furthermore, remote clients experience long latency

∗Corresponding author. Tel: +33670433179; Fax:.
Email addresses: manal.el-dick@univ-nantes.fr (Manal El Dick),

esther.pacitti@univ-nantes.fr (Esther Pacitti),
reza.akbarinia@univ-nantes.fr (Reza Akbarinia),
kemme@cs.mcgill.ca (Bettina Kemme)

even if the server is not overloaded. Thus, what these websites
need is a distributed content distribution infrastructure that can
quickly deliver the content at large scale without the large costs
of traditional CDNs.

In this paper, we propose such a scalable and cheap CDN
based on the principles of Peer-to-Peer (P2P) technology. The
last decade has witnessed a paradigm shift in the design of
internet-scale distributed systems, with widespread prolifera-
tion of the P2P model for a wide range of applications. In a
P2P system, each node, called a peer, is client and server at
the same time – using the resources of other peers, and offering
other peers its own resources. As such, the P2P model nat-
urally offers scalability: as more peers join the system, they
contribute to the aggregate resources of the P2P network. We
believe that the P2P model is a perfect match to build a CDN in-
frastructure for popular and under-provisioned websites by ex-
ploiting the underutilized resources of their user communities.
In fact, many projects have demonstrated that users are willing
to contribute to organizations whose cause they support (e.g.,
fund-raising and editing in Wikipedia, sharing idle computer
resources in SETI@home, etc.).

Our basic idea is simple and conceptually similar to file-
sharing applications: After a peer has retrieved a web-page, it

Preprint submitted to Information Systems February 4, 2010

caches it and provides it to other peers that request it. Thus,
once a web-page is cached by peers, successive requests can
be served from the P2P network, alleviating the load on the
web-server. However, CDNs have stringent performance re-
quirements that are quire different to what is expected from a
file-sharing system. Any CDN has to focus on two performance
metrics: response time and hit ratio. A traditional CDN repli-
cates most of the content at strategic locations and thus, the
CDN can serve many client requests leading to a high hit ratio.
Additionally, response times are short if efficient routing algo-
rithms find replicas close to the client in network locality. Tradi-
tional CDNs generally incorporate locality-awareness into their
query routing mechanism as it has the potential to dramatically
reduce response times as well as bandwidth consumption and
thus, increase system scalability.

However, building a P2P-based CDN is not a straightforward
endeavor. In contrast to traditional CDNs, peers are not dedi-
cated servers but autonomous and volunteer participants with
their own heterogenous interests. Thus, they should not be
forced to store web-pages they are not interested in but should
only serve content they are willing to. Additionally, churn rate
is much higher than in dedicated CDN infrastructures. In fact,
the participation of peers is highly dynamic, implying thou-
sands of continuous joins and leaves, which creates the ef-
fect of churn. This may destabilize the system and severely
degrade the performance in the absence of efficient detection
and recovery protocols. Furthermore, while many P2P systems
abstract any topological information about the underlying net-
work, we have to make locality-awareness a top priority in order
to achieve short query response times.

Our solutions exhibit several unique characteristics that en-
able us to overcome all of the above mentioned challenges.

• Flower-CDN is a P2P CDN that enables any website to
efficiently distribute its content, with the help of the non-
profit community interested in its content. Flower-CDN
introduces a novel DHT usage and management, called D-
ring, that relies on a new locality- and interest-aware key
service. It helps new peers to quickly find peers in the
same locality that are interested in the same website.

• We propose the organization of peers that share the same
locality and are interested in the same website into un-
structured overlay clusters (called petals). Within a petal,
peers use gossip protocols to exchange information about
their content and contacts, allowing Flower-CDN to main-
tain accurate information despite dynamic changes in or-
der to support eventual queries.

• We use this novel two-layered architecture consisting of a
D-ring and petals to provide hybrid locality-aware query
routing. The D-ring ensures reliable access for new
clients, while subsequent searches are performed within
the petals. Thus, most of the query routing takes place
within a local cluster leading to short query search and lo-
cal data transfer.

• We propose PetalUp-CDN, which dynamically adapts to

increasing numbers of participants in order to avoid over-
load situations in the context of a large-scale application.
Additionally, PetalUp-CDN deals efficiently with reverse
contexts where peers progressively depopulate the system.

• We describe how to maintain Flower-CDN and PetalUp-
CDN in face of dynamic changes and failures, by relying
on low-cost gossip protocols and a locality-aware mainte-
nance protocol for our novel D-ring.

• We present both an analytical and an extensive simulation-
based performance evaluation. It shows that Flower-CDN
yields high performance gains under both static and highly
dynamic environments. Furthermore, Flower-CDN incurs
acceptable overhead, which can be tuned according to hit
ratio requirements and bandwidth availability.

• We provide guidelines to deploy Flower-CDN for public
use. We propose to implement Flower-CDN functionality
as an extension of the user’s web browser and cover secu-
rity and privacy issues in a simple and practical manner.
As such, the user enjoys a transparent, flexible and highly
configurable experience with Flower-CDN.

In our previous work [1, 2], we introduced Flower-CDN and
its scalable version PetalUp-CDN. This paper further refines
and develops our initial proposals. In particular, we elaborate
here on the algorithms of PetalUp-CDN, mainly with respect
to the expansion of D-ring and its shrink. Further, we general-
ize and extend the maintenance protocols to cover all possible
scenarios and dynamically adapt D-ring and the petals. This
paper also deepens the performance analysis under churn and
investigates the signalling overhead both analytically and em-
pirically. Moreover it provides the first performance evaluation
of PetalUp-CDN through extensive simulation and discussion.
The final contribution of this paper addresses the architectural
changes that are required to deploy Flower-CDN for public use.

Roadmap:. Section 2 provides a detailed presentation of
Flower-CDN. PetalUp-CDN is described in Section 3. Section
4 discusses the maintenance protocols that ensure the robust-
ness of Flower-CDN and PetalUP-CDN under churn. A cost
analysis that focuses on the gossip overhead of our approach is
given in Section 5. Simulation methodology and results are pre-
sented in Section 6. Section 7 gives some guidelines about the
deployment of Flower-CDN for public use. Section 7 describes
some related work before concluding in Section 9.

2. Flower-CDN

Flower-CDN is a P2P CDN that strictly relies on interested
clients rather than dedicated and expensive servers. In this sec-
tion, we first give an overview of Flower-CDN, then we explore
the models of D-ring and the petals.

2

2.1. Overview and Preliminaries

Flower-CDN is designed to support a set W of websites ws,
each of which has its own requestable content (e.g., set of web-
pages and documents). A website ws is supported by Flower-
CDN as long as there are a sufficient number of clients willing
to participate on behalf of ws in order to enjoy a better access
to the content of ws.

We implement locality-awareness in Flower-CDN via the
binning technique [3]. A peer measures its RTT to a set of
well-known landmarks -spread across the network- and orders
them by increasing latency. Physically close peers are likely to
have the same landmark ordering. Thus, each possible ordering
identifies a locality loc: 1 ≤ loc ≤ k with k the total number of
localities.

Figure 1 illustrates the architecture of Flower-CDN. Partic-
ipant peers belonging to the same locality loc and interested
in the same website ws build together an unstructured over-
lay noted petal(ws, loc), using gossip protocols. These peers,
called content peers and noted cws,loc, cache, manage and ex-
change content of ws, thus considerably relieving the server
of ws from its query load. Flower-CDN charges one peer of
each petal(ws, loc), the role of a directory peer (noted dws,loc):
dws,loc knows about all content peers cws,loc and keeps informa-
tion about their stored content.

Directory peers are also embedded in D-ring, a structured
overlay based on a Distributed Hash Table (DHT), to support
queries coming from new clients, that request objects of W for
the first time. That is, Flower-CDN relies on a hybrid archi-
tecture consisting of a set of independent petals linked via one
directory overlay (i.e., D-ring).

Instead of querying server ws, a new client located in loc,
submits its query to D-ring and gets directed to the directory
peer in charge of ws in loc i.e., dws,loc. Then, dws,loc tries to re-
solve the query while relying on its petal or some neighboring
petals related to ws. The query is hence redirected to some con-
tent peer cws,loc that holds the requested object; cws,loc serves the
query, i.e., it directly transfers the object to the client. Then,
the client can join petal(ws, loc) as a content peer cws,loc, if it is
willing to contribute storage resources with respect to the con-
tent of ws. For further queries, cws,loc searches directly in its
petal(ws, loc) instead of relying on D-ring.

2.2. D-ring Model

The directory overlay D-ring is a structured overlay with a
novel DHT mechanism that leverages interests and network lo-
calities of peers to construct the overlay and efficiently route
queries. In this section, we first describe the different archi-
tectural aspects of D-ring (i.e., key management and directory
structure), then we discuss the functionality of D-ring which
consists of a P2P directory service.

2.2.1. Key Management
In order to ensure a fast lookup, D-Ring can be integrated

into any existing structured overlay based on a standard DHT
(e.g., Chord [4], Pastry [5]). For each website ws ∈ W, the di-
rectory overlay enables k participant peers from Pws, where k is

Figure 1: Flower-CDN architecture with websites α and β and four localities.

Figure 2: Peer ID structure in D-ring.

the number of localities, to join as directory peers for ws: each
locality loc is covered by a directory peer dws,loc, to empower
locality-aware redirection of queries. In the example of Figure
1, Flower-CDN covers 2 websites α and β and 4 localities, i.e.,
k = 4. Thus, both websites α and β have 4 directory peers.

In DHT-based systems, peer identifiers (noted ID) are chosen
from an identifier space S = [1 · · 2m − 1]; where m is the ID
length in bits. Based on these identifiers data placement is then
typically determined by a hash function which maps data iden-
tifiers to peer identifiers. That is, every object receives a key,
and the peer with the ID closest to the object key is responsible
for storing the object or pointers to the locations of object repli-
cas. When a client looks for an object with a given key, it now
contacts any peer in the DHT and the request is routed through
the DHT until the peer with the ID closest to the object key is
found. This routing service takes typically in the order of log(n)
hops where n is the number of peers in the DHT.
In Flower-CDN, we do not want to map data items to peers but
we want that a query for website ws posed by a peer in locality
loc quickly finds the directory peer dws,loc. To achieve this and
exploit the existing DHT infrastructure, we only have to assign
a directory peer a very specific peer ID, namely an identifier
based on the website and locality it represents. As shown in
Figure 2, the m bits of a peer ID are split into 2 segments, a
website ID and a locality ID:

3

Figure 3: D-ring distribution of keys given that k = 8 and W = {α, β}.

• locality ID:

– identifier of the locality to which the directory peer
belongs. It is expressed using the lowest bit-segment
of length m1.

– A locality is mapped to an ID between [0 · · k − 1];
m1 should be chosen such that 2m1 ≥ k.

• website ID:

– identifier of the website which the directory peer
serves. It is expressed using the highest bit-segment
of length m2 = (m − m1).

– The website ID related to ws is obtained uniformly
at random from the the subspace S ′ = [1 · · 2m2 − 1].
The identifier is obtained by hashing the url of ws
(noted hash(ws)).

Directory peers in the same locality have the same locality ID.
Moreover, directory peers for the same website have the same
website ID; they have successive peer IDs and therefore are
neighbors on D-ring. As shown in Figure 1, for website β, dβ,0
is succeeded by dβ,1, then dβ,2, etc. The same order applies to
website α. If a query for an object of website ws is now sub-
mitted to D-Ring from locality loc, it is not the object key that
is the input for the DHT routing service. Instead the search key
is the concatenation of ws and loc. The underlying DHT infras-
tructure will then find dws,loc as its peer ID exactly matches the
search key.

An example is given in Figure 3 with k = 8, W = {α, β},
4 bits for the website ID and 3 bits for the locality ID. With
hash(α) = 0, the website ID related to α is 0. To obtain the
range of peer IDs assigned to the directory peers of α, we vary
the locality ID from 0 and 7 (i.e., (k − 1)) and concatenate it to
the website ID of α. Thus, peer IDs and search keys for α range
between 0 and 7. Similarly, with hash(β) = 15, keys for β range
between 240 and 247.

Figure 4: Query submitted by F, a new client of β in locality loc = 1.

2.2.2. Directory Tools
In the following, we use the notation dws,loci when we need

to differentiate between directory peers of the same website ws
wrt. different localities. Besides its DHT-based routing table, a
directory peer dws,loci maintains:

1. Directory-index(ws, loci): a directory that indexes the con-
tent of ws stored in petal(ws, loci). The directory contains
an entry for each content peer cws,loci , consisting of 3 fields:

• information about the address of cws,loci (e.g., IP ad-
dress)

• age field useful for failure and leave detection (pre-
sented in Section 2.3.1)

• list of object identifiers (e.g., hash(url)) describing
the content held by cws,loci

We say that dws,loci has a complete view of petal(ws, loci),
represented by its directory-index.

2. A small set of Directory-summaries(ws, loc j): these are
summaries of directory-indexes maintained by other di-
rectory peers dws,loc j (i , j). dws,loc j refers to any other
directory peer of ws that dws,loci knows via its routing table.
Directory-summary(ws, loc j) is represented by a Bloom
filter, in a similar way as has been done for cache sum-
maries in [6], using the identifiers of the objects listed in
directory-index(ws, loc j).

Figure 4 shows a part of D-ring and focuses on the directory
peer dβ,1 and three content peers for (β, 1), namely A, B and C.
dβ,1 maintains directory-index(β, 1) that lists, for each peer in
petal(β, 1), their objects (e.g., A holds objects x and y which are
initially provided by website β). Moreover, dβ,1 stores directory
summaries received from its direct neighbors i.e., dβ,0 and dβ,2.

2.2.3. P2P Directory Service
D-ring acts as a P2P directory service for clients wishing

to use and contribute to Flower-CDN. Mainly, it provides two
functionalities. First, it supports first queries coming from new
clients and handles them instead of the original webservers.
Second, D-ring serves as a reliable access to Flower-CDN for
those new participants: by routing its first query over D-ring,

4

a client is guided to the petal related to its locality loc and its
interest ws and thus joins as a directory peer or content peer.

Based on the standard DHT routing service, D-ring routes
query messages targeting a website ws and a locality loc using
a key composed of the website ID of ws and the locality ID of
loc (noted IDws,loc). Given that IDws,loc also represents the ID
of dws,loc (cf. Section 2.2.1), the message is normally delivered
to the target directory peer dws,loc. In case dws,loc has not joined
D-ring yet, the message reaches one of its direct neighbors on
D-ring (i.e., which has the numerically closest ID to IDws,loc).

A new client of website ws that is located in loc routes its first
query over D-ring using IDws,loc. In case the directory peer in
charge of ws wrt. loc (i.e., dws,loc) does not exist, the new client
joins D-ring to be dws,loc using the standard DHT join procedure
(see Section 4 for a detailed explanation). Otherwise, the new
client joins petal(ws, loc) as a content peer via the existing di-
rectory peer. Below, we first detail how a query of a new client
is handled by an existing directory peer, then, we discuss how
the client joins its petal as a content peer.

2.2.4. Query Processing
Consider query(ows), a query that is submitted by a new

client in locality i and that requests an object of the content of
ws noted ows. Upon receiving query(ows), dws,loci processes it as
shown in Algorithm 1. dws,loci searches first its directory index
for the requested object ows. If directory-index(ws, loci) shows
that ows is stored by some content peer cws,loci , dws,loci redirects
query(ows) to cws,loci after checking its aliveness. Then, cws,loci

serves the object ows to the client. Otherwise, dws,loci queries
the directory summaries, to check if some dws,loc j might have
the requested object in its directory index. In case dws,loc j is
found, dws,loci forwards query(ows) to dws,loc j which proceeds
with process(query(ows)). When no satisfying directory or con-
tent peer is found, the client redirects its query(ows) to the web-
site ws.

Figure 4 shows a new client F of website β with a query
q for object x. Assuming that client F is located in loc = 1,
q is forwarded to dβ,1 which searches its directory index for
x. Then, dβ,1 redirects q to content peer A or C, which hold a
copy of x and thus can serve the query. If F requests object
x′ which is not contained by any peer in petal(β, 1), dβ,1 first
checks its directory-summaries for (β, 0) and (β, 2) to see if they
might have x′ in their directory index. If it appears so, dβ,1
forwards q accordingly to either dβ,0 or dβ,2. Otherwise, the
client F redirects q to the website β.

2.2.5. Joining the Petal
After processing its query, the client interested in ws and lo-

cated in loc joins petal(ws, loc) as a content peer cws,loc. As
shown in the end of Algorithm 1, the appropriate dws,loc adds
a new entry in its directory index: the client with its requested
object and age zero. Furthermore, the client is provided with a
list of contacts from its petal to achieve its integration. The next
section brings more insight into this issue.

Algorithm 1 - process(query(ows)) at dws,loci

cws,loci ← directory-index(ws, loci).lookup(ows)
if cws,loci != null and cws,loci is alive then

redirect query(ows) to cws,loci

else
dws,loc j ← directory-summaries.lookup(ows)
if dws,loc j != null and dws,loc j is alive then

redirect query(ows) to dws,loc j

else
redirect query(ows) to ws

end if
end if
if sameWebsite(dws,loci , client) == true and
sameLocality(dws,loci , client) == true then

directory-index(ws, loci).add(client, ows, 0)
end if

2.3. Petal Model
As previously introduced, petal(ws, loc) consists of a direc-

tory peer dws,loc and several content peers cws,loc, all of which
reside in locality loc and are interested in the content provided
by ws. Petal(ws, loc) expands progressively as more clients of
ws in loc join Flower-CDN.

Each petal(ws, loc) provides a search infrastructure for
queries of content peers cws,loc. Once a client has become a
content peer cws,loc, any subsequent queries that the client poses
for website ws directly use petal(ws, loc) instead of D-ring.
For this purpose, within the petal, content peers gossip to ex-
change and discover other content peers cws,loc and summaries
of their stored content (more details are given in Section 2.3.1).
Hence, cws,loc can search the summaries of its petal(ws, loc) to
see where a copy of its requested object might be stored. In the
remaining of this section, we describe how a petal is managed
via gossip protocols. Then, we present how a query is processed
within a petal.

2.3.1. Gossip-Based Management
Gossip-style communication is used throughout a petal to

disseminate summaries and their updates in an epidemic man-
ner. Peers also gossip to discover new members in their overlay
and to detect failed ones. We chose gossip-style communica-
tion for three reasons. First, it enables robust self-monitoring
of clusters: each peer is in charge of monitoring a few random
others, sharing the monitoring cost and thus ensuring load fair-
ness [7]. Second, it eases information dissemination, such that
peers discover new content and new peers providing some con-
tent [8]. Finally, it is easy to deploy, robust and resilient to
failure.
Basically, gossip proceeds as follows: a peer pi knows a group
of other peers or contacts, which are maintained in a list called
pi’s view. Periodically (with a gossip period noted Tgossip), pi

selects a contact p j from its view to gossip: pi sends its infor-
mation to p j and receives back other information from p j. The
gossip algorithm used in Flower-CDN is inspired by gossip-
based approaches for P2P membership management, such as
[7].

5

2.3.2. Gossip Tools
To support gossip, each cws,loc locally manages the following

elements:

1. content-list(cws,loc): a list of the object identifiers of the
content currently held by cws,loc. The list is used during
gossip exchanges in two ways:

• current content-summary(cws,loc): a summary of the
current content-list(cws,loc) built using a Bloom filter.

• ∆list(cws,loc): a sublist that reflects the new changes
in the list (i.e., object deletion or insertion) wrt. a
threshold of changes (detailed later in this section)

2. view(cws,loc): a partial view of petal(ws, loc), which con-
tains a fixed number Vgossip of entries, each one referring
to some other c′ws,loc. A view entry referring to a contact
c′ws,loc contains three fields:

• information about the address of c′ws,loc (e.g., IP ad-
dress)

• age: numeric field that denotes the age of the entry
since the moment it was created (not an indication of
c′ws,loc’s lifetime)

• content-summary(c′ws,loc)

Whenever cws,loc gossips with c′ws,loc, cws,loc updates the entry
related to c′ws,loc in view(cws,loc) as follows: the age of c′ws,loc is
set to zero, and a current content-summary(c′ws,loc) is received
from c′ws,loc; thus the age zero refers to the most recent entry
status. Periodically (i.e., with period Tgossip), cws,loc increments
by 1 the age of all its view entries. Thus, a high age reflects that
cws,loc has not heard recently about c′ws,loc in order to refresh its
view entry.

When cws,loc joins petal(ws, loc), view(cws,loc) is initialized
upon its first contact with a peer from its petal (i.e., another
c′ws,loc or dws,loc). In Figure 4, the new client F that has con-
tacted dβ,1 for a query, may initialize its view in two different
ways. In case its query is served from some cβ,1 (e.g., A), F’s
view is initialized from a subset of A’s view. In all other cases
(i.e., query served from ws or petal(β, 2)), it is dβ,1 that provides
F with a subset of its view; then, F’s initial view will not have
content summaries but will progressively fill them via gossip
exchanges.

2.3.3. Gossip Behavior
The gossip behavior of each content peer cws,loc is illustrated

in Algorithm 2: the active behavior describes how cws,loc ini-
tiates a periodic gossip exchange, while the passive behav-
ior shows how cws,loc reacts to a gossip exchange initiated by
some other content peer c′′ws,loc. For simplicity, we refer to
view(cws,loc) in the algorithm by view.

The active behavior is launched after each time interval
Tgossip. After incrementing the age of its view entries, cws,loc

selects from its view: (1) c′ws,loc, the oldest contact via se-
lect oldest() and (2) viewSubset, a random susbet of Lgossip

view entries (0 < Lgossip ≤ Vgossip) via select subset(). Then,
cws,loc sends to c′ws,loc gossipMsg, a message that contains view-
Subset and a current content-summary(cws,loc). cws,loc receives

Algorithm 2 Gossip behavior of cws,loc

{active behavior}
loop

wait(Tgossip)
view. increment age()
c′ws,loc ← view.select oldest()
viewS ubset← view.select subset()
gossipMsg← 〈content-summary(cws,loc), viewS ubset〉
send gossipMsg to c′ws,loc
receive gossipMsg′ from c′ws,loc
viewEntry← 〈c′ws,loc, 0, content-summary(c′ws,loc)〉
bu f f er ← merge(view, gossipMsg′.viewS ubset,
viewEntry)
view← bu f f er.select recent()

end loop

{passive behavior}
loop

waitGossipMessage()
receive gossipMsg′′ from c′′ws,loc
viewS ubset← view. select subset()
gossipMsg← 〈content-summary(cws,loc), viewS ubset〉
send gossipMsg to c′′ws,loc
viewEntry← 〈c′′ws,loc, 0, content-summary(c′′ws,loc)〉
bu f f er ← merge(view, gossipMsg′′.viewS ubset,
viewEntry)
view← bu f f er.select recent()

end loop

in exchange gossipMsg′ containing similar information from
c′ws,loc; cws,loc creates viewEntry, a view entry related to c′ws,loc,
with the age 0 and the current summary of c′ws,loc. The proce-
dure merge() collects in a buffer all the entries from both the lo-
cal view and the received information from c′ws,loc, and discards
the duplicates: if two entries related to the same contact exist,
only the instance with the smallest age value is kept. Then, the
procedure select recent() selects the most recent Vgossip entries
from the buffer, i.e., the ones with the smallest age values, in
order to limit the view size to Vgossip.

The passive behavior is triggered when cws,loc receives a gos-
sip messsage containing summary and view information from
some content peer c′′ws,loc. Then, cws,loc answers by sending back
a gossip message with its own summary and view information,
and updates its local view via merge() and select recent() as
described previously.

Through both active and passive behaviors of Algorithm 2,
cws,loc and its gossip partner, i.e., c′′ws,loc or c′ws,loc, exchange their
current content summaries; they add new view entries of each
other in their local views or refresh the existing ones in case
they already know each other.

2.3.4. Push Behavior
Recall that the first access to petal(ws, loc) is provided by D-

ring via its directory peer dws,loc that maintains a complete view
(or directory-index) of its petal. dws,loc handles first queries of

6

new clients targetting petal(ws, loc) and may provide them, in
some cases, an initial view of petal(ws, loc) to allow them to
integrate.

To maintain the director-index(ws,loc) up-to-date, each con-
tent peer cws,loc needs to regularly communicate with dws,loc. For
this purpose, cws,loc keeps track of the current dws,loc and main-
tains in its view a special entry for dws,loc that only contains its
address and its age information (noted dir-info). cws,loc periodi-
cally increments the age of dir-info, as it does with all its view
entries. cws,loc sends its dir-info along with every gossip mes-
sage sent to another content peer. This process spreads continu-
ous updates about the directory peer throughout its petal, which
also serves to detect its failure and ensure the recovery (further
explanation is given in Section 4.2).

Algorithm 3 Push behavior of cws,loc

loop
counter ← list. count changes()
if counter ≥ threshold then

∆list ← list. extract changes()
pushMsg← 〈∆list〉
send pushMsg to dws,loc;
reset age(dws,loc)
counter ← 0

end if
end loop

Given that a content peer may request and access new con-
tent, cws,loc sends updates about its newly stored objects to
dws,loc, using push messages. As depicted in Algorithm 3, cws,loc

monitors the changes (i.e., the newly stored objects) in content-
list(cws,loc) noted list for simplicity; whenever the percentage of
new changes reaches a predefined threshold, cws,loc creates ∆list
to be pushed to dws,loc (via extract changes()). Then, cws,loc re-
sests to 0 its age field of dws,loc. Further, object evictions due to
cache expiration or replacement policies are reported to dws,loc

as new changes via push messages.

Algorithm 4 Behavior of dws,loc

{active behavior}
loop

wait(Tgossip)
view. increment age()

end loop

{passive behavior}
loop

waitPush Message()
receive msg from cws,loc

reset age(cws,loc)
directory-index.update(cws,loc, push.∆list)

end loop

As shown in Algorithm 4, dws,loc periodically increments the
age fields of its view entries. Upon the reception of a push mes-
sage from cws,loc, dws,loc resets to zero the age of cws,loc’s entry in

directory-index(ws, loc). Then, using ∆list, dws,loc updates the
list of objects stored by cws,loc in its directory index.

A directory peer also has to maintain its directory summaries,
which are summaries of the directory-indexes of other direc-
tory peers. A directory peer pushes a refreshed directory sum-
mary to its neighbor directory peers when the percentage of
new object identifiers (that are not reflected in the old sum-
mary) reaches a predefined threshold. This delayed propaga-
tion is warranted as [6] has shown that directory summaries do
not have to be updated every time the related directory index
changes. Hence, the use of directory summaries has low de-
mand on bandwidth and memory, while achieving a low proba-
bility of false positives.

2.3.5. Query Processing
A content peer processes its own queries as well as other

queries coming from its petal. Incoming queries are sent by
content peers or the directory peer on behalf of a new client.

Consider query(ows), a query that requests an object of the
content of ws noted ows. Upon receiving query(ows), cws,loc

processes it as shown in Algorithm 5. First, cws,loc checks its
own content-list. In case ows is locally cached, cws,loc serves the
query by directly transferring the object to the query originator.
Then, if the query originator is a new client, cws,loc adds it to
its view: the entry is associated to an age equal to zero and a
null content-summary. To let the new peer join the petal , cws,loc

sends it a subset of its view so that it initializes its empty view.
In case the object is not found locally, cws,loc forwards the

query based on its content-summaries. However, if cws,loc has
recently joined the petal, it might not have received content-
summaries yet. Therefore, it redirects the query to its directory
peer. Otherwise, cws,loc queries the content-summaries for ows

to check if some c′ws,loc might have the requested object. In case
c′ws,loc is available and alive, query(ows) is redirected to c′ws,loc
which proceeds with process(query(ows)). When no satisfying
content peer is found, query(ows) is redirected to the website
ws.

By serving queries, Flower-CDN enables progressive repli-
cation of an object throughout the petal(ws, loc), based on its
popularity in the locality loc. Therefore, at the redirection of
queries for ows by the directory peer dws,loc, the load would tend
to be spread rather evenly accross the set of content peers cws,loc

holding copies of ows.

2.4. Discussion of Design Choices

In this section, we argument our design choices, mainly re-
lated to the usage of DHT and gossip protocols, and the hybrid
architecture.

We have chosen to build D-ring over a DHT to provide an
efficient and reliable lookup that guarantees that new clients
can find their petals and join Flower-CDN. However, we pre-
viously raised concern about DHT limitation in terms of main-
tenance overhead under churn. As an example, Chord [4] re-
quires O(log2N) messages to update the P2P overlay when a
single new peer joins. In a network of 30000 peers, we ob-
tain 220 update messages. This message overhead does not

7

Algorithm 5 - process(query(ows)) at cws,loc

if content-list(cws,loc).contain(ows) then
serve query(ows)
if originator is new then

view.add Contact(originator, 0, null)
send viewS ubset to originator

end if
break

else
if content-summaries is empty then

redirect query(ows) to dws,loc

else
c′ws,loc ← content-summaries.lookup(ows)
if c′ws,loc != null and c′ws,loc is alive then

redirect query(ows) to c′ws,loc
else

redirect query(ows) to ws
end if

end if
end if

only increase the network load but it also introduces more delay
in DHT lookup operations as update messages take some time
to get to all concerned peers and repair routing information.
D-ring alleviates this problem and provides more robustness.
Since only a selective set of participants take part of D-ring, its
size remains bounded because one directory peer represents a
whole petal. For instance, for a network of 30000, suppose that
Flower-CDN supports 100 websites in 6 localities, we obtain
on average 50 peers in each petal and a D-ring of 100 ∗ 6 = 600
directory peers. Thus, a new directory peer only needs 85 mes-
sages to update other peers’ routing tables.

Another crucial design choice is the usage of gossip proto-
cols for petal management. They are involved in the construc-
tion and maintenance of the petal’s unstructured overlay since
they provide simplicity and robustness. They are also in charge
of the dissemination and monitoring of content-summaries be-
cause they can perfectly adapt to dynamic changes. Flower-
CDN remediates to gossip overhead in terms of messages and
delay by confining them in localities such that gossip exchanges
only engage close-by peers.

Our last important design choice is the hybrid architec-
ture that combines DHT, gossip-based overlays, locality- and
interest-aware schemes. The maintenance of all these schemes
is combined and merged into a single protocol to limit the over-
head under churn and dynamicity. This issue is fully addressed
in the next sections.

3. PetalUp-CDN

PetalUp-CDN is a scalable version of Flower-CDN that dy-
namically adapts to variable rates of participation. In the fol-
lowing, we first define the problem that PetalUp-CDN ad-
dresses. Given that PetalUp-CDN mainly affects D-ring, we
then describe the architecture of D-ring and its evolution ac-
cording to the dynamicity of the P2P network.

3.1. Problem Statement

In Flower-CDN, one directory peer dws,loc is in charge of
petal(ws, loc) and is assigned three main tasks. First, it routes
the queries of new clients over D-ring. For this, it maintains a
routing table provided by the underlying DHT of D-ring. Sec-
ond, it provides an access to the petal for new clients of ws in
locality loc and processes their first queries based on its direc-
tory information. Third, it indexes the content shared by all the
content peers cws,loc and maintains these indexes under churn
and dynamic changes. Accordingly, it receives regular push
and keepalive messages from each cws,loc in the petal.

To prevent the directory peer from being overloaded with its
tasks, Flower-CDN limits the size of the petal, i.e., the number
of clients with respect to a website and a locality that can use
and participate in Flower-CDN. For this, the maximum size of
a petal can be fixed a priori: it can be a system parameter that
is tuned by the engineers according to some predictions like
the rate of participation and the average capacity of a partici-
pant (capacity in terms of processing, bandwidth and storage).
Moreover, whenever a directory peer is overloaded, it can sim-
ply retire by leaving D-ring, and then it would be automaticallly
replaced (more details are provided by the maintenance proto-
col of D-ring in Section 4.2).

However, accurate a priori prediction is not a straighforward
endeavor. Furthermore, and most importantly, the rate of
participation with respect to a petal could exceed the average
capacity of one potential directory peer. This implies that many
clients could be prevented from contributing to the aggregate
capacity of a petal in terms of processing, bandwidth and
storage.

To resolve the aforementioned problem, one could split a
petal into several sub-petals of manageable sizes. However,
this severely reduces the search scope of content peers as they
would not be able to access the content of their interest that is
stored by peers in the same locality but in a different sub-petal.

PetalUp-CDN should be designed in a way that allows sev-
eral directory peers to share the management of the same petal.
To maintain the locality- and interest-aware architecture and its
high performance, additional challenges need to be addressed.

• adapt D-ring architecture in order to support several direc-
tory peers per petal.

• implement D-ring evolution in a dynamic way that does
not affect the performance of the P2P directory service.

• adapt the petal’s management to the changes in order to
preserve the efficiency of content search inside a petal.

In the following, we first describe the architectural changes
applied to D-ring, then present the dynamic evolution of D-ring,
and finally the adapted petal management.

3.2. D-ring Architecture in PetalUp-CDN

The current structure of D-ring cannot support more than one
directory peer for each pair (ws, loc). Since the problem resides

8

in the key management service of D-ring, PetalUp-CDN adapts
this service to scale-up D-ring.

In PetalUp-CDN, directory peers for each pair (ws, loc) con-
secutively join D-ring. The number of directory peers in charge
of each petal(ws, loc) increases progressively as the number of
clients for ws in loc increases.

Figure 5: Peer ID structure in D-ring of PetalUp-CDN.

Recall that D-ring assigns to dws,loc a peer ID that concate-
nates the ID of ws and the ID of loc. PetalUp-CDN introduces
another ID of m3 additional bits where m3 is a system param-
eter. This scalable ID is suffixed to the peer ID as shown in
Figure 5. We thereby obtain 2m3 consecutive peer IDs for each
pair (ws, loc) instead of only one. Thus, we may have up to 2m3

instances of each dws,loc, noted di
ws,loc (with 0 ≤ i < 2m3). As a

result, all directory peers for the same website and locality have
successive peer IDs and are neighbors on D-ring. This settle-
ment helps directory peers of the same petal efficiently share
directory information by exchanging directory-summaries (cf.
Section 2.2.2). Furthermore it is vital for the gradual construc-
tion of D-ring

Each directory peer di
ws,loc manages a partial view noted

view(ws, loc)i and thereby a partial directory-index(ws, loc)i

of petal(ws, loc). The view of a directory peer refers to its
directory-index, thus both terms can be used interchangeably.
More formally, we can state that for each website ws and local-
ity loc, we have two properties:

Property 1. ∀i, j / i , j : view(ws, loc)i ∩ view(ws, loc) j = ∅

Property 2. petal(ws, loc) =
⋃

0≤i<2m3 view(ws, loc)i

By having multiple directory peers in charge of a petal, the
failure of one or more of these directory peers will not lead to a
complete loss of directory information, and will allow the sys-
tem to continue in a slightly-reduced capacity. Moreover, these
additional directory peers are not carrying redundant informa-
tion, but each one is responsible for maintaining information
about a part of the petal. An example of PetalUp-CDN config-
uration is illustrated in Figure 6 which focuses on petal(β, 1).
Two directory peers d0

β,1 and d1
β,1 share the management of

petal(β, 1). Thus, they manage each one a subset of the con-
tent peers cβ,1.

3.3. D-ring Evolution in PetalUp-CDN
The petals expand progressively as new peers join and shrink

as existing ones leave. To keep the load on directory peers

Figure 6: Example of petal(β, 1) in PetalUp-CDN.

at bay, D-ring follows the evolution of the petals and accord-
ingly may expand or shrink. However, the expansion and shrink
should not disrupt the architecture of D-ring nor its perfor-
mance in routing queries. In the following, we discuss how
to address this issue.

3.3.1. D-ring Expansion
Directory peers of petal(ws, loc) are created sequentially,

starting from d0
ws,loc. A new directory peer is created for

petal(ws, loc) when the number of content peers cws,loc can no
more be managed by the existing directory peers di

ws,loc. This is
detected by directory peers when they process new queries and
finds out that the number of their content peers is at a predefined
limit.

Recall that queries routed over D-ring are initiated by new
clients that eventually join the petals. Thus, in PetalUp-CDN,
a query targeting petal(ws, loc) scans through the existing di-
rectory peers di

ws,loc in search for an underloaded directory peer
that can resolve the query and take in charge the client as a
new content peer. If no such directory peer is found, the latest
created di

ws,loc initiates the join of a new directory peer di+1
ws,loc.

In the following, we describe how a query is routed over the
evolving D-ring and then how it is processed in such a way that
might result in the creation of a new diectory peer for the petal
targeted by the query.

Query Routing. While scanning the directory peers of its target
petal, a query may undergo several redirections before being ac-
tually served. Thus, in order to limit query response time, we
should minimize the number of query redirections required to
reach an underloaded directory peer. Moreover, if contacted
by every new client of its petal, a directory peer can become
overloaded even if its is just redirecting queries to other direc-
tory peers. Thus, as directory peers share the management of
directory information, they should also share the handling of
new queries. Therefore, we believe that to achieve the opti-
mal routing, each client should discover the number of direc-
tory peers that have been created so far for its petal and ran-
domly choose one of them to contact it. When no such global

9

discovery scheme is available, we use a safe alternative that is
described below.

When routing a query over D-ring, the client uses a key in
which the website and locality IDs are set according to the in-
formation described in Section 2.2.1. To determine the value
of the scalable ID in the routed key, we propose to pick a ran-
dom value between 0 and its middle value. For instance, if the
scalable ID is formed of 23 bits, the scalable ID takes a value
between 0 and 4. Consider a query with ID4

ws,loc. If d4
ws,loc does

not exist, the DHT routing protocol delivers the query to the
first preceding directory peer (i.e., di

ws,loc with 0 ≤ i < 4) be-
cause the latter has the closest ID to ID4

ws,loc. In such a case,
the query would have reached the latest created directory peer
which can locally process the query or create a new directory
peer for petal(ws, loc) if overloaded. If d4

ws,loc does exist, the
query gets to d4

ws,loc which keeps on redirecting the query to
further directory peers of petal(ws, loc) until an underloaded
directory peer is found or created. This redirection approach
shortens the route of the query and distributes load rather evenly
accross directory peers.

Query Processing. Whenever the query reaches a directory
peer di

ws,loc of the target petal, it is handled based on Algorithm
6, i.e., scalable-process(query(ows)). First, di

ws,loc checks its
view size against a limit, maxDirectory. maxDirectory is deter-
mined a priori according to the average expected peer capacity
in terms of bandwidth, processing and storage. If the view size
has reached maxDirectory, di

ws,loc verifies if di+1
ws,loc is in D-ring.

In case di+1
ws,loc exists (i.e. lines 2-4), di

ws,loc redirects the query to
di+1

ws,loc which in its turn runs scalable-process(query(ows)). As
for di

ws,loc, its task stops here with break. In case di+1
ws,loc does not

exist (i.e. lines 5-13), di
ws,loc selects from its view a content peer

to join D-ring as di+1
ws,loc. The content peer is then removed from

the view and directory-index of di
ws,loc because it will no loger

behave as a content peer. Afterwards, in order to avoid wait-
ing for di+1

ws,loc to join, di
ws,loc processes the query, in its stead,

based on process(query(ows)) of Algorithm 1. Consequently,
di

ws,loc adds the client to its directory-index as a provider of ows

and to its view as a content peer cws,loc. If the view size has
not reached maxDirectory yet, di

ws,loc performs the same steps
to resolve the query and add the new client (i.e., line 13). In
consequence of the above, a new client is only added to the
view and directory-index of one specific directory peer, which
achieves Properties 1 and 2: each directory peer of ws in loc
only adds to its directory-index and its view a partial subset of
the clients wrt. (ws, loc).

3.3.2. D-ring Shrink
A petal’s size evolve dynamically, sometimes decreasing as

more content peers leave and sometimes increasing as new
clients join. This may result in some cases where an overloaded
directory peer gets rid of its failed/departed content peers and
starts serving new clients since its view size is reduced. Fur-
thermore, a website may loose its popularity with time, having
content peers continuously leaving its petals. In such a case,

Algorithm 6 - scalable-process(query(ows)) at di
ws,loc

1: if view.size ≥ maxDirectory then
2: if di+1

ws,loc exists then
3: redirect query(ows) to di+1

ws,loc
4: break
5: else
6: cws,loc ← view.select Neighbor()
7: ask cws,loc to join
8: di+1

ws,loc ← cws,loc

9: directory-index.remove(cws,loc,−)
10: view.remove(cws,loc)
11: end if
12: end if
13: process(query(ows))

we need to remove the redundant directory peers and eventu-
ally end up with one directory peer to manage the small petal.
However, we cannot discard directory peers randomly as it has
severe implications on the routing and processing of queries.

To handle this issue, we propose a solution that can be illus-
trated by a simple example. Assume ws was once very popu-
lar in loc, which resulted in creating 3 directory peers d0

ws,loc,
d1

ws,loc and d2
ws,loc. Then, petal(ws, loc) starts to shrink by loos-

ing content peers cws,loc, In such a case, the three directory peers
merge their subsets of content peers; d1

ws,loc and d2
ws,loc with-

draw from D-ring, leaving only one directory peer to manage
petal(ws, loc).

More precisely, as a petal starts to shrink, its extra directory
peers start to resign from their directory peer positions and be-
come again content peers. This progressive resignation involves
the latest created directory peers (noted dl

ws,loc) to avoid break-
ing the sequence of di

ws,loc and disrupting the mechanisms of
PetalUp-CDN (see Section 3.3). dl

ws,loc can discover that it is
the last directory peer of the sequence by checking that its suc-
cessor on D-ring belongs to a different petal.

To clearly show how a directory peer decides to resign, let
us consider Algorithms 7 and 8. Algorithm 7 describes the case
where dl

ws,loc has lost a great majority of its content peers, i.e, its
view has reached a predefined minimum noted minDirectory.
dl

ws,loc sends a requestMerge to its preceding neighbor dl−1
ws,loc

which accepts to merge its view with view(dl
ws,loc) only if the

resulting view has an acceptable size. In such a case, dl
ws,loc

resigns and dl−1
ws,loc takes over.

Algorithm 7 - shrink at dl
ws,loc

1: if view.size ≤ minDirectory then
2: send requestMerge(view.size) to dl−1

ws,loc
3: receive answerMerge from dl−1

ws,loc
4: if answerMerge==yesMerge then
5: resign()
6: dl−1

ws,loc.takeOver()
7: end if
8: end if

10

Algorithms 8 describes the case where di
ws,loc (i.e, not the lat-

est created directory peer) has lost a great majority of its con-
tent peers. di

ws,loc sends a requestMerge to dl
ws,loc which accepts

only if the merged view has an acceptable size. In such a case,
dl

ws,loc resigns and di
ws,loc takes over.

Algorithm 8 - shrink at di
ws,loc

1: if view.size ≤ minDirectory then
2: send requestMerge to dl

ws,loc
3: receive answerMerge from dl

ws,loc
4: if answerMerge==yesMerge then
5: dl

ws,loc.resign()
6: takeOver()
7: end if
8: end if

Next, we detail the algorithms of resign() and takeOver().
In Algorithm 9, dl

ws,loc is resigning to let some other existing
di

ws,loc take over by merging their directory information. Since
dl

ws,loc will become again a content peer, dl
ws,loc adds a new en-

try related to itself in its directory-index: the entry contains
the address of dl

ws,loc, the list of ws’ content stored by dl
ws,loc

and the age zero. Then, dl
ws,loc transfers its directory-index to

di
ws,loc. di

ws,loc takes over only if the merged view or directory-
index does not exceed maxDirectory (cf. Algorithm 6 in Sec-
tion 3.3). As depicted in Algorithm 10, it basically consists of
di

ws,loc receiving directory-index(dl
ws,loc) and merging it with its

own directory-index.

Algorithm 9 dl
ws,loc.resign() for di

ws,loc; 0 ≤ i ≤ l − 1

directory-index.add(dl
ws,loc, content list, 0)

transfer directory-index to di
ws,loc

Algorithm 10 di
ws,loc.takeOver()

receive directory-index(dl
ws,loc)

directory-index.merge(directory-index(dl
ws,loc))

Upon the resignation of dl
ws,loc, dl−1

ws,loc eventually detects that
it is now the last directory peer of petal(ws, loc) by discovering
that its successor on D-ring belongs to a different petal.

In the worst case, the petal ends up with one directory peer,
which is guaranteed as long as there are content peers in the
petal. These guarantees are provided by the maintenance pro-
tocols that are introduced in Section 4.2.

3.4. Petal Management in PetalUp-CDN

To maintain efficient content search, a petal should not be
affected by the multi-directory scheme. Recall that once a client
becomes a content peer, it does not use D-ring anymore and
relies on its petal to route its queries and search for its desirable
content. Moreover, as a petal scales up, its aggregate resources
increase. As such, there will be more content of ws available

in petal(ws, loc) as the number of cws,loc increases. Therefore,
each cws,loc should be able to leverage the scale-up of its petal
independently of the number of directory peers.

To enable content sharing throughout petal(ws, loc), cws,loc

gossips to any other cws,loc of its petal. Thus, in Figure 6, c1 can
gossip to both c2 and c3 and eventually benefit from their stored
content to satisfy its queries. But how does c1 get to know con-
tent peers like c3 that are controlled by other directory peers? In
Flower-CDN, a newly joining (cws,loc) initializes its view based
on the view of an older content peer of petal(ws, loc) or its own
directory peer dws,loc. In PetalUp-CDN, one should provide the
first content peers of di

ws,loc with content peers related to other
directory peers of petal(ws, loc). To illustrate the purpose be-
hind this approach, let us consider Figure 6. Suppose that c3
is the first content peer to join via d1

β,1 and gets an initial view
containing c1 and c2. Afterwards, c4 joins and gets a view con-
taining c3 which can then transmit the two contacts c1 and c2 to
c4 via gossip exchanges. This solution is vey simple and prac-
tical and can be implemented as follows.

A new di+1
ws,loc uses its view and content summaries maintained

while still a content peer of di
ws,loc, until its old view expires

(more details in Section 4.1) and gets progressively replaced
by a new view related to newly arrived clients. When receiving
first clients, di+1

ws,loc provides them with a subset of its old view so
that they initialize their view of petal(ws, loc). Thereby, these
clients that will become content peers get to know content peers
of di

ws,loc and eventually introduce them to other content peers
of di+1

ws,loc via gossip.

4. Robustness Under Churn

Dealing with the highly dynamic nature of peers is crucial to
ensure the robustness of the P2P CDN. In this section, we first
focus on the protocols that maintain D-ring and its petals con-
nected despite churn. Then, we discuss the maintenance pro-
tocols of D-ring that aims at preserving the architecture origi-
nality. As we explain next, these maintenance protocols cover
both approaches of Flower-CDN and PetalUp-CDN. In case of
Flower-CDN, the notation di

ws,loc refers to the single directory
peer dws,loc.

4.1. Maintenance of Connection between D-ring and Petals

Flower-CDN mechanisms are achieved via the connection
between D-ring and the petals. However, the failure or depar-
ture of a diretcory peer may disconnect (at least partly) its petal
from D-ring. Thus, a primary concern is to maintain this con-
nection despite the highly dynamic environment governed by
churn.

In Flower-CDN, the maintenance protocol aims at keeping
the one directory peer connected with all the content peers of
the petal. In PetalUp-CDN, given that several directory peers
may coexist within the same petal, one should maintain the
connection of each di

ws,loc to a subset of content peers from
its petal(ws, loc), which corresponds to its view(ws, loc)i. To
achieve this, each content peer of petal(ws, loc) restricts its

11

communications to the directory peer di
ws,loc via which it joined

the petal.
The maintenance protocol relies on two features: push &

keepalive messages on the one hand and exchange of dir-info
on the other hand.

Exchange of dir-info. Each cws,loc keeps track of its directory
peer di

ws,loc: it maintains a dir-info which contains the address
and peer ID of di

ws,loc as well as the age field. cws,loc periodically
increments its dir-info by 1 and resets it to zero whenever con-
tacting di

ws,loc. Recall that two content peers that gossip to each
other also exchange their dir-info to discover the current avail-
able directory peer. If the exchanged dir-info share the same
peer ID, then the two content peers belong to the same direc-
tory peer. In such a case, they both keep the dir-info with the
smaller age, which refers to more recent information about their
directory peer. Thus, whenever a directory peer leaves, some of
its content peers that detect it when trying to contact it, gossip
the information to the other content peers concerned with this
particular directory peer so that they update their dir-info.

Push & Keepalive Messages. As discussed in Section 2.3.4, the
directory peer and the content peers of a petal monitor the live-
ness of each other mainly via push messages. However, this
is not enough because some content peers do not produce fre-
quent changes in their stored content and therefore rarely com-
municate with their directory peer via push messages. That is
why we exploit a feature inherent to P2P systems, keepalive
messages, which are periodically sent to check links between
peers. In consequence, there will be two forms of interaction
between a directory peer and its content peers: push messages
and keepalive messages. More precisely, cws,loc regularly sends
keepalive messages to di

ws,loc in addition to push messages. In
case of the example shown in Figure 6, c1 which is linked to
d0
β,1 only sends push and keepalive messages to d0

β,1. At the
same time, di

ws,loc periodically increments the age of its view
entries and discards the expired ones as they probably refer to
dead content peers. Upon the reception of a push or keepalive
message from cws,loc, di

ws,loc resets to zero the age of cws,loc’s
entry in its directory-index(ws, loc).

4.2. Maintenance of D-ring

Churn has severe implications on D-ring architecture and op-
eration in the absence of appropriate maintenance protocols. If
a directory peer fails or leaves, its queries will be redirected to
unconcerned directory peers and the clients will not be able to
join their target petal. Thus, D-ring should be able to detect and
recover from failures and leaves. Furthermore, to support the
gradual construction, D-ring should enable directory peers to
dynamically join D-ring without disrupting the architecture. In
the following, we first discuss the failures and leaves, then the
joins and replacements of directory peers. The protocols that
handle such events are not affected by whether one or several
directory peers exist for the same petal (i.e., Flower-CDN or
PetalUp-CDN). More details are given below.

4.2.1. Failures and Leaves
A directory peer leaves D-ring when it fails or quits the sys-

tem. The leave of di
ws,loc is detected by its content peers, i.e.,

contained in its view(ws, loc)i, while sending keepalive or push
messages. The replacement of di

ws,loc is performed by a peer that
shares the interest in the same website’s content and belong to
the same locality, i.e., a content peer from view(ws, loc)i or a
new client. If di

ws,loc leaves voluntarily, it selects from its view
the content peer to replace it. Otherwise, any content peer of
view(ws, loc)i can perform the replacement as soon as it detects
the failure.

However, in case of a deliberate resignation of a directory
peer di

ws,loc due to the petal’s shrink, the content peers should
not confuse it with a failure and replace their resigned directory
peer. Any join message targeting the position di

ws,loc reaches the
directory peer di−1

ws,loc which is the numerically closest to di
ws,loc

on D-ring. In such cases, di−1
ws,loc notifies the content peers that

are trying to join and replace di
ws,loc about the resignation. It

also informs then that they are now affiliated to di−1
ws,loc.

The detection and replacement involve one directory peer
and its content peers. Thus, these protocols operate similarly
on Flower-CDN and PetalUp-CDN.

4.2.2. Joins and Replacements
A peer p can try to join D-ring as a directory peer either in

case it is initially (1) a content peer or (2) a new client. Case
(1) occurs when p is replacing its failed directory peer or when
it joins as di+1

ws,loc due to its petal’s growth. Case (2) happens if p
has found no directory peer available for ws in loc while rout-
ing its query over D-ring, because (i) p is the first/only partici-
pant for petal(ws, loc); or (ii) all the previous directory peers of
petal(ws, loc) have left D-ring and have not been replaced yet.
In all cases, p uses joinDring(IDi

ws,loc) (Algorithm 11) where
IDi

ws,loc is the ID of the directory peer position targeted by p
(i = 0 in case (2)). However, p does not always succeed in join-
ing because several peers may simultaneously target the same
vacant position; the one that first integrates into D-ring, suc-
ceeds.

Algorithm 11 - joinDring(IDi
ws,loc)

1: route joinMessage(IDi
ws,loc) over D-ring

2: directoryPeer ← joinMessage(IDi
ws,loc).destination

3: if directoryPeer.ID == IDi
ws,loc then

4: { joinMessage reached a directory peer with the same
target ID}

5: dir-info.update(directoryPeer)
6: if new client then
7: join petal(ws, loc) as cws,loc

8: end if
9: else

10: become di
ws,loc

11: construct directory-index
12: end if

Similarly to the standard join in DHT-based overlays, p

12

routes a join message with a key equal to IDi
ws,loc and eventually

reaches a directory peer from the overlay referred to by destina-
tion (i.e, line 1-2). If the target position is not vacant (i.e., lines
3-8), the join message reaches the current di

ws,loc and p discovers
its current directory peer to update its dir-info. Then, if p is a
new client, it simply joins petal(ws, loc) as a content peer. If the
target position is vacant (i.e., lines 9-12), p becomes di

ws,loc and
gradually contructs its view and directory-index as its content
peers discover its join and send it push messages. As introduced
in Section 4.1, content peers discover the join of p as they try to
contact their previous directory peer di

ws,loc and detect its leave.
Then, some of them will try to join, detect that there is already
a new directory peer and update their dir-info. Subsequently,
the information about the new di

ws,loc spreads rapidly via gossip
to content peers related to di

ws,loc.
If the previous di

ws,loc had voluntarily left, it would have trans-
ferred a copy of its view and directory-index to the new direc-
tory peer p before its departure. Moreover, in case p was a
content peer before joining D-ring, p would hold content sum-
maries and use them to answer its first received queries, while
waiting for its new directory-index to be built.

. Subsequent to joins and leaves of directory peers, routing ta-
bles should be updated to ensure a correct lookup. For this, we
rely on the underlying DHT protocols that can normally detect
the presence or the absence of a directory peer and propagate
the changes.

5. Cost Analysis

In this section, we analyze the overhead of our gossip-based
approach which is used to spread the changes in content sum-
maries. Furthermore, the analysis aims at guiding the configu-
ration of gossip parameters in order to minimize the overhead.

Let us consider a change in the content summary of a par-
ticular content peer, called author, as a rumor to be propagated
via gossip. We analyze a single rumor noted as S and mea-
sure the number of messages required to spread S throughout
a petal of size P. Notice that a content summary is a compact
representation of the content stored by a peer, and whenever the
peer’s content is updated due to a new object insertion or dele-
tion, it does not necessarily affect the summary. This is why in
our analysis we assume that the updates on summaries are not
frequent.

The rumor propagation is initiated by the author of S upon
its first gossip round following the rumor creation. Since a con-
tent peer includes its own summary information in every gossip
message, the author sends S in each gossip round. A content
peer that receives the rumor is called aware. Once aware, a
peer may participate in the rumor propagation at the rhythm
of its gossip behavior. As done in most gossip studies (e.g.
[9]), we assume that the rumor propagation can be broken into
synchronous rounds during which every aware peer initiates a
gossip exchange with one of its contacts.

Let R(x) be the number of peers that become aware of S dur-
ing round x, and msg(x) the number of messages that dissem-
inate S during round x. In the following, we first observe the

evolution of R(x) and accordingly msg(x) with the number of
rounds x. Then, we compute the number of rounds f required
to spread S throughout a petal of size P, i.e., to reach R(f) = P
where f represents the final round. Finally, we measure the fi-
nal number of messages M(f) generated during the f rounds to
spread S in the petal.

Following common practice, e.g. [9], in our analysis we do
not take into account the peers that join and leave the system
during the rumour propagation.

Round 1
The author includes S in its gossip message and sends it to

one contact of its view. The number of messages used for
spreading S during this round is msg(1) = 1. The number of
peers that are now aware of S is R(1) = 2, i.e., the author and
the contacted peer.

Round (x+1)
In round (x + 1), R(x) peers are aware of S . Each aware

peer p selects the oldest contact from its view and sends to it
its own summary together with a randomly selected subset of
summaries from its view. The author of the rumor propagates
it in all rounds, while other aware peers include S in their gos-
sip message with probability pS ; pS = Lgossip/Vgossip because
Lgossip is the number of summaries randomly selected among
the peer’s view summaries, i.e., Vgossip.

Some of the peers to which an aware peer sends the rumor
may have already received it in a previous round, e.g. from
another peer. We should exclude these peers from the ones that
become aware in round (x + 1). Let paware(x) be the probability
of choosing a contact that is aware by the end of round x, i.e.
that became aware during some round previous to round (x+1).
Thus, the probability of choosing an unaware contact in round
(x + 1) is punaware(x) = 1 − paware(x). An aware peer p can
gossip to one of (P − 2) peers, since p cannot gossip to itself
nor to the contact it gossiped to in the previous round. Out of
(P− 2), there are (R(x)− 1) peers aware of S , given that R(x) is
the total number of aware peers including p. Thus, paware(x) =

(R(x) − 1)/(P − 2) and punaware(x) = 1 − (R(x) − 1)/(P − 2).
From the point of view of the author peer, the probability of

choosing an unaware contact in round (x+1) is paware/author(x) =

(R(x) − 2)/(P − 2). The author does not send the rumor S to its
previous contact that is already aware of S . Thus,
punaware/author(x) = 1 − (R(x) − 2)/(P − 2).

Based on the above discussion, the number of peers that are
aware of S in the (x + 1) rounds is:

R(x + 1) = R(x) + 1 ∗ punaware/author(x)
+ (R(x) − 1) ∗ pS) ∗ punaware(x)

(1)

The expression is explained as follows. The number of aware
peers after (x + 1) rounds is equal to the number of peers pre-
viously aware, i.e., R(x), and the number of peers newly aware
contacted by some of the R(x) peers during round (x + 1). The
contact of the author is a newly aware peer with a probabil-
ity punaware/author(x). Only a pS fraction of the (R(x) − 1) other
aware peers (i.e., non author peers) forward S to their contacts.

13

Figure 7: Impact of petal size P on the number of rounds required to spread the
rumor in the petal

Out of the (R(x)− 1) ∗ pS contacted peers, a punaware(x) fraction
are newly aware of S.

The rumor propagation keeps going until a final round f
where R(f) = P, i.e., until the whole petal becomes aware of S .
If we replace round (x + 1) by the final round f in Equation 1,
we obtain:

R(f) = R(f -1) + 1 ∗ punaware/author(f -1)

+ (R(f -1) − 1) ∗ pS) ∗ punaware(f -1)
(2)

Let us set pS = α and 1/(P − 2) = β and convert Equation 2 to
polynomial form. Then, we obtain:

R(f) = αβR2(f -1) + (1 − β + α + 2αβ)R(f -1)

− αβ − α + 2β + 1
(3)

Equation 3 can be illustrated by a curve for some given values
of pS and P. In Figure 7, we set pS = 10/50 and plot three
curves, each one for a different P (i.e, P = 100, 200, 300). We
can see that R(f) = P after 35 rounds for P = 100; after 40
rounds for P = 200 and after 45 rounds for P = 300. This
result reflects a common property of gossip protocols: the larger
is the size of the petal, the more is the number of rounds needed
to propagate a rumor.

In Figure 8, we set P = 100 and plot three curves, each one
for a different pS (i.e, pS = 10/20, 10/50, 10/70). We can see
that R(f) = P after 20 rounds for pS = 10/20; after 35 rounds
for pS = 10/50 and after 45 rounds for pS = 10/70. Indeed, a
higher pS implies that content peers that are aware of a rumor S
are more likely to propagate S in every gossip exchange. That
is why S is propagated faster througout the petal.

As a result, we can conclude that the intra-petal gossiping
has a good convergence speed with respect to the number of
rounds. Note that the selection of the gossip period Tgossip

effectively regulates the speed of gossiping in real time.
However, it does not affect the protocol’s emergent behavior or
its convergence speed.

Let us now compute the number of messages needed for
propagating the rumor S . The messages that propagate S in
round (x+1) are the gossip messages carrying S in round (x+1)

Figure 8: Impact of probability pS on the number of rounds required to spread
the rumor in a petal of size P = 100

Figure 9: Impact of petal size P on the number of messages required to spread
the rumor in the petal

and sent by the peers that are aware of S at the beginning of
round (x + 1) (i.e., R(x)). Thus, the total number of such mes-
sages is msg(x + 1) = 1 + (R(x) − 1) ∗ pS , which reflects one
message sent by the author peer and the messages sent by the
rest of the aware peers (i.e., (R(x)−1)) with probability pS . Af-
ter f rounds, the final number of messages M(f) generated for
spreading S into the petal is:

M(f) =

f∑
x=1

msg(x) =

f∑
x=1

[
1 + (R(x) − 1) ∗ pS

]
(4)

In Figures 9 and 10, we illustrate the variation of M(f) with pS

and P, respectively.
In Figure 9, we set pS = 10/50 and vary P. As shown, the

number of messages increases linearly with the increasing petal
size, which once again asserts the property of gossip protocols.
In Figure 10, we set P = 100 and vary pS . Interestingly, when
increasing pS from 0.1 and 1, the number of messages decrease
by 35 %. This is because increasing pS reduces the number
of rounds which has a great impact on reducing the number of
redundant messages, i.e., messages sent to peers already aware
of R. In fact, with a higher pS , the rumor tends to be widely
propagated from the first rounds during which it is more likely
to reach unaware peers. Given that the propagation of R is

14

Figure 10: Impact of probability pS on the number of messages required to
spread the rumor in a petal of size P = 100

Figure 11: Impact of probability pS on the total number of views exchanged to
spread the rumor in a petal of size P = 100

achieved within fewer rounds, the number of redundant mes-
sages is significantly reduced.

Figure 11 shows the total number of views exchanged during
the f rounds with increasing pS . We derived this figure from
Figure 10, i.e., by multiplying pS by M(f), because each gossip
message contains a fraction pS of the view. As shown, with
increasing the value of pS , the number of sent views increases.

Concluding Remarks

The results of our analysis show that our gossip-based ap-
proach spreads the rumors with a reasonable communication
cost, i.e., less than 4 messages per petal member (see Figure
9). Notice that we have obtained this cost in the worst case,
i.e., where there is only one rumor in each message. However,
if there are n rumors in each message (n > 1), the number of
messages per rumor and petal member is less than 4/n.

The results of our analysis also help us to configure the pS

parameter based on the view size, in order to optimize the com-
munication cost of our gossip-based approach. This configura-
tion is done particularly by studying the behavior of the curves
depicted in Figures 10 and 11. When the view size is small
(e.g., Vgossip = 5 entries), i.e., when the dominant factor for

the communication cost is the number of messages, the optimal
value for pS is equal to 1, because it gives the lowest value for
the number of messages (see Figure 10). The value of pS = 1
is acheived by setting Lgossip equal to Vgossip when configur-
ing Flower-CDN. In contrast, when the view size is large (e.g.,
Vgossip = 50 entries), i.e., when the dominant factor for the com-
munication cost is the number of sent views, a small pS gives a
better communication cost (see Figure 11).

6. Performance Evaluation

To extensively evaluate the performance of our protocols, we
perform two simulation-based analyses under different environ-
mental contexts and experimental setups. In the section, we first
describe our evaluation methodology and then we present and
discuss each analysis.

6.1. Evaluation Methodology

We conduct simulation-based experiments using Peer-
Sim [10], a Java-based simulator specifically tailored for P2P
protocols. PeerSim provides an event-driven framework that
enables us to model the latency of each individual link; how-
ever, it does not provide support for simulating bandwidth and
CPU resources. Given that P2P networks are built on top of
the Internet, we generate an underlying topology of peers con-
nected with links of variable latencies; the model inspired by
BRITE [11] assigns latencies between 10 and 500 ms. Locali-
ties are modeled using the binning technique [3]. We use k = 6
localities that are non-uniformly populated.

Given that D-ring relies on a DHT-structured overlay, we
choose Chord overlay [4] for its simplicity; we simulate its rout-
ing and churn stabilization protocols and adapt its key manage-
ment service as explained in Section 2.2.1, to be able to sim-
ulate the D-ring protocol. To construct D-ring overlay, we as-
sume that Flower-CDN/PetalUp-CDN supports |W | = 100 web-
sites, which results in k ∗ |W | = 600 directory peers.

We compare Flower-CDN with the DHT-Directory approach
that is widely employed in the P2P CDN litterature [12, 20, 21].
In DHT-Directory, all participant peers are part of one struc-
tured overlay based on a traditional DHT. For each requested
object, a small directory of pointers to recent downloaders of
the object. The storing peer, which is comparable to our di-
rectory peer, is identified by the hash of the object’s identifier
without any locality or interest considerations. A query always
navigates through the DHT and then receives a pointer to a peer
that potentially has the object. We chose the DHT-Directory
strategy because it shares some similarities with Flower-CDN
with respect to the directory structure. This makes a compari-
son easier and at the same time allows us to see the effects of
locality-based petals and their gossip-based management.

Each experiment is run for 24 hours mapped to simulation
time units. In order to keep the load at bay, we restrict the
query generation to 6 active websites of W. For our query
workload we use synthetically generated data because available
web traces reflect object accesses while we are interested in

15

website accesses. Each active website provides nb-ob=500 ob-
jects which are requestable and cacheable (e.g., web page of 10-
100 KB, though we do not model object size). Our simulation
model assumes no correlation between different website com-
munities and applies zipf distribution for object requests sub-
mitted to each ative website of W [13]. The websites involved
in our system are small specialized sites: each site speaks di-
rectly to the specific needs and interests of its committed com-
munity. Hence, they dominate their targeted niches and get
considerable traffic. A peer only poses queries for objects un-
available in its local storage (i.e., it never issues the same query
more than once). Moreover, we assume that a content peer has
enough storage potential to avoid replacing its stored content
through the experiment’s duration. As a peer only stores con-
tent it has requested, this is a reasonable assumption given the
usual browsing activity of individual users.

Our performance evaluation covers two analyses in both
static and dynamic environments. The main simulation param-
eters used in the analyses are summarized in Table 1. Summary
size denotes the size of the Bloom filter representing the con-
tent summary; we assume that the maximum number of objects
held by a content peer is limited by the total number of objects
provided by its website, thus we set summary size according to
the analysis in [6], to minimize both false positives and stor-
age requirements. Push threshold refers to the percentage of
new changes beyond which a content peer launches a push ex-
change with its directory peer (cf. Section 2.3.4). Vgossip refers
to the view size and Tgossip to the gossip period as described in
Section 2.3.1 while Lgossip refers to the maximum size of the
view subset exchanged in a gossip round. More details about
the tuning of these gossip parameters are given in the following
sections.

In our experiments, we measure the following performance
metrics:

• Background traffic: the average traffic in bps experienced
by a content or directory peer due to gossip and push ex-
changes.

• Hit ratio: the fraction of queries satisfied from the P2P
system. Hit ratio is an indicator of the degree of server load
relief achieved, given that the fraction of queries reflected
by the hit ratio are not redirected to the server.

• Lookup latency: the average latency taken to resolve a
query and reach the destination that will provide the re-
quested object (original server or content peer). Lookup
latency is an indicator of the system’s search efficency, be-
cause it measures how fast objects are found.

• Transfer distance: the average network distance, in terms
of latency, from the querying peer to the peer that will pro-
vide the requested object. Used with queries satisfied from
the P2P system, the transfer distance reflects how well the
system exploits the locality-awareness in finding close re-
sults to clients.

Table 1: Simulation Parameters
Parameter Static setup Dynamic setup
Latency 10-500 ms 10-500 ms
Nb of localities k 6 6
Nb of websites |W | 100 100
Population P 4200 3000-15000
Underlying network 5000 P ∗ 1.3
Mean uptime m - 60 min
Nb of objects/website 500 500
Query rate 6 queries/sec 1 query/6 min/peer
Summary size 8*500 bits 8*500 bits
Push threshold 0.1; 0.5; 0.7 0.5
Vgossip 20; 50; 70 ≤ 30
Tgossip 1 min; 30 min; 1 h 1 h
Lgossip 5; 10; 20 ≤ 10

6.2. Performance in Static Environment

The first set of experiments is conducted in a static envi-
ronment where peers do not leave the system after joining it.
Here, we focus on quantifying the gains in Flower-CDN due to
locality-awareness. Furthermore, we aim at evaluating the price
to be paid for achieving these gains, by examining the trade-off

between hit ratio and gossip bandwidth consumption.

6.2.1. Static Setup
Experiments start with a stable D-ring: for each pair (web-

site, locality), there is one directory peer with an empty direc-
tory. Petals related to the 6 active websites, are built progres-
sively during the simulation as new clients join in. Queries are
generated with a rate of 6 queries per second, distributed be-
tween the 6 active websites 1. For each query intended to a
given website ws, two selections are carried out: (1) a new
client or a content peer of ws is chosen from a random local-
ity as the query originator, and (2) the queried object is se-
lected, using zipf law, among ws objects. Then, new clients
become content peers and join their corresponding petal. When
a petal reaches its maximum size noted petalS ize (set by de-
fault to 100), no new clients may join the petal. With this,
we avoid that the directory peer is overloaded with the main-
tenance of the petal information. In consequence, the petals of
a given website evolve at different rythms and sizes. Eventu-
ally, we should have up to N = |W | ∗ k ∗ petalS ize participant
peers. However, since we are only looking at 6 active websites,
N = |W |∗k+(6∗k∗petalS ize) which is equal to 4200 participant
peers in the current configuration.

6.2.2. Trade off: Impact of gossip
The first experiments evaluates the trade-off of Flower-CDN.

Therefore, we investigate the impact of background traffic, on
the performance of Flower-CDN, by varying the gossip param-
eters: gossip length (Lgossip), gossip period (Tgossip) and view
size (Vgossip). We also varied push threshold; but we do not

1We could not submit larger workloads because of the simulator limitations
in terms of memory constraints. However, the chosen workload still gives us a
good understanding of the relative behavior.

16

Table 2: Impact of Gossip
Lgossip hit ratio background traffic

5 0.823 37 bps
10 0.86 74 bps
20 0.89 147 bps

(a) Varying Lgossip with (Tgossip = 30 min; Vgossip = 50)

Tgossip hit ratio background traffic

1 min 0.94 2239 bps
30 min 0.86 74 bps
1 hour 0.81 37 bps

(b) Varying Tgossip with (Lgossip = 10; Vgossip = 50)

Vgossip hit ratio background traffic

20 0.78 74 bps
50 0.86 74 bps
70 0.863 74 bps

(c) Varying Vgossip with (Lgossip = 10; Tgossip = 30 min)

show the results which illustrate similar performance (i.e., al-
most same gains and same trade-off) for different values of push
threshold (0,1; 0,5; 0,7). Thus, these experiments also help in
tuning the gossip parameters and adapt them to our protocol.

In each experiment, we vary one of the three gossip param-
eters (Lgossip, Tgossip, Vgossip) and fix the two other parameters;
then after 24 simulation hours, we collect the results for each
parameter value. Table 2 lists the results obtained for the 3 ex-
periments, in terms of hit ratio and background bandwidth. Due
to lack of space, we do not show lookup latency and transfer
distance results which are quite unaffected by the gossip pa-
rameters’ variation.

Table 2(a) shows the results of the variation of Lgossip. When
increasing the gossip length, more information is sent at each
gossip exchange and thus more background bandwidth is con-
sumed at each involved peer. Indeed, if Lgossip increases from
5 to 20, the background bandwidth increases by a factor of 4 as
shown in Table 2. Yet, the increase in hit ratio is not substancial.

Table 2(b) shows the results of the variation of Tgossip. When
increasing the gossip period, gossip exchanges are more spaced
and thus less fequent, which has a similar effect on bandwidth
consumption as the decrease of gossip length. Background
bandwidth is reduced by a factor of 60 by augmenting Tgossip

from 1 minute to 1 hour, while the hit ratio is decreased by
0.13.

Therefore, the choice of the 2 gossip parameters (Lgossip and
Tgossip) is a trade-off between two factors: (1) the applica-
tion requirements for hit ratio convergence speed, i.e., how fast
Flower-CDN reaches a maximal hit ratio, and (2) the network
available resources in terms of network bandwidth availability.
For relatively fast convergence, i.e., hit ratio of 0.86 within 24
hours, we could set Tgossip = 30 min and Lgossip = 10. A peer
would experience 74 bps, which is very low bandwidth that
could be sustained even by modem connections. For less de-
manding applications with limited bandwidth availability, we
could set (Tgossip = 1 hour, Lgossip = 10) or (Lgossip = 5,
Tgossip = 30 min) resulting in the negligible amount of 37 bps
per peer.

Figure 12: Trade off between hit ratio and bandwidth in Flower-CDN

Table 2(c) illustrates the results of the variation of Vgossip.
As shown, increasing the view size does not affect bandwidth
consumption, while the hit ratio presents a slight increase of
0.083 when enlarging the view from 20 to 70 contacts. In fact,
a larger view size only requires more storage space but does not
affect the amount of information exchanged between content
peers.

For the rest of the simulation, we set Tgossip = 30 min,
Lgossip = 10 and Vgossip = 50, because this setting provides
good performance with an acceptable overhead in terms of
background traffic (i.e., on average 74 bps per peer). How-
ever, we believe that different query workloads and churn rates
may influence the results for Tgossip and Lgossip which should be
tuned accordingly.

To conclude, we show in Figure 12 the variation of back-
ground traffic and hit ratio with time, for the setting chosen
above. The hit ratio keeps on increasing with time, given that
copies of queried content are progressively spread into the dif-
ferent petals as more queries are generated and thus more con-
tent peers are served. While the hit ratio continues to improve,
the background traffic stabilizes at 74 bps after 5 hours.

6.2.3. Hit ratio
The following results compare DHT-Directory and Flower-

CDN wrt. hit ratio. Figure 13 shows that the hit ratio eventu-
ally converges to 1 for both DHT-Directory and Flower-CDN,
but convergence takes longer for Flower-CDN given that the
search space is partitioned into petals. In fact, after 24 hours,
the hit ratio of Flower-CDN is less than that of DHT-Directory
by 13%. This difference can be justified by the following.
Once a copy of an object ows is stored in DHT-Directory, a
subsequent query for ows searches all the overlay and even-
tually finds it in case of a stable environment. In compari-
son, Flower-CDN restricts the search for ows in the targeted
content-overlay(ws, loci) wrt. locality of the client (i.e., loci)
as well as content-overlay(ws, loc j) where dws,loc j is a direct
neighbor of dws,loci on D-ring (guided by the directory sum-
maries as explained in Sec. 2.2.3), in order to achieve locality-
awareness. Moreover, an object ows becomes available in
content-overlay(ws, loc) only after a peer from the overlay has
submitted a query for ows. Thus, once a copy of ows is avail-
able in each content-overlay, Flower-CDN achieves a hit ratio
similar to DHT-Directory wrt. ows.

17

Figure 13: Hit ratio evolution in static environment

Figure 14: Lookup latency evolution in static environment

In general, a smaller hit ratio means less queries are served
from the P2P and instead go to the server. This is not bad as
long as the server is not overloaded. Furthermore, as we will
see in the next paragraph, DHT-Directory achieves the better
hit ratio by using peers as content providers that are far away
from the requester. In practice, it might be faster to retrieve
requested objects from the server than a far away peer.

6.2.4. Locality-awareness
We evaluate the gains due to locality-awareness in Flower-

CDN, by measuring lookup latency and transfer distance.
The first experiment measures the lookup latency. Figure 14

shows the variation of the average lookup latency of a query
with time: the lookup latency starts by decreasing and stabilizes
around 120 ms shortly after the system warms up (i.e., less than
5 hours in this experiment). Figure 15 shows the latency dis-
tribution of queries for both solutions: 87% of our queries are
resolved within 150 ms while 61 % of DHT-Directory’s queries
take more than 1050 ms. In Flower-CDN, only first queries
of new participants have to go through D-ring and result in
long lookup latencies. Afterwards, queries are resolved within
the local petal, achieving very short delays. In contrast, DHT-
Directory routes every single query through the DHT. Thus, we
conclude that the locality-aware hybrid overlay of Flower-CDN
performes very well in providing efficient lookup.

The second experiment focuses on transfer distance. We
are interested in this metric because it has a significant im-
pact on network usage and object download speed which af-
fects response times perceived by users. At the underlying
network level, higher distances generally involve more inter-

Figure 15: Lookup latency distribution in static environment

Figure 16: Transfer distance evolution in static environment

mediate links and nodes to carry the traffic, which contributes
to the aggregate network utilization and may overlaod the net-
work. Furthermore, additional delays are introduced by the ex-
tra stages traversed by the data, due to acknowledgments and
retransmissions at each visited node, etc. Figure 16 shows the
variation of the average transfer distance of a query with time:
the transfer distance is high at first when object transfers (i.e.,
downloads) are done via the original servers. After the warm-up
period the transfer distance drops significantly to 80 ms when
many transfers start to be performed within the same locality.
Figure 17 shows the transfer distance distribution of queries for
both solutions: 59 % of our queries are served from a distance
within 100 ms compared to 17% of DHT-Directory’s queries.
Thus, Flower-CDN provides excellent results by reducing the
average tranfer distance by a factor of 2 in comparison with
DHT-Directory. Flower-CDN ensures data transfers over short
distances, which limits the network load and reduces the re-
sponse times.

6.2.5. Discussion
We learnt two main lessons through our first set of experi-

ments. First, the usage of gossip when confined in petals ap-
pears to be quite efficient with an acceptable overhead in terms
of bandwidth consumption. Moreover, the bandwidth overhead
could be adapted to the available network resources by tuning
the gossip parameters, while respecting hit ratio requirements.
Second, combining structured and gossip-based overlays with
locality-aware considerations proved to be quite performing es-
pecially in performing fast searches (i.e., low lookup latency)
and finding close-by results (i.e., low transfer distance). In

18

Figure 17: Transfer distance distribution in static environment

Flower-CDN, D-Ring is only used to provide a first reliable ac-
cess, for new participant peers wrt. a petal. Afterwards, they
become part of this petal and direct subsequent queries directly
to the petal instead of D-ring. In contrast, DHT-Directory re-
lies on the DHT-based overlay for every single query leading
to high lookup latencies. Furthermore, DHT-Directory’s DHT
contains all peers while D-ring only contains the subset of di-
rectory peers. Thus, D-ring is smaller and therefore, routing
is faster than in DHT-Directory. Moreover, although not mea-
sured in our experiments, the high lookup rates very likely also
lead to higher loads on DHT participants.

6.3. Performance in Dynamic Environment

The second set of experiments is conducted in a dynamic en-
vironment where peers connet and disconnect. We want to as-
sess the robustness of Flower-CDN under churn and evaluate
its scalability wrt. the population size.

6.3.1. Dynamic Setup
For a realistic environment, we simulate churn based on a

study [14] where P2P population converges to a desired size,
P. For this purpose, the arrival rate of peers must be equal to
the mean departure rate, P

m , where m denotes the mean uptime
of a peer. We model the uptime of a peer as an exponential
distribution with m = 60 minutes, resulting in a high churn
rate. We assume that a peer always fails (i.e., when its lifetime
expires) and never leaves normally, to simulate highly unstable
scenarios. Moreover, a peer might re-join multiple times during
an experiment, each time with a different uptime.

We conduct experiments targeting different population sizes
(i.e., P = 3000, 5000, 9000, 11000, 15000) in the context of a
highly dynamic environment. The underlying network which
consists of all peers (online and offline) has a size of 1.3 ∗ P.

Initially, each peer is randomly assigned a website from |W |
to which it has interest throughout the experiment. We start
with a population of k ∗ |W | = 600 directory peers which have
limited uptimes and form the initial D-ring (i.e., one directory
peer per pair (website, locality)). After a small warm-up period,
the population stabilizes around P as new clients keep on arriv-
ing and existing peers fail. For all non-active websites, peers
are only involved with churn because it affects D-ring routing.
More precisely, a peer with interest for an active website sub-
mits queries on a regular basis, as soon as it arrives until it fails.

Figure 18: Hit ratio evolution in dynamic environment

A peer belonging to a non-active website, is simply added to its
petal upon its arrival; it is only involved in the failure manage-
ment of its directory peer.

We do not limit the view size of a content peer and allow it
to grow automatically with the size of its petal which reaches
at most 30 with P = 15000 in the current configuration; also,
when a peer selects a contact for gossip and finds it unavailable,
the peer removes the contact from its view, which naturally
bounds the view size. Finally, gossip/keepalive period, which
refers to the periodicity of gossip and keepalive messages sent
by a content peer is calibrated at 1 hour.

6.3.2. Robustness to churn
Here, we focus on the robustness of our protocols under high

churn. Thus, we conduct for both DHT-Directory and Flower-
CDN the same experiment under the same churn and workload
conditions. The experiment targets a mean population size of
3000. The obtained results are depicted in Figures 18, 19 and
20.

First, we analyse the evolution of hit ratio with time (Figure
18). At the beginning, DHT-Directory surpasses Flower-CDN
wrt. hit ratio. This is because Flower-CDN needs a warm up
period to build up and enable its petals to get populated, given
that the query search space involves specific petals to achieve
locality-awareness. In contrast, DHT-Directory searches the
whole overlay for queries and its hit ratio increases faster than
that of Flower-CDN. However, as the impact of churn becomes
more significant, DHT-Directory fails to preserve an increas-
ing hit ratio while Flower-CDN keeps on improving despite
failures: the improvement reaches 40% after 24 simulation
hours. In fact, in DHT-Directory, the information about pre-
vious downloaders, which is held in a directory, is abruptly lost
with the failure of the directory peer in charge of it. In con-
trast, Flower-CDN efficiently manages this problem because
periodic updates are disseminated throughout a petal via gos-
sip and push. Thus, a new directory peer d can progressively
reconstruct its directory-index as it receives updates from con-
tent peers. Meanwhile, d can resolve first queries using content
summaries previously received during gossip exchanges, given
that a failed directory is replaced by a content peer.

Second, we look at the distribution of queries with respect
to lookup latency and transfer distance for P = 3000. Figure
19 shows that 66% of our queries are resolved within 150 ms

19

Figure 19: Lookup latency distribution in dynamic environment

Figure 20: Transfer distance distribution in dynamic environment

while 75% of DHT-Directory’s queries take more than 1200
ms. Figure 20 shows that the percentage of queries served from
a distance within 100 ms is 62% for Flower-CDN and 22% for
DHT-Directory. Thus, Flower-CDN preserves its highly sig-
nificant locality-aware gains under the worst scenarios of fail-
ures, given that the directories lost with DHT-Directory can be
quickly recovered with Flower-CDN.

6.3.3. Scalability
In the following set of experiments, we analyse the scala-

bility of our protocols. First, we examine Flower-CDN under
variable rates of participation then we validate PetalUp-CDN.
Note that the experiments still simulate high churn.

Flower-CDN. We study the behavior of Flower-CDN with re-
spect to scalability and compare it to the behavior of DHT-
Directory in a similar scenario. For each approach (Flower-
CDN and DHT-Directory), we conduct five experiments, each
one targeting a different population size (i.e., P = 3000, 5000,
7000, 9000, 11000) in the context of a highly dynamic envi-
ronment. For each experiment, we collect the hit ratio obtained
after 24 simulation hours, and the average lookup latency and
transfer distance for a query. To avoid over-fitted results, we
run each experiment three times and compute the average hit
ratio, lookup latency and transfer time for this experiment. We
also measure for Flower-CDN the average background traffic.
The results of the 4 experiments are summarized in Table 3.

We can see that the hit ratio of Flower-CDN increases from
0.7 to 0.82 when increasing P from 3000 to 11000. This means
that Flower-CDN leverages larger scales to achieve higher

gains. Actually, a larger population size enables Flower-CDN
to build up and converge to a maximum hit ratio faster. More-
over, the results of hit ratio show that Flower-CDN maintains its
improvement over DHT-Directory through variable population
sizes.

When comparing the results of lookup latency and tranfer
distance between Flower-CDN and DHT-Directory, we observe
that the improvement factor increases with scale and can reach
12 for the average lookup latency and 2 for the average transfer
distance. Indeed, when a petal has more content peers submit-
ting queries and becoming providers of the requested content,
searches in this petal will have larger scopes and thus are more
likely to be resolved within this petal. That is why large scales
are also advantageous for search speed and localization of close
results in Flower-CDN.

Finally, the results of background bandwidth show that a peer
experiences around 90 bps due to its exchanges. This is very
low bandwidth that could be sustained even by modem connec-
tions, which proves that Flower-CDN incurs very acceptable
overhead via its highly effective gossip protocols.

Table 3: Scalability comparison.
P hit ratio avg lookup avg transfer

3000 DHT-Directory 0.41 1544 ms 166 ms
Flower-CDN 0.7 178 ms 107 ms

5000 DHT-Directory 0.52 1596 ms 165 ms
Flower-CDN 0.72 141 ms 89 ms

7000 DHT-Directory 0.58 1618 ms 167 ms
Flower-CDN 0.78 160 ms 91 ms

9000 DHT-Directory 0.59 1692 ms 165 ms
Flower-CDN 0.79 156 ms 87 ms

11000 DHT-Directory 0.62 1743 ms 164 ms
Flower-CDN 0.83 143 ms 84 ms

background traffic

3000 Flower-CDN 97 bps
5000 Flower-CDN 89 bps
7000 Flower-CDN 91 bps
9000 Flower-CDN 92 bps

11000 Flower-CDN 94 bps

PetalUp-CDN. PetalUp-CDN aims at achieving a graceful
scale-up of Flower-CDN. In a nutshell, the goal is to maintain
the high performance of Flower-CDN and at the same time limit
the load on directory peers as the number of participants reaches
massive scales.

We evaluate the performance of PetalUp-CDN through a set
of four experiments targeting a population size of 150002. Each
experiment depicts the behavior of PetalUp-CDN for a specific
value of maxDirectory, the construction parameter of PetalUp-
CDN. Recall that maxDirectory defines the maximum number
of content peers that a directory peer should manage to avoid
overload situations. Above this number, an additional directory
peer is created for the corresponding petal. The current sim-
ulation configuration leads to petals that can at most reach 60

2Due to memory constraints, we could not simulate more than 15000 peers

20

content peers. Thus, maxDirectory is consecutively assigned
the values (15; 25; 35) in the first three experiments. The fourth
experiment corresponds to an unlimited maxDirectory, which
brings us back to Flower-CDN. The results of the four experi-
ments are synthesized into four curves, each one depicting the
time-based evolution of one of the metrics (background traffic,
hit ratio, lookup latency, and transfer distance).

First, let us analyse the results of background traffic (Fig-
ure 6.3.3). Our aim is to measure the impact of PetalUp-CDN
on the amount of load that a directory peer undergoes due to
the keepalive and push messages regularly sent by its subset
of content peers. We measure the average background traffic
of a participant peer because during an experiment a peer can
alternatively become a diretcory peer and a content peer. Ob-
viously, the smaller is maxDirectory, the smaller is the traf-
fic load on a directory peer. In particular, the load reduction
can reach 33% between Flower-CDN and PetalUp-CDN with
maxDirectory = 15.

Figure 21: Overhead in PetalUp-CDN.

When examining hit ratio evolution (Figure 6.3.3), we ob-
serve that the four approaches achieve similar results. This
demonstrates that the partionning of a petal does not affect the
performance of our P2P CDN in handling queries. Whether
the set of content peers is managed by one directory peer or
distributed accross several directory peers, the system succeeds
equally well in locating the requested content.

Figure 22: Hit ratio in PetalUp-CDN.

Regarding lookup latency (Figure 6.3.3) and transfer distance
(Figure 6.3.3), the performance is quite the same for all the ap-
proaches (with a slight difference of 5 ms in transfer distance).
Thus, PetalUp-CDN can achieve the same locality-aware gains

as Flower-CDN, independently of the number of directory peers
in charge of a petal. In other terms, it can perform fast searches
and serve close-by content.

Figure 23: Lookup latency in PetalUp-CDN.

Figure 24: Transfer distance in PetalUp-CDN.

6.4. Discussion

Based on the previous experiments, we conclude that our P2P
CDN can maintain an excellent performance under a large-scale
and dynamic participation of peers.

With respect to robustness, our maintenance protocols can
guarantee a high hit ratio and reduced lookup latency and trans-
fer distance. They provide an efficient detection mechanism
for dynamicity via low-cost gossip protocols. Also, they en-
sure a fast recovery of the P2P CDN that attenuates the loss of
directory information and enables a smooth transition. To re-
sume, Flower-CDN and PetalUp-CDN can be extremely robust
despite high levels of churn due to the efficient use of gossip.

Regarding scalability, Flower-CDN has shown excellent
gains despite modest sizes of petals (i.e., a petal size did not
exceed 60 peers). We believe that large petals can significantly
contribute in increasing the gains. For higher scales, PetalUp-
CDN has demonstrated its ability to avoid overload situations
without a decline in performance. Its multi-directory scheme
does not affect hit ratio, transfer distance, and latency lookup
when handling queries. The results are extremely promising
since they show that our P2P CDN can efficiently support mas-
sive scales.

21

Figure 25: Flower-CDN extension within the web browser

7. Deployment

Flower-CDN is deployed over clients that are interested in
some particular website and that are willing to participate in
order to enjoy a better access for the content of their interest. A
website ws is supported by Flower-CDN as long as there are a
sufficient number of clients on behalf of ws. More precisely, the
more popular a website ws is, the more particpants are attracted
to Flower-CDN to populate the petals of ws and to occupy its
directory peer positions. As for an unpopular website, its petals
tend to be empty and its directory peer positions vacant.

In this section, we give some guidelines on how Flower-CDN
can be deployed and used in practice.

7.1. Flower-CDN browser extension

A user accesses the Web through its web browser which han-
dles her HTTP requests and accordingly allows her to search
and view web content. In order to use and contribute to
Flower-CDN transparently, a user should incorporate Flower-
CDN functionality into her browser and let it run over HTTP.

Flower-CDN functionality can be implemented as a browser
extension. As shown in Figure 25, two main Flower-CDN com-
ponents are integrated into a browser that installs Flower-CDN
extension: an HTTP request manager and a Flower-CDN proxy.

As shown in Figure 25, the content that the user shares in
Flower-CDN is stored in a delimited section of the browser
cache (i.e., the disk storage allocated for the web browser). This
ensures the privacy of the user, because it allows to isolate the
web content that the user wants to share from the private con-
tent. The amount of disk space allocated to Flower-CDN sec-
tion grows dynamically as more content is cached, bounded by
the available disk space of the browser cache. The cache re-
placement and expiration policies adopted by the browser cache
are used to manage Flower-CDN content (recall that the con-
tent mainly consists of web pages and their embedded objects).
Further, the view and directory informations are also stored in

this Flower-CDN section and managed according to their own
expiration policies (i.e., the view via gossip exchanges cf. Sec-
tion 2.3.3 and the directory information via push and keepalive
exchanges cf. Section 4.1).

The web browsing process begins when the user inputs a
URL into the browser and initiates an HTTP request. The
HTTP request is first handled by the Flower-CDN HTTP re-
quest manager. This manager has a list configured by the user
and called Flower-CDN whitelist that specifies a set of domains
referring to websites on behalf of which the user participates
to Flower-CDN. Thus, the manager checks the URL against
the Flower-CDN whitelist and forwards the request to the local
Flower-CDN proxy if the URL matches the whitelist. Other-
wise, the HTTP request follows the browser’s standard process-
ing path. Upon receiving the request, the Flower-CDN proxy
tries first to locally resolve it and then resorts to the Flower-
CDN network. The user is connected to the Flower-CDN net-
work as a content or directory peer, via its local proxy which
communicates with other Flower-CDN proxies at remote users.
Thus, a Flower-CDN proxy handles requests coming from re-
mote users in addition to the local user’s requests.

Below, we first give more details on how a Flower-CDN ex-
tension is configured wrt. the user’s interests and locality. Then,
we deepen our explanation on how a user is connected to the
Flower-CDN network (i.e., D-ring or petals).

7.2. Configuration

A user may have interest in several websites for which she
wants to use Flower-CDN. In Flower-CDN, peers that are re-
lated to different websites are involved in different petals and
thus have uncorrelated behaviors. Therefore, the user can par-
ticipate in Flower-CDN as n different peers. She specifies in her
Flower-CDN whitelist the names of the n websites of her inter-
est and the cache section of her Flower-CDN proxy contains n
subsections of dynamic sizes. Figure 7.2 illustrates how a user
Suzan is integrated in a Flower-CDN network. Suzan who is in
locality 2 is interested in 2 websites α and β. Thus, she is rep-
resented in Flower-CDN network as 2 different content peers
cα,2 and cβ,2. Technically speaking, the Flower-CDN proxy that
operates within Susan’s browser, manages two different cache
subsections, one for each content peer. For instance, the first
subsection contains the view and the content maintained by cα,2.

Upon the reception of an HTTP request, the Flower-CDN
proxy detects the website ws targetted by the request based on
its URL. If Suzan has a query for α, her Flower-CDN proxy
accesses the Flower-CDN network as cα,2 and deals with the
local cache subsection of cα,2.

Upon its installation by the user, a Flower-CDN browser ex-
tension is provided with the number k of localities involved in
the system as well as the technique used to detect one’s local-
ity. For instance, if we use the landmark-based technique [3],
the user will know the IP adresses of a set of well-known land-
marks spread across the network. Thus, she can measure its
RTT to the landmarks and orders them by increasing latency.
Given that each possible landmark ordering identifies a local-
ity, the user detects her locality loc based on her ordering.

22

Figure 26: A user in Flower-CDN as two content peers related to two different
websites

In an open P2P environment, some peers may be malicious
and corrupt the shared content. This problem can be easily
solved if web-servers provide digitally signed certificates along
with their content [15]. The Flower-CDN proxy running within
the user’s web browser only needs the web-server’s public key
to verify the digital signature of an object related to this web-
server and received by the user from some content peer. This
solution is indifferent to peer dynamicity and copes well with a
loosely-trusted environment.

7.3. Connection with Flower-CDN network
Recall that a new client uses D-ring to enter Flower-CDN.

Thus, a newly installed Flower-CDN browser extension has a
list of IP addresses referring to random directory peers for boot-
straping. When the Flower-CDN proxy wants to access Flower-
CDN network for the first time, it uses a random bootstrap peer
to route its first message over D-ring.

Upon receiving a query, the Flower-CDN proxy detects the
targetted website ws and acts as the corresponding peer p. If
this is the first query for ws, p needs to access D-ring. Thus, it
computes the key reflecting the website targetted by the query
and the locality of p and picks a random bootstrap peer which
invokes the DHT routing procedure to forward the query to the
targetted directory peer. If p has already submitted queries for
ws, p acts as a directory or content peer of ws according to its
acquired role, and uses its view to connect to peers from its petal
hosted by remote users via their Flower-CDN local proxies.

A user may reconnect after a temporary disconnection or fail-
ure. In such a case, each one of her peers p does not necessarily
have to take all the way via D-ring as if it is a new client. p can
act as a content peer and try to renew contacts with other content
peers of its petal using its previously built view which is stored
within the user browser cache. More precisely, p searches for
a contact from its view that is still available to gossip with, in
order for p to reintegrate into its petal. However, if p’s view

contains no available contact, p cannot reintegrate into its petal
and thus has to rejoin Flower-CDN as a new client.

8. Related Work

We categorize existing P2P CDNs into three main classes:
centralized, unstructured and structured.

The first category [16, 17] relies on the web-server that
centralizes and manages the directory information. Basically,
the server maintains a directory of peers to which its objects
have been transferred in the past and manages the redirection
of queries. Centralized approaches lack robustness, because
whenever the web-server fails, its content is no longer acces-
sible in spite of available peers with cached copies. As with
the traditional server/client model, the server is still a single
point of failure. Scaling such systems requires replacing the
web server with a more powerful one, to be able to redirect the
queries of a large audience. In contrast, PetalUp-CDN pools
the resources of the clients to expand and support higher scales.

The second category of approaches (e.g., Proof [18] and
BuddyWeb[19]) uses unstructured overlays for their flexibility
and inherent robustness. For instance, in Proofs [18], peers con-
tinuously exchange neighbors among each other so that each
peer gets a random view of the network for each search op-
eration. Peers keep their requested objects and provide them
to other participants. They use flooding to locate their re-
quested objects. The continuous randomization of the over-
lay has the benefit of improving the network fault-tolerance
and load balancing. However, searching for not-so popular
objects induces heavy traffic and high latency. In Flower-
CDN/PetalUp-CDN, search is confined to petals and guided
by the content-summaries. Moreover, Proofs does not leverage
locality-awareness.

The third category of approaches (e.g., Squirrel [12], PoP-
Cache [20] and Backslash [21]) relies on DHT to achieve fast
lookup and propose basically two types of strategies, DHT-
Home and DHT-Directory. The first one replicates web ob-
jects at peers with ID numerically closest to the hash of the
URL of the object without any locality or interest considera-
tions. Queries find the peer that has the object by navigating
through the DHT. To deal with highly popular objects, objects
may be progressively replicated along neighbors as the number
of requests increases. The DHT-Directory strategy stores at the
peer identified by the hash of the object’s URL a small direc-
tory of pointers to recent downloaders of the object. A query
first navigates through the DHT and then receives a pointer to
a peer that potentially has the object. Approaches adopting
this strategy may be vulnerable to high churn: the directory
information is abruptly lost at the failure of its storing peer,
which may severely degrade performance. Additionally, there
are two main drawbacks in the query routing of both strate-
gies. First, each query has to navigate through the whole DHT,
which implies more routing load and higher response times than
Flower-CDN/PetalUp-CDN. Second, unless using a locality-
aware overlay combined with proactive replication, the query is
served from a random physical location whereas our protocols

23

rely on a locality-aware infrastructure that directs each query
according to the physical location of the client.

In [22], peers are organized using a hash function into
√

N
groups where N = total number of peers. Each peer gossips
within its group to replicate and spread directory entries; it se-
lects close-by peers from its view to exchange gossip messages.
Obviously, peers gossiping and replicating directory entries are
not necessarily interested in this information whereas gossip
in Flower-CDN/PetalUp-CDN only involves peers of the same
petal which are interested in the same content. Furthermore,
since directory information is highly replicated, aggressive up-
dates are required under churn and dynamic changes.

To the best of our knowledge, the P2P CDNs that are
currently available for public use comprise CoralCDN [23],
CoDeeN [24] and CobWeb [25]. These systems are deployed
over PlanetLab which provides a relatively trusted environment
consisting of nodes donated largely by the research community.
We examine one such representative system. CoralCDN [23]
relies on a hierarchy of tree-based overlays that cluster nearby
nodes. Each level of the hierarchy consists of several overlays,
and each overlay consists of the set of nodes whose average
pair-wise RTTs are below the threshold defined by this level.
A node is member of one overlay at each hierarchy level and
detains the same node ID in all overlays to which it belongs.
A key is mapped to several nodes whose IDs are numerically
close to the key. A node stores pointers related to the object
whose key is mapped to its node ID. CoralCDN allows to lo-
cate web object copies hosted by nearby proxies of CoralCDN:
the proxies will be represented by the nodes of the hierarchy.
Based on its RTT measurements, a client is redirected via DNS
to a nearby CoralCDN proxy which eventually provides her the
requested object. If not cached locally, the proxy can perform
a key-based routing throughout its overlays in order to find a
pointer to a remote copy of the object; it starts at the highest-
level overlay of the proxy to benefit from network locality then
progresses down the hierarchy. Once the object is fetched and
locally cached, the proxy inserts pointers to itself wrt. the object
in the different overlays to which belongs this proxy. To han-
dle dynamicity, pointers are associated with ttl values and are
periodically refreshed by their referenced proxy. In CoralCDN,
users are not involved in the P2P network: they use the P2P
CDN but do not contribute any resources to it. An increase of
the number of users requires more investment in terms of proxy
caches.

9. Conclusion

In this paper, we describe Flower-CDN, an interest and
locality-aware P2P CDN, that enables a website to efficiently
distribute its content, with the help of the community inter-
ested in its content. Without relying on any dedicated servers,
Flower-CDN offers an efficient routing infrastructure for the
community’s queries. Flower-CDN’s infrastructure intelli-
gently combines DHT efficiency for reliable lookup with gossip
robustness for self-monitoring. Through simulation-based ex-
periments, Flower-CDN showed high performance especially

in performing fast searches and finding close-by results. Fur-
thermore, gossip incured acceptable overhead in terms of band-
width consumption, which can be tuned according to the avail-
able network resources and hit ratio requirements.

For scalability purposes, we proposed PetalUp-CDN which
enables Flower-CDN’s infrastructure to dynamically evolve and
avoid overload situations. The performance evaluation demon-
strated that this new scheme does not affect hit ratio and re-
sponse times, thus enabling efficient scalability.

We ensured the robustness of Flower-CDN and PetalUp-
CDN via our maintenance protocols. Based on low-cost gos-
sip, these protocols efficiently detect failures and churn, and
can recover the P2P CDN smoothly and quickly. Simulation
results showed that our approach successfully resists to churn
and leverages higher scales to achieve higher improvements. In
comparison with an existing P2P CDN, hit ratio is ameliorated
by 40% and response times reduced by a factor of 12.

We plan to extend this work for social networks, mainly by
elaborating more on the concept of interests and adding person-
alized searching features.

References

[1] M. E. Dick, E. Pacitti, B. Kemme, Flower-CDN: a hybrid P2P overlay
for efficient query processing in CDN, in: Proceedings of the 12th ACM
International Conference on Extending Database Technology (EDBT),
2009, pp. 427–438.

[2] M. E. Dick, E. Pacitti, B. Kemme, A highly robust P2P-CDN under large-
scale and dynamic participation, in: Proceedings of the 1st International
Conference on Advances in P2P Systems (AP2PS), 2009, pp. 180–185.

[3] S. Ratnasamy, M. Handley, R. M. Karp, S. Shenker, Topologically-aware
overlay construction and server selection, in: Proceedings of the 21st
IEEE International Conference on Computer Communications (INFO-
COM), 2002, pp. 1190–1199.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, Chord:
a scalable P2P lookup service for Internet applications, in: Proceedings of
the ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), 2001, pp. 149–
160.

[5] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale P2P systems, in: Proceedings of the 2nd
ACM/IFIP International Conference on Middleware, Vol. 2218 of LNCS,
Springer, 2001, pp. 329–350.

[6] L. Fan, P. Cao, J. Almeida, A. Z. Broder, Summary cache: A scalable
wide-area Web cache sharing protocol, in: Proceedings of the ACM Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), 1998, pp. 291–293.

[7] S. Voulgaris, D. Gavidia, M. Steen, Cyclon: Inexpensive membership
management for unstructured P2P overlays, Journal of Network and Sys-
tems Management 13 (2) (2005) 197–217.

[8] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, L. Massoulieacute, Epi-
demic information dissemination in distributed systems, IEEE Computer
37 (5) (2004) 60–67.

[9] A. Datta, M. Hauswirth, K. Aberer, Updates in highly unreliable, repli-
cated peer-to-peer systems, in: Proceedings of the 23rd IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS), 2003, pp.
76–.

[10] M. Jelasity, A. Montresor, G. P. Jesi, S. Voulgaris, The PeerSim simulator,
http://peersim.sf.net.

[11] A. Medina, A. Lakhina, I. Matta, J. Byers, BRITE topology generator,
http://www.cs.bu.edu/brite/ (2002).

[12] S. Iyer, A. I. T. Rowstron, P. Druschel, Squirrel: a decentralized P2P web
cache, in: Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing (PODC), 2002, pp. 213–222.

[13] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and
Zipf-like distributions: evidence and implications, in: Proceedings of the

24

18th IEEE International Conference on Computer Communications (IN-
FOCOM), 1999, pp. 126–134.

[14] D. Stutzbach, R. Rejaie, Characterizing churn in P2P networks, Technical
report CIS-TR-2005-03, University of Oregon (2005).

[15] I. J. Taylor, From P2P to Web services and Grids: peers in a client/server
world, Springer, 2004, Ch. Security.

[16] Y.-S. Ryu, S.-B. Yang, An effective P2P web caching system under dy-
namic participation of peers, IEICE Transactions 88-B (4) (2005) 1476–
1483.

[17] V. N. Padmanabhan, K. Sripanidkulchai, The case for cooperative net-
working, in: Proceedings of the 1st International Workshop on P2P Sys-
tems (IPTPS), Vol. 2429 of LNCS, Springer, 2002, pp. 178–190.

[18] A. Stavrou, D. Rubenstein, S. Sahu, A lightweight, robust P2P system
to handle flash crowds, in: Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP), 2002, p. 226.

[19] X. Wang, W. S. Ng, B. C. Ooi, K.-L. Tan, A. Zhou, Buddyweb: A P2P-
based collaborative web caching system, in: Revised papers from the
NETWORKING Workshops on Web Engineering and Peer-to-Peer Com-
puting, Vol. 2376 of LNCS, Springer, 2002, pp. 247–251.

[20] W. Rao, L. C. 0002, A. W.-C. Fu, Y. Bu, Optimal proactive caching in
P2P network: analysis and application, in: Proceedings of the 6th ACM
International Conference on Information and Knowledge Management
(CIKM), 2007, pp. 663–672.

[21] T. Stading, P. Maniatis, M. Baker, P2P caching schemes to address flash
crowds, in: Proceedings of the 1st International Workshop on P2P Sys-
tems (IPTPS), Vol. 2429 of LNCS, Springer, 2002, pp. 203–213.

[22] P. Linga, I. Gupta, K. Birman, A churn-resistant P2P web caching sys-
tem, in: Proceedings of the ACM Workshop on Survivable and Self-
Regenerative Systems (SSRS), 2003, pp. 1–10.

[23] M. J. Freedman, E. Freudenthal, D. Mazières, Democratizing content
publication with Coral, in: Proceedings of the 1st USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2004, pp.
239–252.

[24] V. S. Pai, L. Wang, K. Park, R. Pang, L. Peterson, The dark side of the
Web: an open proxy’s view, ACM SIGCOMM Computer Communication
Review 34 (1) (2004) 57–62.

[25] Y. J. Song, V. Ramasubramanian, E. G. Sirer, Optimal resource utilization
in content distribution networks, Technical report TR2005-2004, Cornell
University (2005).

25

