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Abstract. In mining gradual patterns the idea is to express co-variations
of attributes, taking the direction of change of attribute values into ac-
count. These patterns are such as {the more A, the more B}, {the more

A, the more B, the less C} or { the higher the speed, the higher the

danger }. These patterns are denoted as {A≥B≥ }, { A≥B≥C≤} or
{ speed≥danger≥} respectively. Such patterns hold if the variation con-
straints simultaneously hold on the attributes. However, it is often hardly
possible to compare attribute values, either because the values are taken
from noisy data, or because it is difficult to consider that a small differ-
ence between two values is meaningful. In this context, we focus on the
use of fuzzy orderings to take this into account. abstract environment.

Keywords: Mining gradual patterns, fuzzy orderings, fuzzy gradual pat-
terns

1 Introduction

Given a database D an association rule is defined as a rule of the form If A Then
B expressing the dependency between the so-called itemsets (binary attributes)
A, B from the schema of D. The intended meaning of such a rule is that, if A is
present in a transaction, then B is likely to be present too. An association rule
is of the form:

R : Isa ⇒ Isc

where Isa and Isc are two itemsets. Two measures are usually defined to as-
sess such rules: The frequency/support is the frequency of the union of the
condition Isa and consequence Isc ie.

Freq(R) = Freq(Isa ∪ Isc)

The confidence measures the probability of knowing or occurrence of Isc given
Isa, ie.

Conf(R) =
Freq(Isa ∪ Isc)

Freq(Isa)
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In the fuzzy case, the presence of an item in a transaction is a matter of
degree. Another type of rule, called gradual dependency, conveys information
in the form of attribute covariations, such as the higher the age, the higher the
salary, meaning that the age of the persons increases together with its salary.
Gradual dependencies consider tendencies across the whole data set, in terms of
correlation of the attribute variations. This idea is closely connected to the so
called gradual rules in fuzzy logic [9].

The automatic extraction of gradual dependencies or gradual association
rules is one of the topics addressed in the field of data mining, for the modelling
of frequent co-variations over a set of objects described by numerical attributes
of data sets, such as biological databases, survey databases, data streams or
sensor readings. In mining gradual dependency the idea is to express dependencies
between the direction of change of attribute values.

As for the association rule extraction, the process consists of two steps: first
frequent gradual patterns (also known as itemsets) are extracted. Then causality
relations between the items are extracted. In mining frequent gradual itemsets,
the goal is to discover frequent co-variations between attributes[10] [11].

When considering such gradual patterns and gradual rules, it is thus impor-
tant to be able to count to which extent attributes co-variate. In this context,
varied measures have been defined in the literature. However, few works have
focused on how to exploit fuzzy orderings for handling noisy data.

For instance, when considering biological data from RNA/DNA chips, it
would be semantically false to consider that two close values can be easily
ordered. In this paper, we thus focus on an approach that evaluates frequent
gradual patterns in terms of the robust rank correlation measure on the basis of
fuzzy orderings.

The paper is organized as follows: in Section 2, we introduce the prelim-
inary definitions and related work. The Section 3 is devoted to a review of
fuzzy ordering-based rank correlation coefficient. In Section 4, we present our
approach. Finally we present in Section 5 our conclusions and future research.

2 Preliminary Definitions and Related Work

In this section, after recalling the definitions of gradual item, gradual itemset,
gradual dependencies, rank correlation, fuzzy rank correlation as given in [9–11],
we present the related works on gradual pattern mining, rank correlation for
extracting gradual itemsets, mining gradual dependencies based on fuzzy rank
correlation, fuzzy ordering-based rank correlation coefficient, and on parallel
frequent gradual pattern mining.

2.1 Preliminary Definitions

Gradual dependencies extraction applies to a data set D defined as a set of tuples
T over a schema S of I attributes with m numerical values.
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A gradual item is defined as a pair (I,θ) where I is an attribute in D and θ
a comparison operator in { ≥, ≤ }. They represent the fact that the attribute
values increase (in case of ≥) or decrease (in case of ≤).

A gradual itemset is defined as a combination of several gradual items, se-
mantically interpreted as their conjunction g = { (I1,θ1), (I2,θ2), . . . , (Ik,θk)
} of cardinality greater than or equal to 2. For example, (Age,≥) is a gradual
item, while {(Age, ≥ ), (Salary, ≤), (Loans, ≥)} is a gradual itemset, with a
cardinality equal to 3.

The support of a gradual itemset in a data set D can be defined in varied
manners [6], [11]. For instance, it can be defined as the number of tuples that
can be ordered to support all item comparisons [11].

2.2 Related Works

Two kinds of dependencies can be distinguished: a first category considers lin-
guistic variables represented by fuzzy sets and imposes covariation of the mem-
bership degrees across all data, for example, the more the age is middle-aged, the
less the number of cars is low, where middle-aged and low refer to modalities of
the linguistic variables age and number of cars respectively. A second, category
directly considers the numerical values of the attributes and applies to attribute
covariation on the whole attribute universe [11].

There are different interpretations of gradual dependency, as following: (1)
based in regression, (2) based in correlation, (3) approach based on conflict sets,
and (4) approach based on the precedence grap. Consult [11] for more information.

Laurent, Lesot, and Rifqi in [11] present an approach called GRAANK that
combines the interpretation of gradual dependency of rank correlation measures
and an algorithm on the precedence graph, named GRITE represented by its
adjacency matrix, in a bitmap. The proposed algorithm thus follows the principle
of the APRIORI algorithm, modifying the step of candidate evaluation, where
for all candidate itemsets, compute their support as the sum of their binary
matrices divided by n(n - 1)/2 where n is the number of objects.

Koh and Hullermeier in [9] present a framework for mining gradual depen-
dencies based on the use of fuzzy rank correlation for measuring the sthrenght of
a dependency. The approach is a unification of previous approaches to evaluate
gradual dependencies and captures both qualitative and quantitative measures
of association as special cases. A gradual dependency A → B is evaluated in
terms of two measures, namely the number of concordant pairs, CT, and the
rank correlation Fuzzy γ as defined in (2). Comparing this approach with the
classical setting of association analysis, CT plays the role of the support of a
rule, while Fuzzy γ corresponds to the confidence. These measures can also be
interpreted within the formal framework proposed by Dubois and Hullermeier in
[7], in which every observation (in the case of a pair of points (A(u), B(u)) and
(A(v), B(v)) is considered, to a certain degree, as an example of a pattern, as a
counterexample, or as being irrelevant for the evaluation of the pattern. In the
framework and the algorithm of Koh and Hullermeier, these degrees are given,
respectively, by the degree of concordance, the degree of discordance, and the
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degree to which the pair is a tie. Formally they define the support and confidence
of a gradual dependency A → B as follows:

supp(A → B) = CT (1)

conf(A → B) = Fuzzy γ =
CT −DT

CT +DT
(2)

where
CT =

�

ui

�

uj

C(ui, uj) (3)

CT =
�

ui

�

uj

T (L(A(ui), A(uj)), L(B(ui), B(uj))) (4)

DT =
�

ui

�

uj

D(ui, uj) (5)

DT =
�

ui

�

uj

T (L(A(ui), A(uj)), L(B(uj), B(ui))) (6)

Laurent et al. in [10] present an efficient parallel mining of gradual patterns
and gradual rules on multicore procesor based on the algorithm named GRITE
(Gradual Itemset Extraction) and a model of parallelization multithreading type
master-workers, where only parallelized the evaluation phase of frequent item-
sets. In that framework, Laurent et al. consider the support of a gradual itemset
P in a databaseDB as the ratio of the cardinality of P inDB denoted by λ(P,DB)

over the cardinality of DB denoted by |DB|. That is, supp(P,DB)=λ(P,DB)
|DB| .

Do et al. in [6] present PGLCM (Efficient Parallel Mining of Closed Frequent
Gradual Itemsets) based on the parallelization of the GLCM algoritm based
on the LCM algoritm (Linear time Closed itemset Miner) using the Melinda
library. In this framework, Do et al. consider a gradual itemset P= {(ik1 ,vk1), .
. . , (ikj ,vkj )} where {k1, ..., kj} ⊆ { 1, ..., n} and the k1, ..., kj are all distinct.
Two tuples t and t’ can be ordered with respect to P if all the values of the
corresponding ik items from the gradual itemset can be ordered with respect
to variation v ∈ { ↑, ↓ } where ↑ stands for a positive (ascending) variation, ↓
for a negative (descending) variation and the formal definition of the suport of

P is support(P )=maxL∈l(|L|)
|R| , i.e. it is the size of the longest list of tuples that

respects a gradual itemset P, where L = {t1, ..., tm} be a list of tuples from a
set of tuples R defined over the schema S = {I1, ..., In} of a dataset.

3 An Overview of Robust Rank Correlation Coefficients

on the Basis of Fuzzy Orderings

3.1 Rank Correlation Measures: An Overview

Correlation measures are among the most basic tools in statistical data analysis
and machine learning. They are applied to pairs of observations (n≥2) of two
variables X and Y

(xi, yi)
n
i=1 (7)
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x = (x1, x2, ..., xn) (8)

y = (y1, y2, ..., yn) (9)

of two linearly ordered domains X and Y to measure to which extent the two
observations comply with a certain model. The most prominent representative is
surely Pearson’s product moment coefficient, often called correlation coefficient
for short. Pearson’s product moment coefficient is applicable to numerical data
and assumes a linear relationship as the underlying model; therefore, it can be
used to detect linear relationships, but no non−linear ones [4].

Rank correlation measures are intended to measure to which extent a mono-
tonic function is able to model the inherent relationship between the two observ-
ables. They neither assume a specific parametric model nor specific distributions
of the observables. They can be applied to ordinal data and, if some ordering
relation is given, to numerical data too [4]. Therefore, rank correlation measures
are ideally suited for detecting monotonic relationships, in particular, if more
specific information about the data is not available [5], [9]. The two most com-
mon approaches are Spearman’s rank correlation coefficient (short Spearman’s
rho) and Kendall’s tau (rank correlation coefficient).

The goal of a rank correlation measure is to measure the dependence between
the two variables in terms of their tendency to increase and decrease in the same
or the opposite direction. If an increease in X tends to come along with an
increase in Y, then the (rank) correlation is positive. The other way around, the
correlation is negative if an increase in X tends to come along with a decrease in
Y. If there is no dependency of either kind, the correlation is (close to) 0. Several
rank correlation measures are defined in terms of the number C of concordant,
the number D of discordant, and the number N of tied data points [9]. For a give
index pair (i,j) � { 1, . . . , n }2̂, we say that (i,j) is concordant, discordant or tied
depending on whether (xi, xj)(yi, yj) is positive, negative or 0, respectively. A
well-known example is Goodman and Kruskal’s gamma rank correlation, which
is defined as:

γ =
C −D

C +D
(10)

3.2 Fuzzy Orderings

Fuzzy relation, fuzzy equivalence relation, and fuzzy ordering are concepts that
have been introduced with the aim; to model human-like decisions by taking the
graduality of human thinking and reasoning into account. Fuzzy orderings have
broad utility. They can be applied, for example, when expressing our preferences
with a set of alternatives. Compared to crisp orderings, they have greater expres-
sive power. They allow us to express not only that we prefer an alternative to
another one, but also the strength of this preference [8]. The study of similarity,
fuzzy relation, fuzzy ordering, similarity relation, and the notion of equivalence
was started by Zadeh [12] in 1971, in that paper he defined the notion of simi-
larity as a generalization of the notion of equivalence, and a fuzzy ordering as a
generalization of the concept of ordering.
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A fuzzy relation S : X2 →[0,1] is called similarity relation on a domain X
with respect to a t-norm T, for brevity T-similarity, if and only if the following
three axioms hold for all x, y, z ∈ X:
(i) S-reflexivity: µS(x,x)=1,
(ii) S-symmetry: µS(x,y)=µS(y,x), and
(iii) T-transitivity: µT (µS(x,y), µS(y,z))≤ µS(x,z).

Where µS(x,y), µS(y,z) and µS(x,z) are the grade of membership of the
ordered pairs (x,y), (y,z), and (x,z) in S, with respect to a triangular norm (t-
norm) T.

A fuzzy relation E : X2 →[0,1] is called fuzzy equivalence relation on a
domain X with respect to a t-norm T, for brevity T-equivalence, if and only if
the following three axioms are fulfilled for all x, y, z ∈ X:
(i) E-reflexivity: µE(x,x)=1,
(ii) E-symmetry: µE(x,y)=µE(y,x), and
(iii) T-transitivity: µT (µE(x,y), µE(y,z))≤ µE(x,z).

Where µE(x,y), µE(y,z) and µE(x,z) are the grade of membership of the
ordered pairs (x,y), (y,z), and (x,z) in E, with respect to a triangular norm
(t-norm) T.

The concept of fuzzy order was introduced by generalizing the notion of (i)
reflexivity µR(x,x) for any x ∈ X, (ii) antisymmetry (µR(x,y) and µR(y,x)) imply
x = y, and (iii) transitivity (µR(x,y) and µR(y,z)) imply µR(x,z) ), where R is a
fuzzy relation called an order relation in X if it satisfies (i), (ii), and (iii). A set X
in which an order relation has been given is called an ordered set (semi-ordered
set or partially ordered set), i.e. a fuzzy ordering is a fuzzy relation which is
transitive. A fuzzy partial ordering, P, is a fuzzy ordering which is reflexive and
antisymetric (µP (x, y) > 0 and x �=y) imply µP (y, x) =0. A fuzzy linear ordering
is a fuzzy partial ordering in which x �=y imply µS(x, y)>0 or µS(y, x)>0. A
fuzzy preordering is a fuzzy ordering which is reflexive. A fuzzy weak ordering is
a fuzzy preordering in which x �=y imply µS(x, y)>0 or µS(y, x)>0.

In the last decade Ulrich Bodenhofer [1],[2] and [3] has presented a general
framework for comparing fuzzy sets with respect to a general class of fuzzy order-
ings. This approach includes known techniques based on generalizing the crisp
linear ordering of real numbers by means of the extension principle, applicable to
any fuzzy subsets of any kind of universe for which a fuzzy ordering is known−no
matter whether linear or partial. A approach for fuzzification of the ordering re-
lation and ways to compare fuzzy sets with different heights, and ways of how
to refine the ordering relation by lexicographic hybridization with a different or-
dering method. A formal study of fuzzy orderings with applications to statistical
analysis of numerical data, has been made by Bodenhofer and Klawonn [4], [5].

A fuzzy relation L : X2 →[0,1] is called fuzzy ordering with respect to a
t-norm T and a T-equivalence E : X2 →[0,1], for brevity T-E-ordering, if and
only if the following three axioms are fulfilled for all x, y, z ∈ X:
(i) E-Reflexivity: µE(x,y)≤ µL(x,y)

(ii) T-E-Antisymmetry: µT (µL(x,y),µL(y,x))≤ µE(x,y)
(ii) T-transitivity: µT (µL(x,y),µL(y,z))≤ µL(x,z).
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Where T −E−ordering L is strongly complete if µT (µL(x,y), µL(y,x)) =1 for
all x,y ∈ X, µEr(x,y)=max(0,1- 1r ∗ |x − y|) is a µTL -Equivalence on R (assume
r>0), and µTL(x,y) denoted the Lukasiewicz t-norm.

µTL(x, y) = max(0, x+ y − 1) (11)

For all x, y ∈ X, and based on the definition of strongly complete fuzzy
orderings [4] and [5],

µLr (x, y) = min(1,max(0, 1− 1

r
∗ (x− y))) (12)

is a strongly complete TL − Er−ordering on R. In order to generalize the
notion of concordant and discordant pair, a binary fuzzy relation R : X2 →[0,1]
is called a strict fuzzy ordering with respect to a t-norm T and a T-equivalence
E, for brevity strict T-E-ordering, if it is irreflexive µR(x,x)=0 for all x ∈ X,
T-transitive, and E-extensional µT (µE(x,x

�
),µE(y,y

�
),µR(x,y))≤ µR(x

�
, y

�
), for

all x, y, z ∈ X. Given a TL −E−ordering L strongly complete, it can be proven
that the fuzzy relation Rx is defined as:

µRx(x1, x2) = 1− µLx(x2, x1) (13)

Analogously for all y ∈ Y Ry is defined as:

µRy (y1, y2) = 1− µLy (y2, y1) (14)

3.3 A Fuzzy Ordering-Based Rank Correlation Coefficient

Bodenhofer and Klawonn in [4] and [5] demonstrate that established rank corre-
lation measure are not ideally suited for measuring rank correlation for numerical
data that are perturbed by noise, they propose to use robust rank correlation
meassures based on fuzzy orderings named Fuzzy Rank Correlation and demon-
strate that the new measures overcome the robustness problems of existing rank
correlation coefficients. The formal description is: Assume that the data are
given as in (7), (domainx), and (domainy), where xi ∈X and yi ∈Y for all
i=1, . . . , n, this means that we have two TL−equivalences Ex : X2 →[0,1]
and Ey : Y 2 →[0,1], a strongly complete TL − Ex−ordering Lx : X2 →[0,1]
with a strict TL − Ex−ordering on X define as in (13) and a strongly complete
TL − Ey−ordering Ly : Y 2 →[0,1] with a strict TL − Ey−ordering on Y define
as in (14).

According to the gamma rank correlations measure and given an index pair
(i, j) where i = (xi, yi) and j = (xj , yj), we can compute the degree to which (i,
j) is a concordant pair as:

C(i, j) = µTL(µRx(xi, xj), µRy (yi, yj)) (15)

And the degree to which (i, j) is a discordant pair as

D(i, j) = µTL(µRx(xi, xj), µRy (yj , yi)) (16)



8 Fuzzy Orderings for Fuzzy Gradual Patterns

The numbers of concordant pairs CT and discordant pair DT, respectively,
as:

CT =
n�

i=1

�

j �=i

C(i, j) (17)

DT =
n�

i=1

�

j �=i

D(i, j) (18)

So the fuzzy ordering-based rank correlation meassure γ can be computed as:

Fuzzy γ =
CT −DT

CT +DT
(19)

Where µTL(x,y), µRx(x1,x2), µRy (y1,y2), µLx(x2,x1) and µLy (y2,y1) by fuzzy
orderings we can compute as in (11), (13), (14), and (12) respectively.

4 Fuzzy Ordering-Based Rank Correlation Coefficient for

Mining of Gradual Itemsets

4.1 Notations

The automatic extraction of gradual dependencies consists of two steps: 1. ex-
traction of frequent gradual itemsets, and 2. extraction of causality relations
between the items. In this work, we focus on the first step, and we consider
the following notations: A data set DS , constituted of N objects or transactions
(data record) denote by T = {t1, ..., tN } described by M numerical attributes
denote by A= {A1, ..., AM}. Table of Fig. 1. shows an example data set where
T = {t1, t2, t3, t4, t5} transactions and A= {A1 : age,A2 : salary,A3 : loans,A4 :
cars} attributs, its graphic illustration is shown in the diagram and graphics of
Fig. 1.

Fig. 1. Notations of a Data Set.
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In this framework, let us consider a gradual itemset IS ::={Il}k where {Il}k
::= I1 ... Ik, such that I1 �= I2 �= ... �= Ik, for k ::= 2 | 3 | ... | M, each
gradual item Il::=Av, where A::= A1 | A2 | ... | AM, each Am::=id attribut
[vector of numeric values ui] for i=1, 2,..., N , and v ::= ≥ | ≤, represent a
positive (ascending) variation in the numeric values of the attribute Am (in case
v ::= ≥) or a negative (descending) variation (in case v ::= ≤), see Fig. 2 a).
For instance IS ::={ A1≥A2≥A4≤ } is interpreted as a gradual itemset of size
k = 3 illustrated in Fig. 2 b), where for case of the data set of table in Fig
1 it imposes an ascending variation on the values of attributes age(ui, uj) and
salary(ui, uj) and a descending variation on the values of attribute cars(ui, uj)
and are concordant pairs simultaneously.

Fig. 2. Ilustration: a) Variations of a gradual item, b) A gradual itemset of size k = 3.

4.2 Algorithm of Extraction of Frequent Gradual Itemsets

In this context we propose an algorithm that evaluates gradual dependencies
in terms of a fuzzy rank correlation coefficient, as described in the algorithm
1, where we apply the APRIORI algorithm to generate candidates from the
k−itemsets to take advantage of the fact that any subset of a frequent itemset
is also a frequent itemset and all infrequent itemsets can be pruned if it has an
infrequent subset. We implemented the Fuzzy Ordering-Based Rank Correlation
Coefficient (Fuzzy γ) according to the formal description presented in the pre-
vious section, this in order to evaluate candidates itemsets and mining frequent
gradual itemset.

4.3 Properties of the Proposed Method

For us, in this work, the problem to address is the automatic extraction of fre-
quent gradual itemsets, in which, relations between the directions of changing
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Algorithm 1: Fuzzy Ordering-Based Rank Correlation Coefficient
Data: Data set(DS), Size(k) and Minimum support (ε)

Result: Frequent Gradual Itemset(IF ), Support(CT ) and Confidence Fuzzy γ

MainBegin
for K=2, 3, 4, ... , M do

Is ← Gen Cand Gradual Itemsets(Size K);
/* Compute of rank correlation measure, in:*/

Fuzzy γ Evaluation(Itemsets Is, Size K);
k++;

End;
Fuzzy γ Evaluation(Itemsets Is, Size K)
Begin
CT ← ∅; /* Concordant and Support */

DT ← ∅; /* Discordant */

foreach CandidateGradulItemset Is ∈ Is × { ≥, ≤ }, Size k do
/* Compute of concordant C and discordant D pair (ui,uj) */

for i=0, 1, 2, ... , N − 1 do
foreach j ∈ { 0, ... , N − 1 } and j �=i do

/* Compute: Relatinships RI of each Item I {A≥ | A≤ } ∈ Is */

for ri=0, 1, 2, ... , k-1 do
if variation is ” ≥ ” then

RC [ri]← RI(I.Ari(ui), I.Ari(uj));
Rd[ri]← RI(I.Ari(uj), I.Ari(ui));

if variation is ” ≤ ” then
RC [ri]← RI(I.Ari(uj), I.Ari(ui));
Rd[ri]← RI(I.Ari(ui), I.Ari(uj));

/* Compute: to each index pair ∈ RI is concordant C */

C(i, j) ← min(RC [0],RC [1], ...,RC [k − 1]);
CT ← CT + C(i, j);
/* Compute: to each index pair ∈ RI is discordant D */

D(i, j) ← min(Rd[0],Rd[1], ...,Rd[k − 1]);
DT ← DT +D(i, j);

Support ← CT/(n ∗ (n− 1)/2);
if Support ≥ minSupp (ε) then

IF ← IF ∪ {Is};
/* Compute the Fuzzy Ordering-Based Rank Correlation Coefficient */

Fuzzy γ ← (CT −DT )/(CT +DT );

End;
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Table 1. Examples of lists of concordant couples of Gradual Itemsets

Itemset List of concordant couples CT DT Support Fuzzy γ

A1 ≥ A2 ≥ {(0,1)(0,2)(0,3)(0,4)(1,3)(1,4)} 6 4 6/10 0.2
A1 ≥ A2 ≥ A3 ≤ {(0,1)(0,2)(0,3)(0,4)} 4 5 4/10 -0.111

A1 ≥ A2 ≥ A3 ≥ A4 ≤ {(0,1)(0,2)(0,3)(0,4)} 4 6 4/10 -0.2
A1 ≥ A3 ≤ {(0,1)(0,2)(0,3)(0,4) } 4 5 4/10 -0.111
A2 ≥ A3 ≤ { (0,1)(0,2)(0,3)(0,4) } 4 4 4/10 0.00

the values of the attributes involved are non-linear and/or affected by noise.
Consequently, we propose a method of automatic extraction of frequent gradual
itemsets on the basis of fuzzy orderings. To illustrate this, we consider the data
set described in table and graphs of Fig. 1. Table 1 contains the list de con-
cordant couplas, the numbers of concordant pairs CT and discordant pair DT,
the support, and the fuzzy rank correlation coefficient (Fuzzy γ), for several
gradual itemsets.

Properties of the proposed method and algorithms are: (i) In order to com-
pute the degree to which each index pair C(i, j) ← min(RC [0],RC [1], ...,RC [k−
1]) are concordant pairs in itemsets |Is| > 2, we exploit the properties of as-
sociativity and commutativity of t-norm of (15), (ii) In order to compute the
degree to which each index pair D(i, j) ← min(Rd[0],Rd[1], ...,Rd[k − 1]) are
discordant pairs in itemsets |Is| > 2, we exploit the properties of associativity
and commutativity of t-norm of (16), (iii) Each RC [ri], for the concordant case,
is computed as RC [ri]← RI(I.Ari(ui), I.Ari(uj)), and for the discordant case as
Rd[ri]← RI(I.Ari(uj), I.Ari(ui)), (iv)The concordance degrees C(i, j) are stored
in an | N | × | N | matrix, from which the total number of concordant pairs
CT of an itemset Is is computed by summing all entries, and (v) Finally, the
support of itemset Is is computed as: Support(Is)= CT/(n ∗ (n− 1)/2), and the
set of frequent gradual itemsets IF is updated as IF ← IF ∪ {Is} if Support(Is)
is ≥ minSupp (ε).

5 Conclusions and Remarks

In this paper, we have presented a review of the basis and new models of fuzzy
orderings, also we propose an original approach for extracting gradual itemsets.
In our approach apply the APRIORI algorithm to generate candidates from the
k−itemsets to take advantage of the fact that any subset of a frequent itemset
is also a frequent itemset and all infrequent itemsets can be pruned if it has an
infrequent subset, in order to evaluate candidates itemsets and mining frequent
gradual itemset we implemented the Fuzzy Ordering-Based Rank Correlation
Coefficient (Fuzzy γ) according to the formal description of Bodenhofer and
Klawonn [4], [5] and Zadeh [12].

An important aspect to be addressed in future work includes the study of
other optimizations in order to improve the efficiency of our approach (for exam-
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ple, the parallelization of our algorithm). Thus, in order to guarantee scalability,
efficient pruning techniques are needed to avoid unnecessary comparisons. We
will also study how causality can be defined based on this work, and efficiently
extracted.
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