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Abstract—Top-k query processing techniques are useful in un-
structured peer-to-peer (P2P) systems, to avoid overwhelming users
with too many results. However, existing approaches suffer from
long waiting times. This is because top-£ results are returned
only when all queried peers have finished processing the query.
As a result, query response time is dominated by the slowest
queried peer. In this paper, we address this users’ waiting time
problem. For this, we revisit top-£ query processing in P2P systems
by introducing two novel notions in addition to response time:
the stabilization time and the cumulative quality gap. Using these
notions, we formally define the as-soon-as-possible (ASAP) top-k
processing problem. Then, we propose a family of algorithms called
ASAP to deal with this problem. We validated our solution through
implementation and extensive experimentation. The results show
that ASAP significantly outperforms baseline algorithms by re-
turning final top-£ result to users in much better times.

I. INTRODUCTION

Unstructured Peer-to-Peer (P2P) networks have been widely
used for sharing resources and content over the Internet [1],
[2], [3]. In these systems, there is neither a centralized directory
nor any control over the network topology or resource place-
ment. Because of few topological constraints, they require little
maintenance in highly dynamic environnements [4]. However,
executing queries over unstructured P2P systems typically by
flooding may incur high network traffic and produce lots of
query results.

To reduce network traffic and avoid overwhelming users
with high numbers of query results, complex query processing
techniques based on top-k answers have been proposed e.g.
in [5]. With a top-k query, the user specifies a number k of
the most relevant answers to be returned by the system. The
quality (i.e. score of relevance) of the answers to the query is
determined by user-specified scoring functions [6], [7]. Despite
the fact that these top-k query processing solutions reduce
network traffic, they may significantly delay the answers to
users. This is because top-k results are returned to the user only
when all queried peers have finished processing the query. Thus,
query response time is dominated by the slowest queried peer,
which makes users suffer from long waiting times. Therefore,
these solutions are not suitable for emerging applications such
as P2P data sharing for online communities, which may have
high numbers of autonomous data sources with various access
performance. Most of the previous work on top-k processing
have focused on efficiently computing the exact or approximate
result sets and reducing network traffic [8], [9], [10], [11], [5].

A naive solution to reduce users’ waiting time is to have each
peer return its top-k results directly to the query originator as
soon as it is done executing the query. However, this signifi-
cantly increases network traffic and may cause a bottleneck at
the query originator when returning high numbers of results.
In this paper, we aim at reducing users’ waiting time by
returning high quality intermediate results, while avoiding high
network traffic. The intermediate results are the results of peers
which have already processed locally their query. Providing
intermediate results to users is quite challenging because a naive
solution may saturate users with results of low quality, and incur
significant network traffic which in turn may increase query
response time.

In this paper, our objective is to return high quality results
to users as soon as possible. For this, we revisit top-k query
processing in P2P systems by introducing two notions to com-
plement response time: stabilization time and cumulative quality
gap. The stabilization time is the time needed to obtain the final
top-k result set, which may be much lower than the response
time (when it is sure that there is no other top-k result). The
quality gap of the top-k intermediate result set is the quality that
remains to be the final top-k result set. The cumulative quality
gap is the sum of the quality gaps of all top-k intermediate
result sets during query execution.

In summary, this paper makes the following contributions:

o We formally define as soon as possible top-k query pro-
cessing in large P2P systems based on both stabilization
time and cumulative quality gap.

o We propose, a family of efficient algorithms called As Soon
As Possible (ASAP). ASAP uses a threshold-based scheme
that considers the score and rank of intermediate results to
return quickly high quality results to users.

o We analytically evaluate ASAP’s communication cost in
terms of numbers of answer messages and volume of
transferred data.

o We validated our solution through implementation and
extensive experimentation. Our performance evaluation
shows that ASAP significantly outperforms baseline algo-
rithms by returning faster the final top-k results. It also
shows that ASAP achieves a good trade-off between the
time to receive all the final top-k results, the total number
of intermediate results returned and the communication
cost. Finally, the results demonstrate that in the presence of
peers’ failures, ASAP provides approximative top-k results
with good accuracy compared to baseline algorithms.



The rest of this paper is organized as follows. In section II, we
propose a model for unstructured P2P systems and present basic
definitions regarding top-k queries in P2P systems. Section III
formally defines the as-soon-as-possible top-k query processing
problem. In Section IV, we give an overview of ASAP top-
k query processing. Section V presents ASAP approaches
for bubbling up as soon as possible high quality results. In
Section VI, we analytically evaluate the communication cost
of ASAP. Section VII gives a performance evaluation of ASAP.
In Section VIII, we discuss related work. Section IX concludes.

II. SYSTEM MODEL

In this section, we first present a general model of unstruc-
tured P2P systems which is needed for describing our solution.
Then, we provide a model and definitions for top-k queries.

A. Unstructured P2P Model

We model an unstructured P2P network of n peers as an
undirected graph G = (P, E), where P = {po,p1, - ,Dn-1}
is the set of peers and F the set of connections between the
peers. For p;,p; € P,(pi,pj) € E denotes that p; and p; are
neighbours. We also denote by N (p;), the set of peers to which
p; is directly connected, so N(p;) = {p;|(pi,p;) € E}. The
value ||N(p;)|| is called the degree of p;. The average degree
of peers in G is called the average degree of G and is denoted
by . The r-neighborhood N (p) (r € N) of a peer p € P is
defined as the set of peers which are at most » hops away from
peer p, so

p ifr=0
N'p)=|p J NT') ifr>1

p'€N(p)

Each peer p € P holds and maintains a set D(p) of data
items such as images, documents or relational data (i.e. tuples).
We denote by D" (p)(r € N), the set of all data items which
are in N"(p), so

P’ ENT(p)

In our model, the query is forwarded from the query origina-
tor to its neighbours until the Time-To-Live value of the query
decreases to 0 or the current peer has no peer to forward the
query. So the query processing flow can be represented as a tree,
which is called the query forwarding tree. When a peer pg € P
issues query ¢ to peers in its r-neighborhood, the results of
these peers are bubbled up using query ¢’s forwarding tree with
root po including all the peers belonging to N"(pg). The set of
children of a peer p € N"(pp) in query ¢’s forwarding tree is
denoted by ¥(p, q).

B. Top-k Queries

We  characterize each top-k ¢ by a tuple
< qid, c,ttl, k, f,po > such that gid is the query identifier, ¢
is the query itself (e.g. SQL query), ¢t/ € N (Time-To-Live)
is the maximum hop distance set by the user, £ € N* is the
number of results requested by the user, f : DxQ — [0,1] is
a scoring function that denotes the score of relevance (i.e. the

quality) of a given data item with respect to a given query and
po € P the originator of query ¢, where D is the set of data
items and Q the set of queries.

A top-k result set of a given query ¢ is the %k top results
among data items owned by all peers that receive ¢. Formally
we define this as follows.

Definition 1: Top-k Result Set. Given a top-k query g, let
D' = D%*(q.py). The top-k result set of g, denoted by
Top*(D’,q), is a sorted set on the score (in decreasing order)
such that:

1) Top*(D',q) C D';

2) If | D'|| < q.k, Top*(D',q) = D', otherwise

|Top" (D', q)|| = ¢-k;
3) Vd € Top*(D',q), Vd' € D'\ Top*(D', q),
q.-f(d,q.c) = q.f(d', q.c)

Definition 2: Result’s Rank. Given a top-k Result set 1. We
define the rank of result d € I, denoted by rank(d, I), as the
position of d in the set I.

Note that the rank of a given top-£ item is in the interval [1; k].

In large unstructured P2P systems, peers have different pro-
cessing capabilities and store different volumes of data. In addi-
tion, peers are autonomous in allocating the resources to process
a given query. Thus, some peers may process more quickly a
given query than others. Intuitively, the top-k intermediate result
set for a given peer is the k best results of both the results the
peer received so far from its children and its local results (if
any). Formally, we define this as follows.

Definition 3: Top-k Intermediate Result Set. Given a top-
k query ¢, and p € N9t (q.po). Let D; be the result set of ¢
received so far by p from peers in ¥(p, ¢) and Do = D1 UD(p).
The top-k intermediate result set of ¢ at peer p, denoted by
I,(p), is such that:

Top®(Ds,q) if p has already processed ¢ locally
Iq(p) =
Top®(Dy,q) otherwise

III. PROBLEM DEFINITION

Let us first give our assumptions regarding schema manage-
ment and the unstructured P2P architecture. We assume that
peers are able to express queries over their own schema without
relying on a centralized global schema as in data integration
systems [12]. Several solutions have been proposed to support
decentralized schema mapping. However, this issue is out of
scope of this paper and we assumed it is provided using one
of the existing techniques, e.g. [13], [12] and [14]. We also
assume that all peers in the system are trusted and cooperative.
In the following, we first give some definitions which are useful
to define the problem we focus and formally state the problem.

A. Foundations

To process a top-k query in P2P systems, an ASAP top-k
algorithm provides intermediate results to users as soon as peers
process the query locally. This allows users to progressively see
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Fig. 1.

the evolution of their query execution by receiving intermediate
results for their queries. Note that at some point of query
execution, the top-% intermediate results received by a peer may
not change any more, until the end of the query execution. We
denote this point as the stabilization time.

Recall that the main goal of ASAP top-k query processing
is to return high-quality results to user as soon as possible. To
reflect this, we introduce the quality evolution concept. Given
a top-k query g, we define the quality evolution Y (¢) of ¢ at
time ¢ as the sum of scores of ¢’s intermediate top-k results at
t and at ¢’s originator. Figure 1(a) shows the quality evolution
of intermediate top-k results obtained at the query originator
during a given query execution. To be independent of the scoring
values —which can be different from one query to another—
, we normalize the quality evolution of a query. With this in
mind, we divide the quality evolution of a given query by the
sum of scores of the final top-k results of that query. Thus, the
quality evolution values are in the interval [0, 1] and the quality
of the top-k final results are equal to 1 (see Figure 1(b)). Note
that we do not use the proportion of the final top-k results in
intermediate top-k results (i.e precision) to characterize ASAP
algorithm because this metric does not express the fact of
returning the high quality results as soon as possible to users.

The quality evolution of intermediate top-k results at the
query originator increases as peers answer a query. To reflect
this, we introduce the cumulative quality gap, which is defined
as the sum of the quality difference between intermediate top-k
result sets received until the stabilization time and the final top-£
result set (see Figure 1(b)). We formalize this in Definition 4.

Definition 4: Cumulative quality gap. Given a top-k query
q and Y (t), the quality evolution of ¢ at time ¢ at ¢ originator,
let S be the stabilization time of ¢. The cumulative quality gap
of the query g, denoted by Cj, is:

S

S
Cow= [Q-Y@)dt=5— [ Y(t)dt (1)
i f

0

B. Problem Statement

Formally, we define the ASAP top-k query processing prob-
lem as follows. Given a top-k query g, let S be the stabilization
time of ¢ and C,, be the cumulative quality gap of g. The

Quality of top-k results at the query originator wrt. Execution time
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problem is to minimize Cyy and S while avoiding high com-
munication cost.

IV. ASAP Topr-k QUERY PROCESSING OVERVIEW

ASAP query processing proceeds in two main phases. The
first phase is the query forwarding and local execution of the
query. The second phase is the bubbling up of the peers’ results
for the query along the query forwarding tree.

A. Query Forwarding and Local Execution

Query processing starts at the query originator, i.e. the peer
at which a user issues a top-k query g. The query originator
performs some initialization. First, it sets ¢t/ which is either
user-specified (or default). Second, it creates a unique identifier
qid for g which is useful to distinguish between new queries and
those received before. Then, ¢ is included in a message that is
broadcast by the query originator to its reachable neighbors.
Algorithm 1 shows the pseudo-code of query forwarding. Each
peer that receives the message including g checks gid (see line
2, Algorithm 1). If it is the first time the peer has received
q, it saves the query (i.e. saves the query in the list of seen
queries and the address of the sender as its parent) and decreases
the query ttl by 1 (see lines 3-4, Algorithm 1). If the ttl is
greater than 0, then the peer sends the query message to all
neighbors except its parent (see lines 5-7, Algorithm 1). Then,
it executes ¢ locally. If ¢ has been already received, then if the
old ttl is smaller than the new ttl, the peer proceeds as where
q is received for the first time but without executing ¢ locally
(see lines 10-18, Algorithm 1), else the peer sends a duplicate
message to the peer from which it has received q.

B. Bubbling Up Results

Recall that, when a peer submits a top-k query g, the local
results of the peers that received ¢ are bubbled up to the
query originator using query ¢’s forwarding tree. In ASAP, a
peer’s decision to send intermediate results is based on the
improvement impact brought by its current top-k intermediate
result set over the top-k intermediate result set it sent so far to
its parent. This improvement impact can be computed in two
ways: by using the score or rank of top-k results in the result



Algorithm 1: receive_Query(msg)

Algorithm 2: s_Treat(k, Teyr, Tora, N, delta, I Func)

input : msg, a query message.

1 begin

2 if (‘already_Received(msg.getID()) then

3 memorize(msg);

4 msg.decreaseTTL();

5 if (msg.getTTL() > 0) then

6 | forwardToNeighbors(msg);

7 end

8 executeLocally(msg.getQuery());

9 else

10 qid = msg.getID();

1 oldMsg = SeenQuery(qid).;

12 if (msg.getTTL() > oldMsg. TTL()) then
13 memorize(msg);

14 msg.decreaseTTL();

15 if (msg.getTTL() > 0) then

16 | forwardToNeighbors(msg);

17 end

18 sendDuplicateSignal(qid, oldM sg.getSender());
19 else

20 ‘ sendDuplicateSignal(qid, msg.getSender());
21 end

22 end

23 end

set. Therefore, we introduce two types of improvement impact:
score-based improvement impact and rank-based improvement
impact.

Intuitively, the score-based improvement impact at a given
peer for a given top-k query is the gain of score of that
peer’s current top-k intermediate set compared to the top-k
intermediate set it sent so far.

Definition 5: Score-based improvement impact. Given a
top-k query ¢, and peer p € N9 (q.py), let T.,. be the
current top-k intermediate set of ¢ at p and T,;4 be the top-k
intermediate set of g sent so far by p. The score-based improve-
ment impact of ¢ at peer p, denoted by [ Score(Tcm,Told) is
computed as

1Score(Teur, Told) =
> afldge)— > af(d q0)
d€Tcur d'€Ty1q
k

Note that in Formula 2, we divide by k instead of
| Teur — Tora]| because we do not want that I.Score(Teyr, Toid)
be an average which would not be very sensitive to the values
of scores. The score-based improvement impact values are in
the interval [0, 1].

Intuitively, the rank-based improvement impact at a given
peer for a given top-k query is the loss of rank of results in
the top-k intermediate result set sent so far by that peer due to
the arrival of new intermediate results.

(€5

Definition 6: Rank-based improvement impact. Given a
top-k query ¢ and peer p € N9 (q.py), let T,,, be the
current top-k intermediate result set of ¢ at p and 1,4 be
the top-k intermediate result set of ¢ sent so far by p. The
rank-based improvement impact of ¢ at peer p, denoted by
IRank(Teyr, Toiq) is computed as

IRank(Tcur7 Told) =
> (k—rank(d, Teur) + 1)

d€Teur\To1q

Fx (k4 1) &

2

input : k, number of results; Ty, current top-k; T4, top-k sent so
far; N, new result set; delta, impact threshold; I F'unc, type of
improvement impact.

1 begin

2 Tewr = mergingSort_Topk(k, Teyr, N);

3 imp = IFunc(Teur, Toid);

4 if ((¢mp > delta) or all_Results()) then

5 Tiosend = Teur \ Totds

6 send_Parent(Tiosend, all_Results());
7 Totd = Teur;

8 end

9 end

kx(k+1)

Note that in Formula 3, we divide by 5 which is the
sum of ranks of a set containing k items. The rank-based
improvement impact values are in the interval [0, 1].

Notice also that, in order to minimize network traffic, ASAP
does not bubble up the results (which could be large), but only
their scores and addresses. A score-list is simply a list of &
couples (ad, s), such that ad is the address of the peer owning
the data item and s its score.

V. ASAP THRESHOLD-BASED APPROACHES FOR BUBBLING
UP RESULTS

In this section, we present ASAP static and dynamic
threshold-based approaches which use score and rank of inter-
mediate results for bubbling up as-soon-as-possible high quality
results.

A. Static Approaches

In these approaches, the minimum value that must reach
the improvement impact before a peer sends newly received
intermediate results to its parent is initially set by the application
and it is the same for all peers in the system. Note also that this
threshold does not change during the execution of the query. Us-
ing both types of improvement impact introduced in the previous
section, we have two types of static threshold-based approaches.
The first approach uses the score-based improvement impact and
the second one the rank-based improvement impact.

A generic algorithm for our static threshold-based approaches
is given in Algorithm 2. In these approaches, each peer main-
tains for each query a set T,;4 of top-k intermediate results sent
so far to its parent and a set 7T, of current top-k intermediate
results. When a peer receives a new result set N from its
children (or its own result set after local processing of a query),
it first updates the set Ti,, with results in N (see line 2,
Algorithm 2). Then, it computes the improvement impact imp
of Tt compared to T;,;4 (line 3, Algorithm 2). If imp is greater
than or equal to the defined threshold delta or if there are
no more children’ results to wait for, the peer sends the set
Tiosend = Teur \ Toia to its parent and subsequently sets Ty
to T4 (see lines 4-7, Algorithm 2).

B. Dynamic Approaches

Although the static threshold-based approaches are interesting
to provide results quickly to user, they may be blocking if
results having higher scores are bubbled up before those of lower
score. In other words, sending higher score’s results will induce



a decrease of improvement impact of the following results.
This is because the improvement impact considered the top-k
intermediate results sent so far by the peer. Thus, results of low
scores even if they are in the final top-k results may be returned
at the end of the query execution. To deal with this problem,
an interesting way would be to have a dynamic threshold, i.e.
a threshold that decreases as the query execution progresses.
However, this would require finding the right parameter on
which the threshold depends. We have identified two possible
solutions for the dynamic threshold. The first one is to use an
estimation of the query execution time. However, estimating
the query execution time in large P2P system is very difficult
because it depends on network dynamics, such as connectivity,
density, medium access contention, etc., and the slowest queried
peer. The second, more practical, solution is to use for each peer
the proportion of peers in its sub-tree including itself (i.e. all its
descendants and itself) which have already processed the query
to decrease the threshold.

1) Peer’s Local Result Set Coverage:

Definition 7: Peer’s local result set coverage. Given a top-
k query, and p € N%*(g.py), let A be the set of peers in
the sub-tree whose root is p in the query ¢’s forwarding tree.
Let £ be the set of peers in A which have already processed ¢
locally. The local result set coverage of peer p for ¢, denoted
by Cov(€,.A), is computed using the following equation:

I€]]
Cov(€, A) 1Al
Peer’s local result set coverage values are in the interval [0, 1].

Note that is very difficult to have the exact value of a peer’s
local result set coverage without inducing an additional number
of messages in the network. This is because each peer must
send a message to its parent each time its local coverage result
set value changes. Thus, when a peer at hop m from query
originator updates its local result coverage, m messages will be
sent over the network. To deal with this problem, an interesting
solution is to have an estimation of this value instead of the
exact value.

The estimation of peer’s local result set coverage can be
done using two different strategies: optimistic and pessimistic.
In the optimistic strategy, each peer computes the initial value
of its local result set coverage based only on its children nodes.
This value is then updated progressively as the peers in its
sub-tree bubble up their results. Indeed, each peer includes in
each response message sent to its parent the number of peers
in its sub-tree (including itself) which have already processed
the query locally and the total number of peers in its sub-tree
including itself. This couple of values is used in turn by its
parent to estimate its local result set coverage. Contrary to the
optimistic strategy, in the pessimistic strategy, the local result
set coverage estimation is computed at the beginning by each
peer based on the Time-To-Live received with the query and
the average degree of peers in the system. As in the case of the
optimistic strategy, this value is updated progressively as the
peers in its sub-tree bubble up their results.

In our dynamic threshold-based approaches, we estimate a
peer’s local result set coverage using the pessimistic strategy
because the estimation value is more stable than with the

optimistic strategy. Now, let us give more details about how
a peer’s local result set coverage pessimistic estimation strategy
is done.

2) Peer’s Local Result set Coverage Pessimistic Estimation:
In order to estimate its local result set coverage, each peer p;
maintains for each top-k query ¢ and for each child p; a set C;
of couples (p;,a) where a € N is the number of peers in the
sub-tree of peer p; including p; itself. p; maintains also a set
Ca of couples (pj, e) where e € N is the total number of peers
in the sub-tree of peer p; including p; itself which have already
processed locally q. Now let ttl’ be the time-to-live with which
p; received query ¢ and ¢ be the average degree of peers in the

system. At the beginning of query processing, for all children
ttl’ —2

of p;, e=0and a = Z ©". During query processing, when

a child p; in 1 (p;, q) wuan(t)s to send results to p;, it inserts in the
answer message its couple of values (e, a). Once p; receives this
message, it unpacks the message, gets these values (i.e. e and
a) and updates the sets C; and Cs. The local result set coverage
of peer p; for the query ¢ is then estimated using Formula 4.

doe

(pj,e)€Cy

> a

(pj,a)€C2

Cov(Cy,Cs) = 4)

Note that peer’s local result set coverage estimation values
are in the interval [0, 1].

3) Dynamic Threshold Function: In the dynamic threshold
approaches, the improvement impact threshold used by a peer
at a given time ¢t of the query execution depends on its local
result set coverage at that time. This improvement impact
threshold decreases as the local result set coverage increases.
A dynamic threshold function is a function that allows peers to
set their improvement impact threshold for a given local result
set coverage. Now let us define formally what the dynamic
threshold function means in Definition 8.

Definition 8: Dynamic Threshold Function. Given a top-k
query g and p € N%*(q.py), the improvement impact threshold
used by p during ¢’s execution, is a monotonically decreasing
function H such that:

0,1 — [0,1]
H: 5)

T = —a*T+ o
with « € [0, 1[. Notice that = is a peer’s result set coverage at

given time and « the initial improvement impact threshold (i.e.
H(0) = ).

4) Reducing Communication Cost: Using a rank-based im-
provement impact has the drawback of not minimizing as much
as possible network traffic. This is because the rank-based
improvement impact value is equal to 1 (the maximum value it
can reach) when a peer receives the first result set containing
k results (from one of its children or after local processing of
a query). Thus, each peer always sends a message over the
network when it receives the first result set containing k results.
To deal with this problem and thus reduce communication cost,



Algorithm 3: d_Treat(k, Tour, Toia, N, I Func, cov, cov’, H)

input : k; Teyr; Tora; N3 IFunc; cov, current local result set
coverage; cov’, result set coverage threshold; H, a dynamic
threshold function.

1

2 Teur = mergingSort_Topk(k, Teyr, N);

3 if (cov > cov’) then

4 delta = H(cov);

5 imp = I Func(Teur, Totd)s

6 if ((imp > delta) or all_Results()) then

7 Tiosend = Teur \ Tolds

8 send_Parent(Tiosend, all_Results());
9 Totda = Teur;

10 end

List 0

Data
item

Score

List 2

Score

0.6

0.4
0.35

List 3 List 4 List 5 List 6

Data | Score Data | Score Data | Score Data | Score
item item item item

d3l 0.71 da1 0.9 dsi 0.8 dél1 0.7
32 | 03 d42 | 045 ds2 0.5 d62 | 0.52
a3 | ol 443 | 013 ds3 0.4 de3 | 0.24

Fig. 2. Query forwarding tree of an example of unstructured P2P system

we use peers’ result sets coverage to prevent them to send a
message when they receive their first result set. Therefore, the
idea is to allow peers to start sending a message if and only if
their local result sets coverage reaches a predefined threshold.
With this result set coverage threshold, peers send intermediate
results based on the improvement impact threshold obtained
from the dynamic threshold function H define above.

5) Dynamic Threshold Approaches Algorithms: our dynamic
threshold approaches algorithms are based on the same princi-
ples as the static threshold ones. A generic algorithm for our
dynamic threshold-based approaches is given in Algorithm 3.
When a peer receives a new result set NV from its children (or its
own result set after local processing of a query), it first updates
the set T, of its current top-k intermediate results with results
in N (see line 2, Algorithm 3). If its current result set coverage
cov is greater than the defined threshold result set coverage cov’,
then the peer computes the improvement threshold delta using
the dynamic function H and subsequently the improvement
impact imp (see lines 3-5, Algorithm 3). If ¢mp is greater than
or equal to delta or if there are no more children’ results to
wait for, then the peer sends the set Tiosend = Teur \ Toid tO
its parent and subsequently sets Ti,,. to Ty (see lines 6-9,
Algorithm 3). Recall that T, is the set of the current top-k
intermediate results and 7,4 is the top-k intermediate results
sent so far to its parent.

C. Example

To better illustrate ASAP top-k processing, consider the query
forwarding tree of a network graph consisting of seven peers

Do, - - ,Pe as shown in Figure 2. Let us assume that pg issues
a top-3 query ¢ (i.e. kK = 3), and the end of local processing of
q at peers is in the following order pg, p4, P1, D5, P3, Ds. Let
listy, - - -, listg be respectively pg - -- pg top-3 lists after local
processing of ¢. Due to space limitations, we only illustrate
the ASAP static threshold-based approach which uses score-
based improvement impact and only on the portion (pg, p1, p4)
of the query forwarding tree. We assume that the score-based
improvement threshold is delta = 0.2. The algorithm works as
follows: after processing locally ¢, p4 sends immediately listy
to its parent p; (because p4 has no children to wait for). Peer p;,
when receiving p4’s results, computes the score-based improve-
ment impact of its current top-3 list compared with the top-k list
sent so far i.e. (0'9+0'45§0'13)_(0) = 0.493. Since this value is
greater than 0.2, the predefined threshold, p; sends listy to pg.
Once p; has completed the local processing of ¢, it computes
the score-based improvement impact of its new current top-3
intermediate result set compared to list4 (i.e. the top-3 it sent so
far) as follows (0'9+0'74+0'45)g(0'9+0'45+0'13) = 0.203. Because
the value of improvement impact is greater than the predefined
threshold, p; sends to pg the item in list; whose score is 0.74.

VI. ASAP COST ANALYSIS

In this section, we analytically evaluate the cost of ASAP in
terms of number of answer messages and volume of transferred
data (number of bytes) over the network to return final top-k
results to the user.

With ASAP, each peer sends a single answer message in the
best case. Thus, if n is the number of peers in the network,
then the number of answer messages in the best case is equal
to n— 1. In the worst case, the number of answer messages sent
by a peer depends on its depth in the query forwarding tree (i.e.
the ttl with which the peer receives the query). Let P(i) be the
number of peers at the hop 7 in the query forwarding tree from
initiator peer of a query g with a Time-To-Live ¢¢l. In the worst

case the number of answer messages denoted by nj,, is:
Ngsap = 0% P(0)+1xP(1)+2%P(2)+---

+(ttl — 2) % P(ttl — 2) + ttl = P(ttl)

<t P(1) + tt % P(2) + - + ttl  P(ttl)
< @l [P(1)+ P(2) +--- + P(ttl))]
Ngeap < ttlx(n—1).

To summarize, the number of answer messages sent by ASAP
is such that:

n—1<ngsep <ttl*(n—1)

Now let k£ be the number of results request by the user and z
be the size in bytes of each element of a result set. In the best
case the volume of transferred data over the network is equal to
k * z. In the worst case, since the number of answer messages
is ttl * (n — 1), the volume of transferred data over the network
is equal to k * z * ttl % (n — 1). The volume of transferred data
over the network in case of ASAP, denoted by vgsqp, iS:

zxk < Vgsap < kxzxttlx(n—1)

To summarize, the communication cost of ASAP in term
of number of answer messages is O(n) and the volume of
transferred data over the network is O(n * k).



VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ASAP through
simulation using the PeerSim simulator [15]. This section is
organized as follows. First, we describe our simulation setup,
the metrics used for performance evaluation. Then, we study
the effect of the number of peers and the number of results on
the performance of ASAP, and show how it scales up. Next, we
study the effect of the number of replicas on the performance
of ASAP. Finally, we investigate the effect of peers failures on
the correctness of ASAP.

A. Simulation Setup

We implemented our simulation using the PeerSim simulator.
PeerSim is an open source, Java based, P2P simulation frame-
work aimed to develop and test any kind of P2P algorithm in
a dynamic environment. It consists of configurable components
and it has two types of engines: cycle-based and event-driven
engine. PeerSim provides different modules that manage the
overlay building process and the transport characteristics.

We conducted our experiments on a machine with a 2.4 GHz
Intel Pentium 4 processor and 2GB memory. The simulation
parameters are shown in Table I. We use parameters values
which are typical of P2P systems [16]. The latency between any
two peers is a normally distributed random number with mean
of 200 ms. Since users are usually interested in a small number
of top results, we set k& = 20 as default value. In our experiments
we vary the network size from 1000 to 10000 peers. In order
to simulate high heterogeneity, we set peers’ capacities in our
experiments, in accordance to the results in [16]. This work
measures the peers capacities in the Gnutella system. Based
on these results, we generate around 10% of low-capable, 60%
of medium-capable, and 30% of high-capable peers. The high-
capable peers are 3 times more capable than medium-capable
peers and still 7 times more capable than low-capable ones.

In the context of our simulations each peer in the P2P
system has a table R(data) in which attribute data is a real
value. The number of rows of R at each peer is a random
number uniformly distributed over all peers greater than 1000
and less than 20000. In our experiments, we ensure that there
is only one copy of each data item (i.e. tuple) in our system.
We also ensure that there are not two different data items with
the same score. In all our tests, we use the following simple
query, denoted by q;oqq as workload:

SELECT wal FROM R ORDER BY F(R.data,val) STOP
AFTER k
The scoring function we use is:

F(z,y) = where (z,y) € R?

L+ [z -yl

In our simulation, we compare ASAP with Fully Distributed
(FD) [5], a baseline approach for top-k query processing in
unstructured P2P systems which works as follows. Each peer
that receives the query, executes it locally (i.e. selects the k
top scores), and waits for its children’s results. After receiving
all its children score-lists, the peer merges its k local top data
items with those received from its children and selects the k top
scores and sends the result to its parent.

Values

Normally distributed ran-
dom number, M ean = 200
ms, Variance = 100
Number of peers 10,000 peers

Average degree of peers | 4

Parameters
Latency

ttl 9

k 20

Number of replicas 1
TABLE T

SIMULATION PARAMETERS.

In our experiments, to evaluate the performance of ASAP
comparing to FD, we use the following metrics:

(i) Cumulative quality gap: As defined in Section III, is the
sum of the quality difference between intermediate top-k
result sets received until the stabilization time and the final
top-k result set.

(i) Stabilization time: We report on the stabilization time, the

time of receiving all the final top-k results.

Response time: We report on the response time, the

time the query initiator has to wait until the top-k query

execution is finished.

Communication cost: We measure the communication

cost in terms of number of answer messages and volume of

data which must be transferred over the network in order
to execute a top-k query.

(v) Accuracy of results: We define the accuracy of results as
follows. Given a top-k query g, let V' be the set of the k
top results owned by the peers that received ¢, let V' be
the set of top-k results which are returned to the user as
the response of the query g. We denote the accuracy of
results by ac, and we define it as

Vv
acy, = ————
! IVl
Total number of results: We measure the total number

of results as the number of results received by the query
originator during query execution.

(iii)

@v)

(iv)

In our experimentation, we perform 30 tests for each experi-
ment by issuing q;.qq at 20 different times and we report the av-
erage of their results. Due to space limitations, we only present
the main results of ASAP’s dynamic threshold-based approaches
denoted by ASAP-Dscore and ASAP-Drank. ASAP-Dscore
uses a score-based improvement impact and ASAP-Drank a
rank-based improvement impact. ASAP’s dynamic threshold-
based approaches have proved to be better than ASAP’s static
threshold-based approaches without being expensive in commu-
nication cost. In our all experiments in the case of ASAP-Dscore
approach, we use H(x) = —0.2z + 0.2 as dynamic threshold
function and 0 as peer’s local result set coverage threshold. In
the case Asap-Drank, we use H(z) = —0.52 + 0.5 as dynamic
threshold function and 0.05 as peer’s local result set coverage
threshold.

B. Performance Results

1) Effect of number of peers: We study the effect of the
number of peers on the performance of ASAP. For this, we ran
experiments to study how cumulative quality gap, stabilization
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Fig. 3. Impact of number of peers on ASAP performance

time, number of answer messages, volume of transferred data,
number of intermediate results and response time increase with
the addition of peers. Note that the other simulation parameters
are set as in Table L

Figure 3(a) and 3(b) show respectively how cumulative qual-
ity gap and stabilization time increase with the number of peers.
The results show that the cumulative quality gap of ASAP-
Dscore and ASAP-Drank is always much smaller than that of
FD, which means that ASAP returns quickly high quality results.
The results also show that the stabilization time of ASAP-
Dscore is always much smaller that of ASAP-Drank and that of
FD. The reason is that ASAP-Dscore is score sensitive, so the
final top-k results are obtained quickly.

Figure 3(c) shows that the total number of results received by
the user increases with the number of peers in the case of ASAP-
Dscore and ASAP-Drank while it is still constant in the case of
FD. This is due to the fact that FD does not provide intermediate
results to users. The results also show that the number of results
received by the user in case of ASAP-Dscore is smaller than
that of ASAP-Drank. The main reason is that ASAP-Dscore is
score sensitive in contrast to ASAP-Drank.

Figure 3(d) and Figure 3(e) show that the number of answer
messages and volume of transferred data increase with the
number of peers. The results show that the number of answer
messages and volume of transferred data of ASAP-Drank are
always higher than those of ASAP-Dscore and FD. The results
also show that the differences between ASAP-Dscore and FD’s
number of answer messages and volume of transferred data are
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(f) Response time vs. Number of peers.

not significant. The main reason is that ASAP-Dscore is score
sensitive in contrast to ASAP-Drank. Thus, only high quality
results are bubbled up quickly.

Figure 3(f) shows how response time increases with increas-
ing numbers of peers. The results show that the difference
between ASAP-Dscore and FD response time is not significant.
The results also show that the difference between ASAP-Drank
and FD’s response time increases slightly in favour of ASAP-
Drank as the number of peers increases. The reason is that
ASAP-Drank induces more network traffic than ASAP-Dscore
and FD.

2) Effect of k: We study the effect of k, i.e. the number
of results requested by the user, on the performance of ASAP.
Using our simulator, we studied how cumulative quality gap,
stabilization time and volume of transferred data evolve while
increasing k from 20 to 100, with the other simulation parame-
ters set as in Table I. The results (see Figure 4(a), Figure 4(b))
show that k has very slight impact on cumulative quality gap
and stabilization time of ASAP-Dscore and ASAP-Drank. The
results (see Figure 4(c)) also show that by increasing k, the
volume of transferred data of ASAP-Dscore and ASAP-Drank
increase less than that of FD. This is due to the fact that ASAP-
Dscore and ASAP-Drank prune more intermediate results when
k increases.

3) Data replication: We study the effect of the number of
replicas, which we replicate for each data, on the performance
of ASAP. Using our simulator, we studied how cumulative
quality gap and stabilization time evolve while increasing the
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number of replicas, with the other simulation parameters set
as in Table I. The results (see Figure 5(a) and Figure 5(b))
show that increasing the number of replicas for ASAP and FD
decrease ASAP-Dscore and ASAP-Drank’s cumulative quality
gap and stabilization time. However, FD’s cumulative quality
gap and stabilization time are still constant. The reason is that
ASAP returns quickly the results having high quality in contrast
to FD which returns results only at the end of query execution.
Thus, if we increase the number of replicas, ASAP finds quickly
the results having high scores.

4) Effect of peers failures: In this section, we investigate the
effect of peers failures on the accuracy of top-k results of ASAP.
In our tests, we vary the value of fail rate and investigate its
effect on the accuracy of top-k results. Figure 6 shows accuracy
of top-k results for ASAP-Dscore, ASAP-Drank and FD while
increasing the fail rate, with the other parameters set as in
Table I. Peers’ failures have less impact on ASAP-Dscore and
ASAP-Drank than FD. The reason is that ASAP-Dscore and
ASAP-Drank return the high-score results to the user as soon
as possible. However, when increasing the fail rate in FD, the
accuracy of top-k results decreases significantly because some
score-lists are lost. Indeed, in FD, each peer waits for results of
its children so in the case of a peer failure, all the score-lists
received so far by that peer are lost.

VIII. RELATED WORK

Efficient processing of top-k queries is both an important
and hard problem that is still receiving much attention. Several

papers have dealt with top-k query processing in centralized
database management systems [6], [7], [17]. In distributed
systems [18], [19], [20], previous work on top-k processing
has focused on vertically distributed data over multiple sources,
where each source provides a ranking over some attributes. The
majority of the proposed approaches, such as recently [21],
try to improve some limitations of the Threshold Algorithm
(TA) [22]. Following the same concept, there exist some previ-
ous work for top-k queries in P2P over vertically distributed
data. In [23], the authors propose algorithm called “Three-
Phase Uniform Threshold” (TPUT) which aims at reducing
communication cost by pruning away intelligible data items and
restricting the number of round-trip messages between the query
originator and other nodes. Later, TPUT was improved by KLEE
[24]. KLEE uses the concept of bloom filters to reduce the data
communicated over the network upon processing top-k queries.
It brings significant performance benefits with small penalties in
result precision. However, theses approaches assume that data
is vertically distributed over the nodes whereas we deal with
horizontal data distribution.

For horizontally distributed data, there has been little work
on P2P top-k processing. In [5], the authors present FD, a fully
distributed approach for top-k query processing in unstructured
P2P systems. We have briefly introduced FD in section VII-A.

PlanetP [25] is the content addressable publish/subscribe
service for unstructured P2P communities up to ten thousand
peers. PlanetP uses a gossip protocol to replicate global compact
summaries of content (term-to-peer mappings) which are shared



by each peer. The top-k processing algorithm works as follows.
Given a query ¢, the query originator computes a relevance
ranking (using the global compact summary) of peers with
respect to ¢, contacts them one by one from top to bottom
of ranking and asks them to return a set of their top-scored
document names together with their scores. However, in a large
P2P system, keeping up-to-date the replicated index is a major
problem that hurts scalability.

In [8], the authors present an index routing based top-k
processing technique for super-peer networks organized in an
HyperCuP topology which tries to minimize the number of
transfer data. The authors use queries statistics to maintain the
indexes built on super-peers. However, the performance of this
technique is dependent of query distribution.

In [11], the authors present SPEERTO, a framework that
supports top-k query processing in super-peer networks based
on the use of the skyline operator. In SPEERTO, for a maximum
of K, denoting an upper bound on the number of results
requested by any top-k query (k < K), each peer computes its
K-skyband as a pre-processing step. Each super peer maintains
and aggregates the K-skyband sets of its peers to answer any
incoming top-k query. The main drawback of this approach is
that each join or leave of peer may induce the recomputing
of all super-peers K-skyband. Although these techniques are
very good for super-peers systems, it cannot apply efficiently
for unstructured P2P systems, since there may be no peer with
higher reliability and computing power.

Zhao et al. [10] use a result caching techniques to prune
network paths and answer queries without contacting all peers.
The performance of this technique depends on the query distri-
bution. They assume acyclic networks, which is restrictive for
unstructured P2P systems.

IX. CONCLUSION

This paper is the first attempt to deal with as-soon-as-possible
top-k query processing in P2P systems. We proposed a formal
definition for as-soon-as-possible top-k query processing by in-
troducing two novels notions: stabilization time and cumulative
quality gap. We presented ASAP, a family of algorithms which
uses a threshold-based scheme that considers the score and the
rank of intermediate results to return quickly the high quality
results to users. We validated ASAP through implementation
and extensive experimentation. The results show that ASAP
significantly outperforms baseline algorithms by returning final
top-k result to users in much better times. Finally, the results
demonstrate that in the presence of peers’ failures, ASAP
provides approximative top-k results with good accuracy, unlike
baseline algorithms.

REFERENCES

[1] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies,” ACM Computing Surveys, vol. 36, no. 4,
pp. 335-371, 2004.

[2] D. Tsoumakos and N. Roussopoulos, “Analysis and comparison of p2p
search methods,” in Proceedings of Int. Conf. on Scalable Information
Systems (Infoscale), 2006, p. 25.

[3] L. Ramaswamy, J. Chen, and P. Parate, “Coquos: Lightweight support
for continuous queries in unstructured overlays,” in Proceedings of IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2007, pp. 1-10.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

10

S. Schmid and R. Wattenhofer, “Structuring unstructured peer-to-peer
networks,” in Proceedings of IEEE Int. Conf. on High Performance
Computing (HiPC), 2007, pp. 432-442.

R. Akbarinia, E. Pacitti, and P. Valduriez, “Reducing network traffic in
unstructured p2p systems using top-k queries,” Distributed and Parallel
Databases, vol. 19, no. 2-3, pp. 67-86, 2006.

S. Chaudhuri and L. Gravano, “Evaluating top-k selection queries,” in
Proceedings of Int. Conf. on Very Large Databases (VLDB), 1999, pp.
397-410.

V. Hristidis, N. Koudas, and Y. Papakonstantinou, “Prefer: a system for the
efficient execution of multi-parametric ranked queries,” in Proceedings of
ACM. Int Conf. on Management of Data (SIGMOD), 2001, pp. 259-270.
W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden, “Progressive dis-
tributed top k retrieval in peer-to-peer networks,” in Proceedings of Int.
Conf. on Data Engineering (ICDE), 2005, pp. 174-185.

K. Hose, M. Karnstedt, K.-U. Sattler, and D. Zinn, “Processing top-n
queries in p2p-based web integration systems with probabilistic guaran-
tees,” in Proceedings of International Workshop on web and databases
(WebDB), 2005, pp. 109-114.

K. Zhao, Y. Tao, and S. Zhou, “Efficient top-k processing in large-scaled
distributed environments,” Data and Knowledge Engineering, vol. 63,
no. 2, pp. 315-335, 2007.

A. Vlachou, C. Doulkeridis, K. Ngrvag, and M. Vazirgiannis, “On efficient
top-k query processing in highly distributed environments,” in Proceedings
of ACM. Int Conf. on Management of Data (SIGMOD), 2008, pp. 753-764.
I. Tatarinov, Z. G. Ives, J. Madhavan, A. Y. Halevy, D. Suciu, N. N. Dalvi,
X. Dong, Y. Kadiyska, G. Miklau, and P. Mork, “The piazza peer data
management project,” SIGMOD Record, vol. 32, no. 3, pp. 47-52, 2003.
B. C. Ooi, Y. Shu, and K.-L. Tan, “Relational data sharing in peer-based
data management systems,” SIGMOD Record, vol. 32, no. 3, pp. 59-64,
2003.

R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez, Global Data
Management, 1st ed. 10S Press, 2006, ch. Design and Implementation
of Atlas P2P Architecture.

M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The Peersim
simulator,” http://peersim.sf.net.

P. K. Gummadi, S. Saroiu, and S. D. Gribble, “A measurement study of
napster and gnutella as examples of peer-to-peer file sharing systems,”
Computer Communication Review, vol. 32, no. 1, p. 82, 2002.

M. Shmueli-Scheuer, C. Li, Y. Mass, H. Roitman, R. Schenkel, and
G. Weikum, “Best-effort top-k query processing under budgetary con-
straints,” in /CDE, 2009, pp. 928-939.

S. Chaudhuri, L. Gravano, and A. Marian, “Optimizing top-k selection
queries over multimedia repositories,” IEEE Transactions on Knowledge
Data Engineering, vol. 16, no. 8, pp. 992-1009, 2004.

U. Giintzer, W.-T. Balke, and W. KieBling, “Optimizing multi-feature
queries for image databases,” in Proceedings of Int. Conf. on Very Large
DataBases (VLDB), 2000, pp. 419-428.

N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries over web-
accessible databases,” in Proceedings of Int. Conf on Data Engineering
(ICDE), 2002, pp. 369-380.

R. Akbarinia, E. Pacitti, and P. Valduriez, “Best position algorithms for
top-k queries,” in Proceedings of Int. Conf. on Very Large Data Bases
(VLDB), 2007, pp. 495-506.

R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in Proceedings of Symposium on Principles of Database
Systems (PODS), 2001, pp. 102-113.

P. Cao and Z. Wan, “Efficient top-k query calculation in distributed
networks,” in Proceedings of Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2004, pp. 206-215.

S. Michel, P. Triantafillou, and G. Weikum, “Klee: A framework for
distributed top-k query algorithms,” in Proceedings of Int. Conf. on Very
Large Data Bases (VLDB), 2005, pp. 637-648.

F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen, “Planetp:
Using gossiping to build content addressable peer-to-peer information
sharing communities,” in Proceedings of IEEE Int. Symp. on High-
Performance Distributed Computing (HPDC), 2003, pp. 236-249.



