
HAL Id: lirmm-00607915
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00607915v1

Submitted on 11 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Replication in DHTs using Dynamic Groups
Reza Akbarinia, Mounir Tlili, Esther Pacitti, Patrick Valduriez, Alexandre A.

B. Lima

To cite this version:
Reza Akbarinia, Mounir Tlili, Esther Pacitti, Patrick Valduriez, Alexandre A. B. Lima. Replication in
DHTs using Dynamic Groups. Transactions on Large-Scale Data- and Knowledge-Centered Systems,
2011, Part III - Special Issue on Data and Knowledge Management in Grid and P2P Systems, LNCS
(6790), pp.1-19. �10.1007/978-3-642-23074-5_1�. �lirmm-00607915�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00607915v1
https://hal.archives-ouvertes.fr

Replication in DHTs using Dynamic Groups

Reza Akbarinia1, Mounir Tlili2, Esther Pacitti1, Patrick Valduriez1, Alexandre A. B.
Lima3

1INRIA and LIRMM, Montpellier, France
2INRIA and LINA, Univ. Nantes, France

3COPPE/UFRJ, Rio de Janeiro, Brazil

Reza.Akbarinia@inria.fr, Mounir.Tlili@univ-nantes.fr, pacitti@lirmm.fr,
Patrick.Valduriez@inria.fr, assis@cos.ufrj.br

Abstract. Distributed Hash Tables (DHTs) provide an efficient solution for
data location and lookup in large-scale P2P systems. However, it is up to the
applications to deal with the availability of the data they store in the DHT, e.g.
via replication. To improve data availability, most DHT applications rely on
data replication. However, efficient replication management is quite
challenging, in particular because of concurrent and missed updates. In this
paper, we propose a complete solution to data replication in DHTs. We propose
a new service, called Continuous Timestamp based Replication Management
(CTRM), which deals with the efficient storage, retrieval and updating of
replicas in DHTs. In CTRM, the replicas are maintained by groups of peers
which are determined dynamically using a hash function. To perform updates
on replicas, we propose a new protocol that stamps the updates with timestamps
that are generated in a distributed fashion using the dynamic groups.
Timestamps are not only monotonically increasing but also continuous, i.e.
without gap. The property of monotonically increasing allows applications to
determine a total order on updates. The other property, i.e. continuity, enables
applications to deal with missed updates. We evaluated the performance of our
solution through simulation and experimentation. The results show its
effectiveness for replication management in DHTs.

1 Introduction

Distributed Hash Tables (DHTs) such as CAN [17], Chord [21] and Pastry [20],
provide an efficient solution for data location and lookup in large-scale P2P systems.
While there are significant implementation differences between DHTs, they all map a
given key k onto a peer p using a hash function and can lookup p efficiently, usually
in O(log n) routing hops, where n is the number of peers [5]. One of the main
characteristics of DHTs (and other P2P systems) is the dynamic behavior of peers
which can join and leave the system frequently, at any time. When a peer gets offline,
its data becomes unavailable. To improve data availability, most applications which
are built on top of DHTs rely on data replication by storing the (key, data) pairs at
several peers, e.g. using several hash functions. If one peer is unavailable, its data can
still be retrieved from the other peers that hold a replica. However, update
management is difficult because of the dynamic behaviour of peers and concurrent
updates. There may be replica holders (i.e. peers that maintain replicas) that do not
receive the updates, e.g. because they are absent during the update operation. Thus,
we need a mechanism that efficiently determines whether a replica on a peer is up-to-
date, despite missed updates. In addition, to deal with concurrent updates, we need to
determine a total order on the update operations.

* Work partially funded by the ANR DataRing projet.

In this paper, we give an efficient solution to replication management in DHTs. We
propose a new service, called Continuous Timestamp based Replication Management
(CTRM), which deals with the efficient storage, retrieval and updating of replicas in
DHTs. In CTRM, the replicas are maintained by groups of peers, called replica holder
groups, which are dynamically determined using a hash function. To perform updates
on replicas, we propose a new protocol that stamps the updates with timestamps that
are generated in a distributed fashion using the members of the groups. The updates’
timestamps are not only monotonically increasing but also continuous, i.e. without
gap. The property of monotonically increasing allows CTRM to determine a total
order on updates and to deal with concurrent updates. The continuity of timestamps
enables replica holders to detect the existence of missed updates by looking at the
timestamps of the updates they have received. Examples of applications that can take
advantage of continuous timestamping are the P2P collaborative text editing
applications, e.g. P2P Wiki [23], which need to reconcile the updates done by
collaborating users. We analyze the network cost of CTRM using a probabilistic
approach, and show that its cost is very low in comparison to two baseline services in
DHTs. We evaluated CTRM through experimentation and simulation; the results
show its effectiveness. In our experiments, we compared CTRM with two baseline
services, and the results show that with a low overhead in update response time,
CTRM supports fault-tolerant data replication using continuous timestamps. The
results also show that data retrieval with CTRM is much more efficient than the
baseline services. We investigated the effect of peer failures on the correctness of
CTRM and the results show that it works correctly even in the presence of peer
failures.

This paper is an extended version of [2] that involves at least 38% of new material
including the following contributions. First, in Section 4, we extend the concept of
replica holder groups which are essential for our solution. In particular, we deal with
the dynamic behaviour of the group members, which can leave the system at any
time. Second, in Section 6, we give a communication cost analysis of our solution,
using a probabilistic approach, and compare the cost of our solution with those of two
baseline services. We also include more discussion in Section 8 about related work on
replication management in P2P systems.

The rest of this paper is organized as follows. In Section 2, we define the problem
we address in this paper. In Section 3, we give an overview of our CTRM service and
its operations. In Section 4, we describe the replica holder groups in CTRM. In
Section 5, we propose the new UCT protocol which is designed for updating replicas
in CTRM. Section 6 presents a cost analysis of the CTRM service. Section 7 reports a
performance evaluation of our solution. Section 8 discusses related work, and Section
9 concludes.

2 Problem Definition

In this paper we deal with improving data availability in DHTs. Like several other
protocols and applications designed over DHTs, e.g. [5], we assume that the lookup
service of the DHT behaves properly. That is, given a key k, it either finds correctly
the responsible for k or reports an error, e.g. in the case of network partitioning where
the responsible peer is not reachable.

To improve data availability, we replicate each data at a group of peers of the DHT
which we call replica holders. Each replica holder keeps a replica copy of a replicated
data. Each replica may be updated locally by a replica holder or remotely by other
peers of the DHT. This model is in conformance with the multi-master replication
model [15].

The problem that arises is that a replica holder may fail or leave the system at any
time. Thus, the replica holder may miss some updates during its absence.
Furthermore, updates on different replicas of a data may be performed in parallel, i.e.
concurrently. To ensure consistency, updates must be applied to all replicas in a
specific total order.

In this model, to ensure eventual consistency of replicas, we need a distributed
mechanism that determines 1) a total order for the updates; 2) the number of missed
updates at a replica holder. Such a mechanism allows dealing with concurrent
updates, i.e. committing them in the same order at all replica holders. In addition, it
allows a rejoining (recovering) replica holder to determine whether its local replica is
up-to-date or not, and how many updates should be applied on the replica if it is not
up-to-date.

In this paper, we aim at developing a replication management service supporting
the above-mentioned mechanism in DHTs. One solution for realizing such a
mechanism is to stamp the updates with timestamps that are monotonically increasing
and continuous. We call such a mechanism update with continuous timestamps.

Let patch be the action (or set of actions) generated by a peer during one update
operation. Then, the property of update with continuous timestamps can be defined as
follows.

Definition 1: Update with continuous timestamps (UCT). An update mechanism is
UCT iff : the update patches are stamped by increasing real numbers such that the
difference between the timestamps of any two consecutive committed updates is one.

Formally, consider two consecutive committed updates u1 and u2 on a data d, and

let pch1 and pch2 be the patches of u1 and u2, respectively. Assume that u2 is done after
u1, and let t1 and t2 be the timestamps of pch1 and pch2 respectively. Then we should
have t2 = t1 + 1;

To support the UCT property in a DHT, we must deal with two challenges: 1) To
generate continuous timestamps in the DHT in a distributed fashion; 2) To ensure that
any two consecutive generated timestamps are used for two consecutive updates.
Dealing with the first challenge is hard, in particular due to the dynamic behavior of
peers, which can leave or join the system at any time and frequently. This behavior
makes inappropriate the timestamping solutions based on physical clocks, because the
distributed clock synchronization algorithms do not guarantee good synchronization
precision if the nodes are not linked together long enough [16]. Addressing the second
challenge is difficult as well, because there may be generated timestamps which are
used for no update, e.g. because the timestamp requester peer may fail before doing
the update.

3 Overview of Replication Management in CTRM

CTRM (Continuous Timestamp based Replication Management) is a replication
management service which we designed to deal with efficient storage, retrieval and
updating of replicas on top of DHTs, while supporting the UCT property.

To provide high data availability, CTRM replicates each data in the DHT at a
group of peers, called replica holder group. For each replicated data, there is a replica
holder group which is determined dynamically by using a hash function. To know the
group which holds the replica of a data, peers of the DHT apply the hash function on
the data ID, and using the DHTs lookup service to find the group. The details of the
replica holder groups are presented in Section 4.

3.1 Data Update

CTRM supports multi-master data replication, i.e. any peer in the DHT can update the
replicated data. After each update on a data by a peer p, the corresponding patch, i.e.
set of update actions, is sent by p to the replica holder group where a monotonically
increasing timestamp is generated by one of the members, i.e. the responsible for the
group. Then the patch and its timestamp are published to the members of the group
using an update protocol, called UCT protocol. The details of the UCT protocol are
presented in Section 5.

3.2 Replica Retrieval

To retrieve an up-to-date replica of a data, the request is sent to the peer that is
responsible for the data’s replica holder group. The responsible peer sends the data
and the latest generated timestamp to the group members, one by one. The first
member that maintains an up-to-date replica returns it to the requester. To check
whether their replicas are up-to-date, replica holders check the two following
conditions, called up-to-date conditions:
1. The latest generated timestamp is equal to the timestamp of the latest patch

received by the replica holder.
2. The timestamps of the received patches are continuous, i.e. there is no missed

update.

The UCT protocol, which is used for updating the data in CTRM, guarantees that if

at peer p there is no gap between the timestamps and the last timestamp is equal to the
last generated one, then p has received all replica updates. In contrast, if there is some
gap in the received timestamps, then there should be some missed updates at p.

If during the replica retrieval operation, a replica holder p understands that it
misses some updates, then it retrieves the missed updates and their timestamps from
the group’s responsible peer or other members that hold them, and updates its replica.

In addition to the replica retrieval operation, the up-to-date conditions are also
verified periodically by each member of the group. If the conditions do not hold, the
member updates its replica by retrieving the missed updates from other members of
the group.

4 Replica Holder Groups

Replica holder groups are dynamic groups of peers which are responsible for
maintaining the replicas of data, timestamping the updates, and returning up-to-date
data to the users.

In this section, we first describe the idea behind the replica holder groups, then
discuss on how they assure their correct functionality in the presence of peer
join/departures, which can be frequent in P2P systems.

4.1 Basic Ideas

Let Gk be the group of peers that maintain the replicas of a data whose ID is k. We
call these peers the replica holder group of k. For each group, there is a responsible
peer which is also one of its members. For choosing a responsible peer for the group

Gk, we use a hash function hr, and the peer p that is responsible for key=hr(k) in the
DHT, is the responsible for Gk. In this paper, the peer that is responsible for key=hr(k)
is denoted by rsp(k , hr), i.e. called responsible for k with regard to hash function hr. In
addition to rsp(k , hr), some of the peers that are close to it, .e.g. its neighbors, are
members of Gk. Each member of the group knows the address of other members of
the group. The number of members of a replica holders group, i.e. ⏐Gk⏐, is a system’s
parameter.

Each group member p periodically sends alive messages to the group’s responsible
peer, and the responsible peer returns to it the current list of members. If the
responsible peer does not receive an alive message from a member, it assumes that the
member has failed. When a member of a group leaves the system or fails, after getting
aware of this departure, the responsible peer invites a close peer to join the group, e.g.
one of its neighbors. The new member receives from the responsible peer a list of
other members as well as up-to-date replicas of all data replicated by the group.

The peer p that is responsible for Gk generates timestamps for the updates done on
the data k. For generating the timestamps, it uses a local counter called counter of k at
p which we denote as cp,k. When p receives an update request for a data k, it
increments the value of cp,k by one and stores the update patch and the timestamp over
the other members of the group using a protocol which we describe in Section 5.

In the situations where the group’s responsible peer leaves the system or fails,
another peer takes it over. This responsibility change can also happen in the situations
where another peer joins the system and becomes responsible for the key hr(k) in the
DHT. In the next section, we discuss on how the responsibility migrates in these
situations, and how the new responsible peer initializes its counter to the correct
timestamp value, i.e. to the value of the last generated timestamp.

4.2 Dealing with Departure of Group’s Responsible Peer

The responsible peer is the most important member of the group. In the management
of the replica groups, we must deal with the cases where the responsible peer leaves
the system or fails. The main issues are: how to determine the next responsible peer,
and how to initialize the counter values on it.

4.2.1 Who Is the Next Group’s Responsible?
As discussed in Section 4.1, the responsible for the group Gk is the peer that is
responsible for the key hr(k) in the DHT. Notice that at any time, there is a responsible
peer for each key. If the current responsible for the key hr(k) leaves the DHT, another
peer, say p, becomes responsible for the key. This peer p becomes also the new
responsible for the group Gk. Therefore, if a peer wants to contact the responsible for
Gk, the lookup service of the DHT gives it the address of p.

An interesting question is about the relationship between the current and the next
responsible peer in the DHT. To answer the question, we observe that, in DHTs, the
next peer that obtains the responsibility for k is typically a neighbor of the current
responsible peer, so the next responsible peer is one of the members of the group. We
now illustrate this observation with CAN and Chord, two popular DHTs.

Let rsp(k, hr) be the current responsible peer for group Gk , and nrsp(k, hr) be the
one that takes it over. Let us assume that peer q is rsp(k, hr) and peer p is nrsp(k, hr).
In CAN and Chord, there are only two ways by which p would obtain the
responsibility for k. First, q leaves the P2P system or fails, so the responsibility of k is
assigned to p. Second, p joins the P2P system which assigns it the responsibility for k,
so q looses the responsibility for k despite its presence in the P2P system. In both

p1 (ID1)

p2 (ID2)

p (IDp)
(IDp)

p3
p4

p5

cases, we show that both CAN and Chord have the property that nrsp(k, hr) is one of
the neighbors rsp(k, hr).

Chord. In Chord [21], each peer has an m-bit identifier (ID). The peer IDs are
ordered in a circle and the neighbors of a peer are the peers whose distance from p
clockwise in the circle is 2i for 0≤ i≤ m. The responsible for hr(k) is the first peer
whose ID is equal or follows hr(k). Consider a new joining peer p with identifier IDp.
Suppose that the position of p in the circle is just between two peers p1 and p2 with
identifiers ID1 and ID2, respectively. Without loss of generality, we assume that
ID1<ID2, thus we have ID1<IDp<ID2. Before the entrance of p, the peer p2 was
responsible for k if and only if ID1< hr(k)≤ ID2. When p joins Chord, it becomes
responsible for k if and only if ID1< hr(k)≤ IDp (see Figure 1). In other words, p
becomes responsible for a part of the keys for which p2 was responsible. Since the
distance clockwise from p to p2 is 20, p2 is a neighbor of p. Thus, in the case of join,
the next responsible peer is one of the neighbors of the current responsible. If p leaves
the system or fails, the next peer in the circle, say p2, becomes responsible for its keys.

CAN. We show this property by giving a brief description of CAN’s protocol for
joining and leaving the system [17]. CAN maintains a virtual coordinate space
partitioned among the peers. The partition which a peer owns is called its zone.
According to CAN, a peer p is responsible for hr(k) if and only if hr(k) is in p’s zone.
When a new peer, say p, wants to join CAN, it chooses a point X and sends a join
request to the peer whose zone involves X. The current owner of the zone, say q, splits
its zone in half and the new peer occupies one half, then q becomes one of p’s
neighbors (see Figure 2). Thus, in the case of join, nrsp(k, hr) is one of the neighbors
of rsp(k, hr). Also, when a peer p leaves the system or fails, its zone will be occupied
by one of its neighbors, i.e. the one that has the smallest zone. Thus, in the case of
leave or fail, nrsp(k, hr) is one of the neighbors of rsp(k, hr), and that neighbor is
known for rsp(k, hr).

Following the above discussion, in Chord or CAN when the current group’s
responsible peer leaves the system or fails, one of its neighbors becomes the next
responsible peer.

Figure 1. Responsibility migration
in Chord

 Figure 2. Responsibility migration in
CAN, based on a two dimensional
coordinate space

p

q
x

4.2.2 Timestamp Initialization
In the case where a responsible peer q leaves the system or fails, the next responsible
p should initialize its counters to the last value of generated timestamps. In CTRM,
we consider two different situations for counter initialization: 1) normal departure of
q; 2) failure of q.

Normal Departure
When a responsible peer leaves the system normally, i.e. without failure, the counter
initialization is done by directly transferring the counters from the current responsible
peer to the next one at the end of its responsibility.

Let q and p be two peers, and K’⊆ K be the set of keys for which q is the current
responsible peer, and p is the next responsible. Once q reaches the end of its
responsibility for the keys in K’, e.g. before leaving the system, it sends to p all its
counters that have been initialized for the keys involved in K’.

Failure
In the cases where a responsible peer fails, the next responsible peer uses the
timestamp values, which are stored along with updates over the members of the
group, in order to initialize its counters. Let k be a key whose responsible fails, and p
be the peer that is the new responsible for it. For initializing the counter of k, the new
responsible peer p contacts the members of the group, retrieves the most recent
timestamp which is stored over each member, and selects the highest timestamp as the
value of the counter for k, i.e. cp,k.

One important question is how the new responsible peer p gets the address of the
other members? The answer is as follows. If p was a member of the group before
becoming its responsible, it has the address of other members of the group. Thus, it
can communicate with them easily. If it is a new member, i.e. it has just joined the
DHT, it waits until being contacted by the other members of the group. Recall that
each member of the group, e.g. q, periodically sends an alive message to the group’s
responsible peer. If q receives no acknowledge from the responsible peer, it
understands that probably the responsible peer has failed. Thus, it uses the lookup
service of the DHT to find the address of the peer that is the responsible for hr(k) in
the DHT. If the address is different from the previous one, q gets sure that the
responsible peer has changed, so it sends it a message that involves the address of
other members of the group. It also contacts the other members of the group to inform
them about the modification in the responsibility of the group.

5 Update with Continuous Timestamps

To update the replicated data in the replica holder groups, CTRM uses a new protocol
called UCT (Update with Continuous Timestamps). In this section, we describe the
details of UCT.

5.1 UCT Protocol

To simplify the description of our UCT protocol, we assume the existence of (not
perfect) failure detectors [7] that can be implemented as follows. When we setup a
failure detector on a peer p to monitor peer q, the failure detector periodically sends

ping messages to q in order to test whether q is still alive (and connected). If the
failure detector receives no response from q, then it considers q as a failed peer, and
triggers an error message to inform p about this failure.

Let us now describe the UCT protocol. Let p0 be the peer that wants to update a
data whose ID is k. The peer p0 is called update requester. Let pch be the patch of the
update performed by p0. Let p1 be the responsible for the replica holder group of k, i.e.
p1= rsp(k, hr). The protocol proceeds as follows (see Figure 3):

• Update request. In this phase, the update requester, i.e. p0, obtains the address of

the group’s responsible peer, i.e. p1, by using the DHT's lookup service, and
sends to it an update request containing the pair (k, pch). Then, p0 waits for a
commit message from p1. It also uses a failure detector and monitors
p1. The wait time is limited by a default value, e.g. by using a timer. If p0 receives
the terminate message from p1, then it commits the operation. If the timer expires
or the failure detector reports a fault of p1, then p0 checks whether the update has
been done or not, i.e. by checking the data at replica holders. If the answer is
positive, then the operation is committed, else it is aborted.

• Timestamp generation and replica publication. After receiving the update

request, p1 generates a timestamp for k, e.g. ts, by increasing a local counter that
it keeps for k, say ck. Then, it sends (k, pch, ts) to the replica holders, i.e. the
members of its group, and asks them to return an acknowledgement. When a
replica holder receives (k, pch, ts), it returns the acknowledgement to p1 and
maintains the data in a temporary memory on disk. The patch is not considered as
an update before receiving a commit message from p1. If the number of received
acknowledgements is more than or equal to a threshold δ, then p1 starts the
update confirmation phase. Otherwise p1 sends an abort message to p0. The

1. On update requester:
• Send {k, pch} to rsp(k, hr)
• Monitor rsp(k, hr) using a failure detector
• Go to Step 8 if rsp(k, hr) fails

2. On rsp(k, hr): upon receiving {k, pch}

• Set ck = ck + 1; // increase counter by one
 // initially we have ck=0;

• Let ts = ck, send {k, pch, ts} to other replica
holders;

• Set a timer on, called ackTimer, to a default
time

3. On each replica holder: upon receiving {k, pch,

ts}
• Maintain {k, pch, ts} in a temporary

memory on disk;
• Send ack to rsp(k, hr);

4. On rsp(k, hr): upon expiring ackTimer

• If (number of received acks ≥ threshold δ)
then send “commit” message to the replica
holders;

• Else set ck = ck - 1, and send “abort”
message to the update requester;

5. On each replica holder: upon receiving
“commit”
• Maintain {pch, ts} as a committed patch

for k.
• Update the local replica using pch;
• Send “terminate” message to rsp(k, hr)

6. On rsp(k, hr): upon receiving the first

‘terminate’ message
• Send “terminate” to update requester

7. On update requester: receiving the ‘terminate’

from rsp(k, hr)
• Commit the update operation

8. On update requester: upon detecting a failure

on rsp(k, hr)
• If the ‘terminate’ message is received then

commit the update operation;
• Else, check replica holders, if at least one

of them received the ‘commit’ message
then commit the update operation;

• Else, abort the update operation;

Figure 3. UCT protocol

threshold δ is a system parameter, e.g. it is chosen in such a way that the
probability that δ peers of the group simultaneously fail is almost zero.

• Update confirmation. In this phase, p1 sends the commit message to the replica

holders. When a replica holder receives the commit message, it labels {pch, ts} as
a committed patch for k. Then, it executes the patch on its local replica, and sends
a terminate message to p1. After receiving the first terminate message from
replica holders, p1 sends a terminate message to p0. If a replica holder does not
receive the commit message for a patch, it discards the patch upon receiving a
new patch containing the same or greater timestamp value.

Notice that the goal of our protocol is not to provide eager replication, but to have

at least δ replica holders that receive the patch and its timestamp. If this goal is
attained, the update operation is committed. Otherwise it is aborted, and the update
requester should try its update later.

Let us now consider the case of concurrent updates, e.g. two or more peers want to
update a data d at the same time. In this case, the concurrent peers send their request
to the peer that is responsible for the d’s group, say p1. The peer p1 determines an
order for the requests, e.g. depending on their arrival time or on the distance of
requesters if the requests arrive at the same time. Then it processes the requests one
by one according their order, i.e. it commits or aborts one request and starts the next
one. Thus, concurrent updates make no problem of inconsistency for our replication
management service.

5.2 Fault Tolerance of UCT protocol

Let us now study the effect of peer failures on the UCT protocol and discuss how they
are handled. By peer failures, we mean the situations where a peer crashes or gets
disconnected from the network abnormally, e.g. without informing the responsible
peer. We show that these failures do not block our update protocol. We also show that
even in the presence of these failures, the protocol guarantees continuous
timestamping, i.e. when an update is committed, the timestamp of its patch is only
one unit greater than that of the previous one. For this, it is sufficient to show that if
the group’s responsible peer fails, each generated timestamp is attached with a
committed patch, or is aborted. By aborting a timestamp, we mean returning the
counter's value to its value before the update operation. During the UCT protocol
execution, a failure on the group’s responsible peer may happen in one of the
following time intervals:

• I1: after receiving the update request and before generating the timestamp.

If the group’s responsible peer fails in this interval, then after some time, the
failure detector detects the failure or the timer timeouts. Afterwards, the update
requester checks the update at replica holders, and since it has not been done, the
operation is aborted. Therefore, a failure in this interval does not block the
protocol, and continuous timestamping is assured because no update is
performed.

• I2: after I1 and before sending the patch to replica holders. In this interval,

like in the previous one, the failure detector detects the failure or the timer
timeouts, and thus the operation is aborted. The timestamp ts, which is generated
by the failed responsible peer, is aborted as follows. When the responsible peer

fails, its counters get invalid, and the next responsible peer initializes its counter
using the greatest timestamp of the committed patches at replica holders. Thus,
the counter returns to its value before the update operation. Therefore, in the case
of crash in this interval, continuous timestamping is assured.

• I3: after I2 and before sending the commit message to replica holders. If the

responsible peer fails in this interval, since the replica holders have not received
the commit, they do not consider their received data as a valid replica. Thus,
when the update requester checks the update, they answer that the update has not
been done and the operation gets aborted. Therefore, in this case, continuous
timestamping is not violated.

• I4: after I3 and before sending the terminate message to the update

requester. In this case, after detecting the failure or timeout, the update requester
checks the status of the update in the DHT and finds out that the update has been
done, thus it commits the operation. In this case, the update is done with a
timestamp which is one unit greater than that of the previous update, thus the
property of continuous timestamping is enforced.

6 Network Cost Analysis

In this section, we give a thorough analysis of CTRM’s communication cost for both
replica retrieval and update operations, and compare them with those of the same
operations in two baseline services. Since usually the communicated messages are
relatively small, we measure the communication cost in terms of the number of
messages.

6.1 Replica Retrieval Cost

In section 3.2, we described the CTRM’s operation for retrieving an up-to-date
replica. In this section, we give a probabilistic analysis of this operation’ cost in terms
of the number of messages which should be communicated over the network.

The communication cost of replica retrieval in CTRM consists of the followings:
1) the cost of finding the group’s responsible peer, denoted by cg; 2) the cost of
finding the first up-to-date replica at replica holders, denoted by crh; 3) the cost of
returning the replica to the requester, denoted as crt. The first cost, i.e. cg, consists of a
lookup in the DHT which usually is done in O(log n) messages where n is the number
of peers of the DHT. For simplicity, we assume that the cost of a lookup is log n
messages.

The third cost, i.e. crt, takes simply one message because the first replica holder
that maintains an up-to-date replica sends it directly to the requester.

The second cost, i.e. crt, depends on the number of replica holders which should be
contacted for finding the first up-to-date replica. Let nrh denotes the number of replica
holders which should be contacted, then crt = 2 × nrh, i.e. for each replica holder we
need one message to contact it and one message as answer. Thus, the total cost of
retrieving an up-to-date replica by CTRM is cctrm = (log n) + 2 × nrh + 1. This cost
depends on the number of peers in the system, i.e. n, and the number of replica
holders which should be contacted by the group’s responsible peer, i.e. nrh.

Let us now give a probabilistic approximation of nrh. Let pav be the probability that
a replica holder, which is contacted by the responsible peer, maintains an up-to-date
replica. In other words, pav is the ratio of the up-to-date replicas over the total number
of replica holders, i.e. ⎪Gk⎪. We give a formula for computing the expected value of
the number of replica holders which should be contacted for finding the first up-to-
date replica, in terms of pav and ⎪Gk⎪. Let X be a random variable which represents the
number of replica holders which should be contacted. We have Prob(X=i) = pav × (1-
pav)i-1, i.e. the probability of having X=i is equal to the probability that i-1 first replica
holders do not maintain an up-to-date replica and the ith replica holder maintains an
up-to-date one. The expected value of X is computed as follows:

 (1)

Equation 1 expresses the expected value of the number of contacted replica holders
in terms of pav and ⎪Gk⎪. Thus, we have the following upper bound for E(X) which is
solely in terms of pav:

 (2)

Because pav ≤ 1, by using the theory of series [3], we have the following equation:
 (3)

Using Equations 3 and 2, we obtain:
 (4)

The above equation shows that the expected value of the number of replica holders
which should be contacted by the group’s responsible peer is less than the inverse of
the probability that a replica at a replica holder is up-to-date.

Example. Assume that at retrieval time 50 % of the replica holders have an up-to-date
replica, i.e. pav=0.5. Then the expected value for the number of replica holders to be
contacted is less than 2, i.e. nrh ≤2. Thus, we have cctrm ≤ (log n) + 5. In other words,
in this example the total cost of replica retrieval in CTRM, i.e. cctrm, is close to the cost
of doing one lookup in the DHT.

6.2 Data Update Cost

Let us now analyze the communication cost of the CTRM’s for updating a data using
the UCT protocol (described in Section 5.1) in terms of the number of messages. The
communication cost consists of the followings: 1) the cost of finding the peer that is
responsible for the group, denoted by cg; 2) the cost of sending the patch to the replica
holders, and receiving the acknowledges, denoted as crh; 4) the cost of committing or
aborting the update operation, ccm.

The first cost as shown in Section 6.1, is equal to doing a lookup in the DHT, thus
can be estimated as log n where n is the number of peers in the DHT. Let r be the
number of replica holders, i.e. r=⎪Gk⎪. Then, the second cost, i.e. crh, is at most r×2.
The third cost consists of sending a message to the replica holders and the requester,
thus we have ccm = r + 1. Thus, in total the communication cost of the update

operation by CTRM is log n + 3×r + 1 where r is the number of replicas and n the
number of peers in the DHT.

6.3 Comparison with Baseline Services

Let us now compare the communication cost of CTRM with that of two baseline
services. Although they cannot provide the same functionality as CTRM, the closest
prior works to CTRM are the BRICKS project [13], denoted as BRK, and the Update
Management Service (UMS) [1]. The assumptions made by these two works are close
to ours, e.g. they do not assume the existence of powerful peers. BRK stores the data
in the DHT using multiple keys, which are correlated to the data key. To find an up-
to-date replica, BRK has to retrieve all replicas. UMS uses a set of m hash functions
and replicates the data randomly at m different peers. To find an up-to-date replica,
UMS has to make several lookups in the DHT.

Let r be the number of replicas and n the number of peers in the DHT. For
updating a data, BRK and UMS perform r lookups in the DHT. Thus, the cost of
update operation in these two services is O(r × log n). By comparing this cost with
that of CTRM, i.e. O((log n) + r) we see that the update operation in CTRM has a
communication cost that is much lower than that of UMS and CTRM.

For retrieving an up-to-date replica, BRK has to retrieve all replicas. The cost of
data retrieval in BRK is O (r × log n). The cost of data retrieval in UMS is O(ncu × log
n) where ccu is the number of replicas which should be retrieved by using hash
functions in order to find an up-to-date replica by UMS. In general, the value of ncu is
similar to the value of nrh in CTRM. As we showed previously the communication
cost of data retrieval by CTRM is O(log n + nrh) which is lower than those of both
BRK and UMS.

7 Experimental Validation

In this section, we evaluate the performance of CTRM through experimentation over
a 64-node cluster and simulation. The experimentation over the cluster was useful to
validate our algorithm and calibrate our simulator. The simulation allows us to study
scale up to high numbers of peers (up to 10,000 peers).

7.1 Experimental and Simulation Setup

Our experimentation is based on an implementation of the Chord [21] protocol. We
tested our algorithms over a cluster of 64 nodes connected by a 1-Gbps network. Each
node has two Intel Xeon 2.4 GHz processors, and runs the Linux operating system. To
study the scalability of CTRM far beyond 64 peers, we also implemented a simulator
using SimJava. After calibration of the simulator, we obtained simulation results
similar to the implementation results up to 64 peers.

Our default settings for different experimental parameters are as follows. The
latency between any two peers is a random number with normal distribution and a
mean of 100 ms. The bandwidth between peers is also a random number with normal
distribution and a mean of 56 Kbps (as in [1]). The simulator allows us to perform
tests with up to 10,000 peers, after which simulation data no longer fit in RAM and
makes our tests difficult. Therefore, the default number of peers is set to 10,000.

In our experiments, we consider a dynamic P2P system, i.e. there are peers that
leave or join the system. Peer departures are timed by a random Poisson process (as in
[18]). The average rate, i.e. λ, for events of the Poisson process is λ=1/second. At
each event, we select a peer to depart uniformly at random. Each time a peer goes
away, another joins, thus keeping the total number of peers constant (as in [18]).

We also consider peer failures. Let fail rate be a parameter that denotes the
percentage of peers that leave the system due to a fail. When a peer departure event
occurs, our simulator should decide on the type of this departure, i.e. normal leave or
fail. For this, it generates a random number which is uniformly distributed in [0..100];
if the number is greater than fail rate then the peer departure is considered as a normal
leave, else as a fail. In our tests, the default setting for fail rate is 5% (as in [1]). In
our tests, unless otherwise specified, the number of replicas of each data is 10.

In our tests, we compared our CTRM service with the replication management
services in the BRICKS project [13], denoted as BRK, and the Update Management
Service (UMS) [1]. Although they cannot provide the same functionality as CTRM
(see Section 8), they are closest prior works to CTRM since their assumptions about
the P2P system are similar to ours (as explained in Section 6.3).

7.2 Update Cost

Let us first investigate the performance of CTRM’s update protocol. We measure the
performance of data update in terms of response time and communication cost. By
update response time, we mean the time needed to send the patch of an update
operation to the peers that maintain the replicas. By update communication cost, we
mean the number of messages needed to update a data.

Using our simulator, we ran experiments to study how the response time increases
with the addition of peers. Using the simulator, Figure 4 depicts the total number of
messages while increasing the number of peers up to 10,000, with the other
simulation parameters set as defaults described in Section 7.1. In all three services,
the communication cost increases logarithmically with the number of peers. However,
the communication cost of CTRM is much better than that of UMS and BRK. The
reason is that UMS and BRK perform multiple lookups in the DHT, but CTRM does
only one lookup, i.e. only for finding the responsible peer. Notice that each lookup
needs O(log n) messages where n is the number of peers of the DHT.

Figure 5 shows the update response time with the addition of peers up to 10,000,
with the other parameters set as described in Section 7.1. The response time of CTRM
is a little bit higher than that of UMS and BRK. The reason is that for guaranteeing
continuous timestamping, the update protocol of CTRM performs two round-tips
between the responsible peer and the other members of the group. But UMS and
BRK only send the update actions to the replica holders by looking up the replica
holders in parallel (note that the impact of parallel lookups on response time is very
slight, but they have a high impact on communication cost). However, the difference
in the response time of CTRM and that of UMS and BRK is small because the round-
trips in the group are less time consuming than lookups. This slight increase in
response time of CTRM’s update operation is the price to pay for guaranteeing
continuous timestamping.

7.3 Data Retrieval Response Time

We now investigate the data retrieval response time of CTRM. By data retrieval
response time, we mean the time to return an up-to-date replica to the user.

Figure 6 shows the response time of CTRM, UMS and BRK with the addition of
peers up to 10,000, with the other parameters set as defaults described in Section 7.1.
The response time of CTRM is much better than that of UMS and BRK. This
difference in response time can be explained as follows. Both CTRM and UMS
services contact some replica holders, say r, in order to find an up-to-date replica, e.g.
r=6. For contacting these replica holders, CTRM performs only one lookup (to find
the group’s responsible peer) and some low-cost communications in the group. But,
UMS performs exactly r lookups in the DHT. BRK retrieves all replicas of data from
the DHT (to determine the latest version), and for each replica it performs one lookup.
Thus the number of lookups done by BRK is equal to the total number of data
replicas, i.e. 10 in our experiments.

Let us now study the effect of the number of replicas of each data, say m, on
performance of data retrieval. Figure 7 shows the response time of data retrieval for
the three solutions while varying the number of replicas up to 30. The number of
replicas has almost a linear impact on the response time of BRK, because to retrieve
an up-to-date replica it has to retrieve all replicas by doing one lookup for each
replica. But it has a slight impact on CTRM, because for finding an up-to-date replica
CTRM performs only one lookup, and some low cost communications, i.e. in the
group.

7.4 Effect of Peer Failures on Timestamp Continuity

Let us now study the effect of peer failures on the continuity of timestamps used for
data updates. This study is done only for CTRM and UMS that work based on
timestamping. In our experiments we measure timestamp continuity rate by which we
mean the percentage of the updates whose timestamps are only one unit higher than

that of their precedent update. We varied the fail rate parameter, and observed its
effect on timestamp continuity rate.

Figure 8 shows timestamp continuity rate for CTRM and UMS while increasing
the fail rate, with the other parameters set as described in Section 7.1. The peer
failures do not have any negative impact on the continuity of timestamps generated by
CTRM, because our protocol assures timestamp continuity. However, when
increasing the fail rate in UMS, the percentage of updates whose timestamps are not
continuous increases.

7.5 Effect of Concurrent Updates on Result Consistency

In this section, we investigate the effect of concurrent updates on the consistency of
the results returned by CTRM. In our experiments, we perform u updates done
concurrently by u different peers using the CTRM service, and after finishing the
concurrent updates, we invoke the service’s data retrieval operation from n randomly
chosen peers (n=50 in our experiments). If there is any difference between the data
returned to the n peers, we consider the result as inconsistent. We repeat each
experiment several times, and report the percentage of the experiments where the
results are consistent. We perform the same experiments using the BRK service.

Figure 9 shows the results with the number of concurrent updates, i.e. u, increasing
up to 8, and with the other parameters set as defaults described in Section 7.1. As
shown, in 100% of experiments the results returned by CTRM are consistent. This
shows that our update protocol works correctly even in the presence of concurrent

 Figure 4. Communication
cost of updates vs. number of
peers

Figure 5. Response time of
update operation vs. number of
peers

Figure 6. Response time of
data retrievals vs. number of
peers

Figure 7. Effect of the
number of replicas on
response time of data
retrievals

Figure 8. Timestamp continuity
vs. fail rate

Figure 9. Consistency of
returned results vs. number of
concurrent updates

updates. However, the BRK service cannot guarantee the consistency of results in the
case of concurrent updates, because two different updates may have the same version
at different replica holders.

8 Related Work

In the context of distributed systems, data replication has been widely studied to
improve both performance and availability. Many solutions have been proposed in the
context of distributed database systems for managing replica consistency [4][15], in
particular, using eager or lazy (multi-master) replication techniques, e.g. [12][14][24].
However, these techniques either do not scale up to large numbers of peers or raise
open problems, such as replica reconciliation, to deal with the open and dynamic
nature of P2P systems.

Most existing P2P systems support data replication, but without consistency
guarantees. For instance, Gnutella [9] and KaZaA [11], two of the most popular P2P
file sharing systems allow files to be replicated. However, a file update is not
propagated to the other replicas. As a result, multiple inconsistent replicas under the
same identifier (filename) may co-exist and it depends on the peer that a user contacts
whether a current replica is accessed. In Freenet [6], the query answers are replicated
along the path between the peers owning the data and the query originator. In the case
of an update (which can only be done by the data’s owner), it is routed to the peers
having a replica. However, there is no guarantee that all those peers receive the
update, in particular those that are absent at update time.

PGrid is a structured P2P system that deals with data replication and update based
on a gossiping algorithm [8]. It provides a fully decentralized update scheme, which
offers probabilistic guarantees. However, replicas may get inconsistent, e.g. as a result
of concurrent updates, and it is up to the users to cope with the problem.

OceanStore [19] is a data management system designed to provide a highly
available storage utility on top of P2P systems. It allows concurrent updates on
replicated data, and relies on reconciliation to assure data consistency. The
reconciliation is done by a set of high performance nodes, using a consensus
algorithm. These nodes agree on which operations to apply, and in what order.
However, in the applications that we address, the presence of such nodes is not
guaranteed.

In [10], the authors present a performance evaluation of different strategies for
placing the data replicas in DHTs. Our solution can be classified among those that
use the neighbor replication strategy, i.e. that tries to place the replicas over the
neighbors of a peer. However, our update protocol is new and not covered by any of
the strategies described in [10].

The BRICKS project [13] provides high data availability in DHTs through
replication. For replicating a data, BRICKS stores the data in the DHT using multiple
keys, which are correlated to the data key, e.g. k. There is a function that, given k,
determines its correlated keys. To be able to retrieve an up-to-date replica, BRICKS
uses versioning. Each replica has a version number which is increased after each
update. However, because of concurrent updates, it may happen that two different
replicas have the same version number, thus making it impossible to decide which
one is the latest replica.

In [1], an update management service, called UMS, was proposed to support data
currency in DHTs, i.e. the ability to return an up-to-date replica. However, UMS does
not guarantee continuous timestamping which is a main requirement for collaborative
applications which need to reconcile replica updates. UMS uses a set of m hash
functions and replicates randomly the data at m different peers, and this is more

expensive than the groups which we use in CTRM, particularly in terms of
communication cost. A prototype based on UMS was demonstrated in [22].

9 Conclusion

In this paper, we addressed the problem of efficient replication management in DHTs.
We proposed a new service, called continuous timestamp based replication
management (CTRM), which deals with efficient data replication, retrieval and
update in DHTS, by taking advantage of replica holder groups which are managed
dynamically. We dealt with the dynamic behaviour of the group members, which can
leave the system at any time. To perform updates on replicas, we proposed a new
protocol that stamps the updates with timestamps that are generated using the replica
holder groups. The updates’ timestamps are not only monotonically increasing but
also continuous. We analyzed the communication cost of CTRM, and show that its
cost is very low in comparison to two baseline services in DHTs.

We evaluated CTRM through experimentation and simulation; the results show its
effectiveness for data replication in DHTs. The results of our evaluation show that
with a low overhead in update response time, CTRM supports fault-tolerant data
replication using continuous timestamps. In our experiments, we compared CTRM
with two baseline services, and the results show that data retrieval with CTRM is
much more efficient than the baseline services. We investigated the effect of peer
failures on the correctness of CTRM and the results show that it works correctly even
in the presence of peer failures.

References

[1] Akbarinia, R., Pacitti, E., Valduriez, P.: Data Currency in Replicated DHTs.
ACM Int. Conf. on Management of Data (SIGMOD), 211-222, 2007.

[2] Akbarinia, R., Tlili, M., Pacitti, E., Valduriez, P., Lima, A.A.B.: Continuous
Timestamping for Efficient Replication Management in DHTs. Int. Conf. on
Data Management in Grid and P2P Systems (Globe), LNCS Volume 6265,
38–49, 2010.

[3] Bromwich, T.J.I.: An Introduction to the Theory of Infinite Series. 3rd edition,
Chelsea Pub. Co., 1991.

[4] Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based database replication:
the gaps between theory and practice. ACM Int. Conf. on Management of Data
(SIGMOD), 739-752, 2008.

[5] Chawathe, Y., Ramabhadran, S., Ratnasamy, S., LaMarca, A., Shenker, S.,
Hellerstein, J.M.: A case study in building layered DHT applications. ACM
Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM), 97-108, 2005.

[6] Clarke, I., Miller, S.G., Hong, T.W., Sandberg, O., Wiley, B.: Protecting Free
Expression Online with Freenet. IEEE Internet Computing 6(1), 40-49, 2002.

[7] Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-Area
Cooperative Storage with CFS. ACM Symp. on Operating Systems Principles,
202-215, 2001.

[8] Datta, A., Hauswirth, M., Aberer, K.: Updates in Highly Unreliable,
Replicated Peer-to-Peer Systems. IEEE Int. Conf. on Distributed Computing
Systems (ICDCS), 76-87, 2003.

[9] Gnutella. http://www.gnutelliums.com/.

[10] Ktari, S., Zoubert, M., Hecker, A., Labiod, H.: Performance evaluation of
replication strategies in DHTs under churn. Int. Conf. on Mobile and
Ubiquitous Multimedia (MUM), 90-97, 2007.

[11] Kazaa. http://www.kazaa.com/.

[12] Krikellas, K., Elnikety, S., Vagena, Z., Hodson, O.: Strongly consistent
replication for a bargain. IEEE Int. Conf. on Data Engineering (ICDE), 52-63,
2010.

[13] Knezevic, P., Wombacher, A., Risse, T.: Enabling High Data Availability in a
DHT. Proc. of Int. Workshop on Grid and P2P Computing Impacts on Large
Scale Heterogeneous Distributed Database Systems, 363-367, 2005.

[14] Lin, Y., Kemme, B., Jiménez-Peris, R., Patiño-Martínez, M., Armendáriz-
Iñigo, J.E.: Snapshot isolation and integrity constraints in replicated databases.
ACM Transactions on Database Systems (TODS), 34(2), 2009.

[15] Özsu, T., Valduriez, P.: Principles of Distributed Database Systems. 2nd
Edition, Prentice Hall, 1999.

[16] PalChaudhuri, S., Saha, A.K., Johnson, D.B.: Adaptive Clock Synchronization
in Sensor Networks. Int. Symp. on Information Processing in Sensor Networks,
340-348, 2004.

[17] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable
content-addressable network. ACM Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM), 161-
172, 2001.

[18] Rhea, S.C., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT.
USENIX Annual Technical Conf., 127-140, 2004.

[19] Rhea, S.C., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., Kubiatowicz, J.:
Pond: the OceanStore Prototype. USENIX Conf. on File and Storage
Technologies, 1-14, 2003.

[20] Rowstron, A. I.T., and Druschel, P.: Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. IFIP/ACM Int.
Conf. on Distributed Systems Platforms (Middleware), 329-350, 2001.

[21] Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F. Balakrishnan, H.: Chord:
a scalable peer-to-peer lookup service for internet applications. ACM Conf. on
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), 149-160, 2001.

[22] Tlili, M., Dedzoe, W.K., Pacitti, E., Valduriez, P., Akbarinia, R., Molli, P.,
Canals, G., Laurière, S.: P2P logging and timestamping for reconciliation.
PVLDB 1(2): 1420-1423, 2008.

[23] Xwiki Concerto Project: http://concerto.xwiki.com

[24] Wong, L., Arora, N.S., Gao, L., Hoang, T., Wu, J.: Oracle Streams: A High
Performance Implementation for Near Real Time Asynchronous Replication.
IEEE Int. Conf. on Data Engineering (ICDE), 1363-1374, 2009.

