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Abstract— This paper proposes a generic method for de-
riving the general shaking force balance conditions of parallel
manipulators. Instead of considering the balancing of a par-
allel manipulator link-by-link or leg-by-leg, the architecture is
considered altogether.

The first step is to write the linear momentum of each ele-
ment. The second step is to substitute the derivatives of the
loop equations, by which the general force balance conditions
are obtained. Subsequently specific kinematic conditions are
investigated in order to find advantageous, simple balance so-
lutions.

As an example, the method is applied to a planar 4-RRR par-
allel manipulator, for which the force balance conditions and
solutions are discussed and illustrated for each step respec-
tively. By including the loop equations, linear relations of the
motion among mechanism elements lead to an increase of bal-
ance possibilities. For specific kinematic conditions, additional
linear relations among the motion of mechanism elements may
be obtained, resulting in another increase of balance possibil-
ities. For the latter, symmetric motion is an important feature
for which a 4-RRR manipulator is advantageous.

Keywords: Shaking Force Balancing, Linear Momentum, Parallel Ma-
nipulator, Machine Vibrations

I. Introduction

When mechanisms (i.e. manipulators or robots) are run-
ning at high speeds, shaking forces and shaking moments are
a prominent cause of machine vibrations. Instead of applying
damping to reduce the influence of these vibrations, with dy-
namic balancing the mechanism is designed to exert no shaking
forces and shaking moments at all. Therefore dynamically bal-
anced mechanisms exhibit, among others, reduced wear, noise,
and fatigue [1], increased accuracy [2], [3], and increased pay-
load capacity [4].

Disadvantages of dynamic balancing are the often consider-
able increase of mass, inertia, and complexity of the mecha-
nism [5]. These are the main reasons that there are few studies
on dynamic balancing of multi-degree-of-freedom (multi-DoF)
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parallel mechanisms, which are already complex mechanisms
by themselves because of their parallel structures.

To omit the complexity of using the loop equations, most
studies on parallel mechanisms are involved with balancing of
each mechanism link or each manipulator leg individually, in-
cluding [2], [6], [7], [8], [9], [10]. A class of low-mass force
balanced mechanisms of which the mechanism is considered
altogether without the need of loop equations is presented in
[11].

When the loop equations are not considered, the number
of balance solutions that can be found is limited. With loop
equations the linear relations of the motion among mecha-
nism elements are included, resulting in an increased number
of balance solutions. For example deriving the force balance
conditions with the Linear Independent Vector Method (LIV-
method) [12], which considers the loop equations, results in a
general description of the force balance from which the com-
plete set of general force balance conditions can be derived.
The LIV-method is well applicable to parallel mechanisms, for
which [12] also shows a few examples. However the derivation
of the balance conditions is cumbersome and specific for each
mechanism.

Shaking force balancing by using linear momentum equa-
tions and shaking moment balancing by using angular momen-
tum equations have shown to be systematic and intuitive ap-
proaches for finding the complete set of balance conditions
[11], [13]. A mechanism is force balanced when the linear mo-
mentum is conserved, and a mechanism is moment balanced
when the angular momentum is conserved for any motion of
the mechanism.

This paper proposes a generic method for deriving the gen-
eral (i.e. complete set of) shaking force balance conditions of
parallel manipulators by considering the loop equations. In ad-
dition, it will be shown that advantageous balance solutions can
be found for specific kinematic conditions, an opportunity that
is usually overlooked.

The method is applied to a planar 4-RRR parallel manipula-
tor, which, if in addition to being kinematically redundant has
actuation redundancy, can become a high performance robot
[14], [15]. This is the case since actuation redundancy leads to
superior kinetostatic performances. The kinematic redundancy
of the 4-RRR manipulator will show to be advantageous for
dynamic balancing as compared with a 3-RRR manipulator.
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Fig. 1. Redundant Planar 4-RRR Parallel Manipulator with its Parameters.
Joints Ci are located at the Platform for having a Maximal Force Transmission
to the Platform.

First the linear momentum equations without loop equa-
tions are investigated (leg-by-leg approach). Subsequently the
derivatives of the loop equations are substituted, gaining the
general force balance conditions. Then specific kinematic con-
ditions are investigated and a resulting prototype manipulator
is presented.

II. Force balance solutions without loop equations

Figure 1 shows the general topology of the planar 4-RRR
parallel manipulator with its parameters. It has four legs i with
each two links with lengths li1 and li2 of which the angular
rotations with the x-axis are θi1 and θi2 respectively. The plat-
form has width 2c5, height 2d5, and orientation θ5. The fixed
pivots at the base are Ai, the joints between two links of a sin-
gle leg are Bi and the joints of the legs with the platform are
Ci. For having a maximal force transmission to the platform,
joints Ci are located at the platform as indicated for which links
BiCi are crossing one another. The center-of-mass (CoM) of
each link is defined by the parameters pij and qij along and
perpendicular to the link respectively, with j being the number
of the link of a leg. The CoM of the platform is defined by p5

and q5 with respect to the center of the platform.
In order to have a shaking force balanced manipulator (i.e. to

have the base be without shaking forces), the linear momentum
of all moving elements with respect to the base needs to be
conserved (to be constant). The positions of the link CoMs can
be written in [x, y]T notation as

ri1 =
[

ai + pi1cθi1 − qi1sθi1

bi + pi1sθi1 + qi1cθi1

]

ri2 =
[

ai + li1cθi1 + pi2cθi2 − qi2sθi2

bi + li1sθi1 + pi2sθi2 + qi2cθi2

]

with Ai = [ai, bi]T . To simplify the equations by omitting
θ5, the platform CoM is modeled by four masses µ5i which
distribute m5 among the joints Ci. The positions of Ci write

r5i =
[

ai + li1cθi1 + li2cθi2

bi + li1sθi1 + li2sθi2

]

Deriving the linear momentum equations [5], [13] of the ma-
nipulator then results in

PO =
4∑

i=1

(mi1ṙi1 + mi2ṙi2 + µ5iṙ5i)

=
[ −λ111 sin θ11 − λ112 cos θ11

λ111 cos θ11 − λ112 sin θ11

]
θ̇11 +

[ −λ211 sin θ21 − λ212 cos θ21

λ211 cos θ21 − λ212 sin θ21

]
θ̇21 +

[ −λ311 sin θ31 − λ312 cos θ31

λ311 cos θ31 − λ312 sin θ31

]
θ̇31 +

[ −λ411 sin θ41 − λ412 cos θ41

λ411 cos θ41 − λ412 sin θ41

]
θ̇41 +

[ −λ121 sin θ12 − λ122 cos θ12

λ121 cos θ12 − λ122 sin θ12

]
θ̇12 +

[ −λ221 sin θ22 − λ222 cos θ22

λ221 cos θ22 − λ222 sin θ22

]
θ̇22 +

[ −λ321 sin θ32 − λ322 cos θ32

λ321 cos θ32 − λ322 sin θ32

]
θ̇32 +

[ −λ421 sin θ42 − λ422 cos θ42

λ421 cos θ42 − λ422 sin θ42

]
θ̇42 (1)

with

λi11 = mi1pi1 + mi2li1 + µ5ili1 λi12 = mi1qi1

λi21 = mi2pi2 + µ5ili2 λi22 = mi2qi2

and

µ51 + µ52 + µ53 + µ54 = m5 (2)

µ51 − µ52 − µ53 + µ54 =
m5p5

c5
(3)

−µ51 − µ52 + µ53 + µ54 =
m5q5

d5
(4)

Equations (2-4) define the distributed masses at Ci by which
the CoM of the distributed masses and their summed value re-
main equal to the position of the CoM and the value of the mass
of the platform. Due to the redundant leg, there are four dis-
tributed masses and with three equations then one of them is
independent. When µ54 is chosen as independent parameter,
the other µ5i are calculated with

µ51 = m5

(
1
2

+
p5

2c5

)
− µ54 (5)

µ52 = m5

(
− p5

2c5
− q5

2d5

)
+ µ54 (6)

µ53 = m5

(
1
2

+
q5

2d5

)
− µ54 (7)

Already various balance solutions can be obtained. For Eq. (1)
to be constant (zero) for all motion of the manipulator, all λijk
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Fig. 2. Topologies of Force Balance Solutions obtained without using the Loop
Equations (Leg-by-Leg Approach).

need to be zero. This results in the following force balance
conditions.

qi1 = 0 (8)
qi2 = 0 (9)

mi1pi1 + mi2li1 + µ5ili1 = 0 (10)
mi2pi2 + µ5ili2 = 0 (11)

Having qij be zero means that the link CoMs are in line with
their links. Four types of balance solutions are discussed indi-
vidually.

A. Solutions for dependent link COM parameters

To satisfy Eqs. (10) and (11), pij can be chosen to be the
dependent balance parameters which then are calculated with

pi1 =
−mi2li1 − µ5ili1

mi1
, pi2 =

−µ5ili2
mi2

pij will be negative when the other parameters are positive.
This represents the balance topology shown in Fig. 2a which
can be interpreted as adding a countermass to each link. Ac-
cording to Eqs. (2-4), the platform CoM then needs to be within
the area bounded by its joints. When the platform CoM is out-
side this area, one or more pi2 will have to be positive.

B. Solutions for one independent link COM parameter

To satisfy Eqs. (10) and (11), one pij can be chosen to be
independent instead of one µ5i which then is dependent. One
of eight possibilities is when p22 is independent, for which µ52

is determined by

µ52 =
−p22m22

l22

The other parameters except p22 then are calculated with

pi1 =
−mi2li1 − µ5ili1

mi1
, pi2 =

−µ5ili2
mi2

The resulting balance topology is shown in Fig. 2b. According
to Eqs. (2-4), the combined CoM of the platform and mass µ52

at C2 then needs to be within the area bounded by the three
joints of the independent µ5i.

C. Solutions for two independent link COM parameters

To satisfy Eqs. (10) and (11), two pij can be chosen to be in-
dependent instead of two µ5i which then are dependent. One of
twenty-four possibilities is when p22 and p42 are independent,
for which µ52 and µ54 are determined by

µ52 =
−p22m22

l22
, µ54 =

−p42m42

l42

The other parameters except p22 and p42 then are calculated
with

pi1 =
−mi2li1 − µ5ili1

mi1
, pi2 =

−µ5ili2
mi2

The resulting balance topology is shown in Fig. 2c. Accord-
ing to Eqs. (2-4), the combined CoM of the platform and the
masses µ52 and µ54 at their joints C2 and C4 respectively, then
needs to be on the line between the two joints of the indepen-
dent µ5i.

D. Solutions for three independent link COM parameters

To satisfy Eqs. (10) and (11), three pij can be chosen to
be independent instead of three µ5i which then are dependent.
One of twenty-eight possibilities is when p12, p22, and p42 are
independent, for which µ51, µ52, and µ54 are determined by

µ51 =
−p12m12

l12
, µ52 =

−p22m22

l22
, µ54 =

−p42m42

l42

The other parameters then are calculated with

pi1 =
−mi2li1 − µ5ili1

mi1
, p32 =

−µ53l32
m32

The resulting balance topology is shown in Fig. 2d. Accord-
ing to Eqs. (2-4), with only one independent µ5i the combined
CoM of the platform and the three dependent masses µ51, µ52,
and µ54 at their joints C1, C2, and C4 respectively, needs to be
exactly at the joint of the independent µ5i, C3.

III. General force balance solutions by including loop
equations

For the 4-RRR manipulator there are three independent loop
equations which can be written with

r51 = r52 + 2c5

[
cθ5

sθ5

]

r51 = r53 + 2c5

[
cθ5

sθ5

]
+ 2d5

[
sθ5

−cθ5

]

r51 = r54 + 2d5

[
sθ5

−cθ5

]

The time derivatives of these equations are

l11θ̇11

[ −sθ11

cθ11

]
+ l12θ̇12

[ −sθ12

cθ12

]
= l21θ̇21

[ −sθ21

cθ21

]
+

l22θ̇22

[ −sθ22

cθ22

]
+ 2c5θ̇5

[ −sθ5

cθ5

]

3
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(12)

l11θ̇11

[ −sθ11

cθ11

]
+ l12θ̇12

[ −sθ12

cθ12

]
= l31θ̇31

[ −sθ31

cθ31

]
+

l32θ̇32

[ −sθ32

cθ32

]
+ 2c5θ̇5

[ −sθ5

cθ5

]
+ 2d5θ̇5

[
cθ5

sθ5

]

(13)

l11θ̇11

[ −sθ11

cθ11

]
+ l12θ̇12

[ −sθ12

cθ12

]
= l41θ̇41

[ −sθ41

cθ41

]
+

l42θ̇42

[ −sθ42

cθ42

]
+ 2d5θ̇5

[
cθ5

sθ5

]

(14)

These loop equations can be substituted in the linear momen-
tum equation Eq. (1) in various ways. A practical choice is
to first eliminate θ5 and θ̇5 by which two equations remain.
Choosing the CoMs of links l12 and l32 to be independent pa-
rameters, the loop equations are rewritten as
[

sθ12

cθ12

]
θ̇12 = − l11

l12

[
sθ11

cθ11

]
θ̇11 +

l21
Ul12

[
cθ21

−sθ21

]
θ̇21+

l22
Ul12

[
cθ22

−sθ22

]
θ̇22 +

l41
Ul12

[ −cθ41

sθ41

]
θ̇41+

l42
Ul12

[ −cθ42

sθ42

]
θ̇42 +

d5l21
c5Ul12

[
sθ21

cθ21

]
θ̇21+

d5l22
c5Ul12

[
sθ22

cθ22

]
θ̇22 +

c5l41
d5Ul12

[
sθ41

cθ41

]
θ̇41+

c5l42
d5Ul12

[
sθ42

cθ42

]
θ̇42

(15)
[

sθ32

cθ32

]
θ̇32 = − l31

l32

[
sθ31

cθ31

]
θ̇31 +

l21
l32

[
sθ21

cθ21

]
θ̇21+

l22
l32

[
sθ22

cθ22

]
θ̇22 +

l41
l32

[
sθ41

cθ41

]
θ̇41+

l42
l32

[
sθ42

cθ42

]
θ̇42 +

l21
Ul32

[ −cθ21

cθ21

]
θ̇21+

l22
Ul32

[ −cθ22

cθ22

]
θ̇22 +

l41
Ul32

[
cθ41

−sθ41

]
θ̇41+

l42
Ul32

[
cθ42

−sθ42

]
θ̇42 − d5l21

c5Ul32

[
sθ21

cθ21

]
θ̇21−

d5l22
c5Ul32

[
sθ22

cθ22

]
θ̇22 − c5l41

d5Ul32

[
sθ41

cθ41

]
θ̇41−

c5l42
d5Ul32

[
sθ42

cθ42

]
θ̇42 (16)

with U = c5
d5

+ d5
c5

. The resulting linear momentum equations
Eq. (22) after substituting these equations in Eq. (1) are pre-
sented in the Appendix. When the λijk in Eq. (22) are replaced

with their original values, the twelve conditions for which the
linear momentum equations are zero for all motion become

m11p11 + m12l11(1− p12
l12

) = 0
m31p31 + m32l31(1− p32

l32
) = 0

m11q11 −m12
l11
l12

q12 = 0
m31q31 −m32

l31
l32

q32 = 0

m21p21 + m22l21 + m12

(
−l21
Ul12

q12 + d5l21
c5Ul12

p12

)
+

m32

(
l21
l32

p32 + l21
Ul32

q32 − d5l21
c5Ul32

p32

)
+

d5l21
c5U (µ51 − µ53) + (µ52 + µ53)l21 = 0

m41p41 + m42l41 + m12

(
l41

Ul12
q12 + c5l41

d5Ul12
p12

)
+

m32

(
l41
l32

p32 − l41
Ul32

q32 − c5l41
d5Ul32

p32

)
+

c5l41
d5U (µ51 − µ53) + (µ54 + µ53)l41 = 0

m22p22 + m12

(
−l22
Ul12

q12 + d5l22
c5Ul12

p12

)
+

m32

(
l22
l32

p32 + l22
Ul32

q32 − d5l22
c5Ul32

p32

)
+

d5l22
c5U (µ51 − µ53) + (µ52 + µ53)l22 = 0

m42p42 + m12

(
l42

Ul12
q12 + c5l42

d5Ul12
p12

)
+

m32

(
l42
l32

p32 − l42
Ul32

q32 − c5l42
d5Ul32

p32

)
+

c5l42
d5U (µ51 − µ53) + (µ54 + µ53)l42 = 0

m21q21 + m12

(
l21

Ul12
p12 + d5l21

c5Ul12
q12

)
+

m32

(
l21
l32

q32 − l21
Ul32

p32 − d5l21
c5Ul32

q32

)
+

l21
U (µ51 − µ53) = 0

m41q41 + m12

(
−l41
Ul12

p12 + c5l41
d5Ul12

q12

)
+

m32

(
l41
l32

q32 + l41
Ul32

p32 − c5l41
d5Ul32

q32

)
+

l41
U (µ53 − µ51) = 0

m22q22 + m12

(
l22

Ul12
p12 + d5l22

c5Ul12
q12

)
+

m32

(
l22
l32

q32 − l22
Ul32

p32 − d5l22
c5Ul32

q32

)
+

l22
U (µ51 − µ53) = 0

m42q42 + m12

(
−l42
Ul12

p12 + c5l42
d5Ul12

q12

)
+

m32

(
l42
l32

q32 + l42
Ul32

p32 − c5l42
d5Ul32

q32

)
+

l42
U (µ53 − µ51) = 0

(17)

These are the general force balance conditions of the planar
4-RRR parallel manipulator.

In Fig. 3 a variety of force balance topologies is shown that
can be obtained from these balance conditions. One important
difference of these results with the results of Fig. 2 is that the
link CoMs are not restricted to be along the lines through the
joints (qij can be nonzero). In addition, more mass parameters
are independent. For instance when the mass of each element
is known, for the solutions of Fig. 2 there are three independent
mass position parameters while for the solutions of Fig. 3 there
are six independent mass position parameters. For the latter
generally holds that there are two independent mass position
parameters per loop equation, while for the former two of them

4
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Fig. 3. A Selection of Force Balance Topologies from the General Force Bal-
ance Conditions.

a) b)

Fig. 4. a) Balance Topology when the CoMs of l12 and l32 are on the Line
through their Joints; b) Symmetric Balance Topology.

are because of the mass distribution of the platform (by which
in fact a linear relation between the motion of the platform and
of the links was already introduced) and one is because of the
redundant leg. If for the six mass position parameters the posi-
tion of the CoM of the platform is defined together with qi2 = 0
or qi1 = 0, then the solutions of Fig. 2 are obtained.

Figure 4a shows a balance topology when the CoMs of l12
and l32 are on the line through their joints. Figure 4b shows a
fully symmetric topology. The advantage of this topology with
respect to the topology of Fig. 2a is that there is more design
freedom.

The general force balance conditions are valid for any con-
dition of the kinematics. Each link and the platform can have
any dimension and each pivot can have any position. In addi-
tion, the force balance conditions also hold for planar 1-RRR,
2-RRR, and 3-RRR (parallel) manipulators. Legs of the 4-RRR
can be ’taken out’ by simply filling out zero mass values. As
long as two legs remain, any mass arrangement of the paral-
lel manipulator is possible. For a 1-RRR mechanism, which is
serial, the position of the CoM of each element is determined.

IV. Force balance solutions for specific kinematic condi-
tions

The previous section showed that linear relations among the
motion of mechanism elements enhance the balance possibili-
ties. Since the 4-RRR manipulator has three-DoF only, the lin-
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Fig. 5. Specific Kinematic Conditions for which for a Nonrotating Platform
Velocity terms a) θ̇11 and θ̇42, θ̇12 and θ̇41, θ̇21 and θ̇32, and θ̇22 and θ̇31; and
b) θ̇11 and θ̇41, θ̇12 and θ̇42, θ̇21 and θ̇31, and θ̇22 and θ̇32, become linearly
dependent.

ear momentum equations Eq. (22) could be rewritten to solely
depend on three angular velocities. However, the six velocity
terms are generally nonlinearly related and therefore this will
not influence the general force balance conditions of Eq. (17).
But for some specific kinematic conditions, relations among
the velocity terms do become linear.

Two specific kinematic conditions are shown in Fig. 5 for
which for each case four velocity terms become linearly de-
pendent. For the configuration of Fig. 5a the velocity terms of
θ̇11 and θ̇42, θ̇12 and θ̇41, θ̇21 and θ̇32, and θ̇22 and θ̇31 are lin-
early dependent for a nonrotating platform (θ5 = 0 and θ̇5 = 0
for all motion). This is the case when for the link lengths hold:
l11 = l42, l12 = l41, l21 = l32, and l22 = l31 and the pivots Ai

are located such that the following links remain parallel for all
motion of the mechanism: l11 ‖ l42, l12 ‖ l41, l21 ‖ l32, and
l22 ‖ l31. This implies that the line through pivots A1 and A4

and the line through A2 and A3 are parallel to the line through
C1 and C4 and the line through C2 and C3, respectively.

The force balance conditions for these specific kinematic
conditions can be derived by substituting the relations

θ11 = θ42 θ̇11 = θ̇42 θ12 = θ41 θ̇12 = θ̇41

θ21 = θ32 θ̇21 = θ̇32 θ22 = θ31 θ̇22 = θ̇31

θ5 = 0 θ̇5 = 0

(18)

in the linear momentum equations Eq. (22). The loop equations
already included some of these relations. The resulting linear
momentum equations Eq. (23) now have become dependent on
four velocity terms. The conditions for which these equations

5
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are zero are the force balance conditions

m11p11 + m12l11(1− p12
l12

) + m42p42+

m12

(
l42

Ul12
q12 + c5l42

d5Ul12
p12

)
+

m32

(
l42
l32

p32 − l42
Ul32

q32 − c5l42
d5Ul32

p32

)
+

c5l42
d5U (µ51 − µ53) + (µ54 + µ53)l42 = 0

m21p21 + m22l21 + m12

(
−l21
Ul12

q12 + d5l21
c5Ul12

p12

)
+

m32

(
l21
l32

p32 + l21
Ul32

q32 − d5l21
c5Ul32

p32

)
+

d5l21
c5U (µ51 − µ53) + (µ52 + µ53)l21 = 0

m31p31 + m32l31(1− p32
l32

) + m22p22+

m12

(
−l22
Ul12

q12 + d5l22
c5Ul12

p12

)
+

m32

(
l22
l32

p32 + l22
Ul32

q32 − d5l22
c5Ul32

p32

)
+

d5l22
c5U (µ51 − µ53) + (µ52 + µ53)l22 = 0

m41p41 + m42l41 + m12

(
l41

Ul12
q12 + c5l41

d5Ul12
p12

)
+

m32

(
l41
l32

p32 − l41
Ul32

q32 − c5l41
d5Ul32

p32

)
+

c5l41
d5U (µ51 − µ53) + (µ54 + µ53)l41 = 0

m11q11 −m12
l11
l12

q12 + m42q42+

m12

(
−l42
Ul12

p12 + c5l42
d5Ul12

q12

)
+

m32

(
l42
l32

q32 + l42
Ul32

p32 − c5l42
d5Ul32

q32

)
+

l42
U (µ53 − µ51) = 0

m21q21 + m12

(
l21

Ul12
p12 + d5l21

c5Ul12
q12

)
+

m32

(
l21
l32

q32 − l21
Ul32

p32 − d5l21
c5Ul32

q32

)
+

l21
U (µ51 − µ53) = 0

m31q31 −m32
l31
l32

q32 + m22q22+

m12

(
l22

Ul12
p12 + d5l22

c5Ul12
q12

)
+

m32

(
l22
l32

q32 − l22
Ul32

p32 − d5l22
c5Ul32

q32

)
+

l22
U (µ51 − µ53) = 0

m41q41 + m12

(
−l41
Ul12

p12 + c5l41
d5Ul12

q12

)
+

m32

(
l41
l32

q32 + l41
Ul32

p32 − c5l41
d5Ul32

q32

)
+

l41
U (µ53 − µ51) = 0

(19)

The twelve general force balance conditions of Eq. (17) have
reduced to eight force balance conditions, which in fact are a
combination of the twelve force balance conditions. Therefore
the balance solutions of Fig. 3 and Fig. 4 are still valid. With
respect to Eq. (17), there are four additional independent mass
position parameters (pij and qij), yielding new balance possi-
bilities.

Figures 6a and 6b show possible resulting balance topolo-
gies. For these topologies the positions of the CoM of the
platform and the CoMs of all links li2 can be chosen arbitrary,
while the CoMs of links li1 are determined for balance. This
means that if countermasses are used, they only need to be ap-
plied on the links that are directly pivoted to the base, which is
an advantageous feature for low mass addition [16]. It is also

b)

a)

c)

Fig. 6. Force Balance Topologies for a-b) the Kinematic Conditions of Fig. 5a;
c) the Kinematic Conditions of Fig. 5b.

possible to have some links li2 contain countermasses instead
of links li1. However, floating masses increase the complexity
of the structural design of the manipulator considerably.

For the configuration of Fig. 5b the velocity terms of θ̇11

and θ̇41, θ̇12 and θ̇42, θ̇21 and θ̇31, and θ̇22 and θ̇32 are linearly
dependent for a nonrotating platform (θ5 = 0 and θ̇5 = 0 for
all motion). This is when for the link lengths hold: l11 = l41,
l12 = l42, l21 = l31, and l22 = l32 and the pivots Ai are located
such that the following links remain parallel for all motion of
the mechanism: l11 ‖ l41, l12 ‖ l42, l21 ‖ l31, and l22 ‖ l32.
This implies that the line through pivots A1 and A4 and the line
through A2 and A3 are parallel to the line through C1 and C4

and the line through C2 and C3, respectively.
The force balance conditions for this configuration can be

obtained from the linear momentum equations Eq. (22) in an
equivalent way as for the configuration of Fig. 5a by substitut-
ing the relations

θ11 = θ41 θ̇11 = θ̇41 θ12 = θ42 θ̇12 = θ̇42

θ21 = θ31 θ̇21 = θ̇31 θ22 = θ32 θ̇22 = θ̇32

θ5 = 0 θ̇5 = 0 (20)

In this case the force balance conditions result in

m11p11 + m12l11(1− p12
l12

) + m41p41 + m42l41+

m12

(
l41

Ul12
q12 + c5l41

d5Ul12
p12

)
+

m32

(
l41
l32

p32 − l41
Ul32

q32 − c5l41
d5Ul32

p32

)
+

c5l41
d5U (µ51 − µ53) + (µ54 + µ53)l41 = 0

m31p31 + m32l31(1− p32
l32

) + m21p21 + m22l21+

m12

(
−l21
Ul12

q12 + d5l21
c5Ul12

p12

)
+

m32

(
l21
l32

p32 + l21
Ul32

q32 − d5l21
c5Ul32

p32

)
+

d5l21
c5U (µ51 − µ53) + (µ52 + µ53)l21 = 0

m22p22 + m12

(
−l22
Ul12

q12 + d5l22
c5Ul12

p12

)
+

m32

(
l22
l32

p32 + l22
Ul32

q32 − d5l22
c5Ul32

p32

)
+

d5l22
c5U (µ51 − µ53) + (µ52 + µ53)l22 = 0

m42p42 + m12

(
l42

Ul12
q12 + c5l42

d5Ul12
p12

)
+

m32

(
l42
l32

p32 − l42
Ul32

q32 − c5l42
d5Ul32

p32

)
+

c5l42
d5U (µ51 − µ53) + (µ54 + µ53)l42 = 0

6
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m11q11 −m12
l11
l12

q12 + m41q41+

m12

(
−l41
Ul12

p12 + c5l41
d5Ul12

q12

)
+

m32

(
l41
l32

q32 + l41
Ul32

p32 − c5l41
d5Ul32

q32

)
+

l41
U (µ53 − µ51) = 0

m31q31 −m32
l31
l32

q32 + m21q21+

m12

(
l21

Ul12
p12 + d5l21

c5Ul12
q12

)
+

m32

(
l21
l32

q32 − l21
Ul32

p32 − d5l21
c5Ul32

q32

)
+

l21
U (µ51 − µ53) = 0

m22q22 + m12

(
l22

Ul12
p12 + d5l22

c5Ul12
q12

)
+

m32

(
l22
l32

q32 − l22
Ul32

p32 − d5l22
c5Ul32

q32

)
+

l22
U (µ51 − µ53) = 0

m42q42 + m12

(
−l42
Ul12

p12 + c5l42
d5Ul12

q12

)
+

m32

(
l42
l32

q32 + l42
Ul32

p32 − c5l42
d5Ul32

q32

)
+

l42
U (µ53 − µ51) = 0

(21)

Also for this configuration eight force balance conditions are
obtained which are a combination of the twelve conditions of
Eq. (17). Figure 6c shows a possible balance topology in which
the positions of the CoMs of the platform, of two links li1,
and of two links li2 can be chosen arbitrary. When applying
countermasses, a countermass is needed for each set of links
l11 and l41, links l12 and l42, links l21 and l31, and links l22 and
l32. A disadvantage of this topology is that countermasses at
links li2 cannot be omitted.

For many high performance pick and place manipulators the
platform does not need to rotate. The rotational degree of free-
dom, however, may be a necessity to be able to move the plat-
form with accurate translations, compensating for tolerances
and production inaccuracies.

Figure 7 shows a prototype manipulator, currently being de-
veloped and tested, which is derived from the balance topol-
ogy of Fig. 6b. The configuration of Fig. 6b is in a singular
position, but this is solved by having platform joint C1 be co-
incident with C2 and C3 be coincident with C4. An advantage
of this configuration with respect to the other configurations is
that no arms need to cross one another. Four countermasses are
applied near the base pivots, which are the rotational axes of
direct drive motors.

The specific kinematic conditions found for the 4-RRR ma-
nipulator could be partly valid for the 3-RRR manipulator when
two of the three legs are moving symmetrically. However, the
third leg cannot be included and the kinematic conditions to
have two legs move symmetrically will cause serious problems
for the force transmission to the platform. Applying the spe-
cific kinematic conditions to a planar 2-RRR parallel manipu-
lator results in a well balanced configuration when the two piv-
ots at the base are coincident and the two joints at the platform
are coincident, as illustrated in Fig. 8.

Fig. 7. Prototype Manipulator derived from Fig. 6b with Joint C1 Coincident
with C2 and C3 Coincident with C4 (Patent Pending).

A
1
=A

2
C

1
=C

2

Fig. 8. Planar 2-RRR Parallel Manipulator derived from Fig. 6b with only
Two Legs and having the Base Pivots be Coincident and the Platform Joints be
Coincident. When the CoM of the Platform is at the Joint, the Platform can
also rotate without influencing the Force Balance.

V. Discussion

The positions of the CoMs of the mechanism elements were
described along the shortest way towards the base by which the
least time dependent parameters are involved for each of them,
which is common practice. It is also possible to write the posi-
tion of for example the CoM of link l12 along leg three. This,
however, increases the complexity of the calculations consider-
ably. For the linear momentum equations with the loop equa-
tions included, the choice of description will not affect the ob-
tained results. For the linear momentum equations without the
loop equations this choice will lead to balance solutions which

7
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are less compact, less symmetric, and with increased counter-
mass addition.

With the substitution of the loop equations care must be
taken that the parameters of the platform c5 and d5 remain fully
coupled. For instance when the loop equations Eqs. (12-14)
are substituted in Eq. (1) for θ12, θ̇12, θ42, and θ̇42, c5 and d5

become partly decoupled. This reduces the complexity of the
linear momentum equations, but it also restricts the balance so-
lutions that can be derived.

Although this paper does not investigate the shaking mo-
ment balancing, it is noted that the 4-RRR manipulator has
also advantageous moment balance features. If the manipu-
lator is symmetrically arranged, for example equivalent to the
prototype manipulator of Fig. 7, and links li1 have equal in-
ertia, links li2 have equal inertia, and the platform is symmet-
ric, then for the specific kinematic conditions the manipulator
is completely moment balanced for motion along the lines of
symmetry. Motion aside these lines will result in relatively low
shaking moments.

VI. Conclusion

A generic method for deriving the general shaking force bal-
ance conditions of parallel manipulators was proposed which
considers the robot architecture as a whole, rather than link by
link or leg by leg. The focus of the method is to find and include
linear relations among velocity terms of the linear momentum
equations. Therefore the loop equations and specific kinematic
conditions were considered.

The method was applied to a planar 4-RRR parallel manipu-
lator, for which the force balance conditions and solutions were
discussed and illustrated. A prototype was presented, featuring
a simple balance solution for perfect force balance and advanta-
geous moment balancing, taking advantage of kinematic redun-
dancy, symmetric arrangements, and the intended manipulator
task.
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Design of Reactionless Three-Degree-of-Freedom Parallel Mechanisms
IEEE Transactions on Robotics and Automation, 20(2):pp. 191-199,
2004.

[7] Wu, Y. and Gosselin, C. M. Design of Reactionless 3-DOF and 6-DOF
Parallel Manipulators Using Parallelepiped Mechanisms IEEE Transac-
tions on Robotics, 21(5):pp. 821-833, 2005.

[8] Wu, Y. and Gosselin, C. M. On The Dynamic Balancing of Multi-DOF
Parallel Mechanisms With Multiple Legs Journal of Mechanical Design,
129(February):pp. 234-238, 2007.

[9] Arakalian, V. H. and Smith, M. R. Design of planar 3-DOF 3-RRR reac-
tionless parallel manipulators Mechatronics, 18:pp. 601-606, 2008.

[10] Van der Wijk, V. and Herder, J.L. Dynamic Balancing of Clavel’s Delta
Robot In: Kecskemthy and Mller,Computational Kinematics, Proceed-
ings of the 5th International Workshop on Computational Kinematics,
Springer, ISBN 978-3-642-01946-3, pp. 315-322, 2009.

[11] Van der Wijk, V. and Herder, J.L. On the development of low-mass force
balanced manipulators In: Jadran Lenarc̆ic̆, Michael M. Stanisic, Ad-
vances in Robot Kinematics, Proceedings of the IFToMM 12th Int. Sym-
posium on Advances in Robot Kinematics, Springer, ISBN 978-90-481-
9261-8, pp. 234-238, 2010.

[12] Berkof, R. S. and Lowen, G. G. A New Method for Completely Force
Balancing Simple Linkages J. of Engineering for Industry, February,
pp. 21-26, 1969.

[13] Van der Wijk, V. and Herder, J. L. Dynamic balancing of a single crank-
double slider mechanism with symmetrically moving couplers In: Pisla
et al. (eds), New Trends in Mechanism Science: Analysis and Design,
Proceedings of the IFToMM 3rd European Conference on Mechanism
Science, Springer, ISBN 978-90-481-9688-3, pp. 413-420, 2010.

[14] Corbel, D. and Gouttefarde, M. and Company, O. and Pierrot, F. Towards
100G with PKM. Is actuation redundancy a good solution for pick-and-
place? Proceedings of the IEEE International Conference on Robotics
and Automation, Anchorage, USA, May, 2010.

[15] Corbel, D. and Gouttefarde, M. and Pierrot, F. Actuation Redundancy as
a Way for Improving the Acceleration Capabilities of 3T and 3T-1R Pick-
and-place PKM Journal of Mechanisms and Robotics, To be published,
2010.

[16] Van der Wijk, V. and Herder, J. L. Guidelines for Low Mass and Low
Inertia Dynamic Balancing of Mechanisms and Robotics In: Kröger and
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Appendix

The linear momentum equation Eq. (1) after substitution of the loop equations Eq. (15) and (16) writes

PO =

[
(−λ111 + l11

l12
λ121)sθ11 + (−λ112 + l11

l12
λ122)cθ11

(λ111 − l11
l12

λ121)cθ11 + (−λ112 + l11
l12

λ122)sθ11

]
θ̇11 +




(−λ211 + l21
Ul12

λ122 − d5l21
c5Ul12

λ121 − l21
l32

λ321 − l21
Ul32

λ322 + d5l21
c5Ul32

λ321)sθ21+
(−λ212 − l21

Ul12
λ121 − d5l21

c5Ul12
λ122 − l21

l32
λ322 + l21

Ul32
λ321 + d5l21

c5Ul32
λ322)cθ21

(λ211 − l21
Ul12

λ122 + d5l21
c5Ul12

λ121 + l21
l32

λ321 + l21
Ul32

λ322 − d5l21
c5Ul32

λ321)cθ21+
(−λ212 − l21

Ul12
λ121 − d5l21

c5Ul12
λ122 − l21

l32
λ322 + l21

Ul32
λ321 + d5l21

c5Ul32
λ322)sθ21


 θ̇21 +

[
(−λ311 + l31

l32
λ321)sθ31 + (−λ312 + l31

l32
λ322)cθ31

(λ311 − l31
l32

λ321)cθ31 + (−λ312 + l31
l32

λ322)sθ31

]
θ̇31 +




(−λ411 − l41
Ul12

λ122 − c5l41
d5Ul12

λ121 − l41
l32

λ321 + l41
Ul32

λ322 + c5l41
d5Ul32

λ321)sθ41+
(−λ412 + l41

Ul12
λ121 − c5l41

d5Ul12
λ122 − l41

l32
λ322 − l41

Ul32
λ321 + c5l41

d5Ul32
λ322)cθ41

(λ411 + l41
Ul12

λ122 + c5l41
d5Ul12

λ121 + l41
l32

λ321 − l41
Ul32

λ322 − c5l41
d5Ul32

λ321)cθ41+
(−λ412 + l41

Ul12
λ121 − c5l41

d5Ul12
λ122 − l41

l32
λ322 − l41

Ul32
λ321 + c5l41

d5Ul32
λ322)sθ41


 θ̇41 +




(−λ221 + l22
Ul12

λ122 − d5l22
c5Ul12

λ121 − l22
l32

λ321 − l22
Ul32

λ322 + d5l22
c5Ul32

λ321)sθ22+
(−λ222 − l22

Ul12
λ121 − d5l22

c5Ul12
λ122 − l22

l32
λ322 + l22

Ul32
λ321 + d5l22

c5Ul32
λ322)cθ22

(λ221 − l22
Ul12

λ122 + d5l22
c5Ul12

λ121 + l22
l32

λ321 + l22
Ul32

λ322 − d5l22
c5Ul32

λ321)cθ22+
(−λ222 − l22

Ul12
λ121 − d5l22

c5Ul12
λ122 − l22

l32
λ322 + l22

Ul32
λ321 + d5l22

c5Ul32
λ322)sθ22


 θ̇22 +




(−λ421 − l42
Ul12

λ122 − c5l42
d5Ul12

λ121 − l42
l32

λ321 + l42
Ul32

λ322 + c5l42
d5Ul32

λ321)sθ42+
(−λ422 + l42

Ul12
λ121 − c5l42

d5Ul12
λ122 − l42

l32
λ322 − l42

Ul32
λ321 + c5l42

d5Ul32
λ322)cθ42

(λ421 + l42
Ul12

λ122 + c5l42
d5Ul12

λ121 + l42
l32

λ321 − l42
Ul32

λ322 − c5l42
d5Ul32

λ321)cθ42+
(−λ422 + l42

Ul12
λ121 − c5l42

d5Ul12
λ122 − l42

l32
λ322 − l42

Ul32
λ321 + c5l42

d5Ul32
λ322)sθ42


 θ̇42 (22)

After substitution of Eqs. (18), the linear momentum for the specific configuration of Fig. 4a becomes

PO =




(−λ111 + l11
l12

λ121 − λ421 − l42
Ul12

λ122 − c5l42
d5Ul12

λ121 − l42
l32

λ321 + l42
Ul32

λ322 + c5l42
d5Ul32

λ321)sθ11+
(−λ112 + l11

l12
λ122 − λ422 + l42

Ul12
λ121 − c5l42

d5Ul12
λ122 − l42

l32
λ322 − l42

Ul32
λ321 + c5l42

d5Ul32
λ322)cθ11

(λ111 − l11
l12

λ121 + λ421 + l42
Ul12

λ122 + c5l42
d5Ul12

λ121 + l42
l32

λ321 − l42
Ul32

λ322 − c5l42
d5Ul32

λ321)cθ11+
(−λ112 + l11

l12
λ122 − λ422 + l42

Ul12
λ121 − c5l42

d5Ul12
λ122 − l42

l32
λ322 − l42

Ul32
λ321 + c5l42

d5Ul32
λ322)sθ11


 θ̇11 +




(−λ211 + l21
Ul12

λ122 − d5l21
c5Ul12

λ121 − l21
l32

λ321 − l21
Ul32

λ322 + d5l21
c5Ul32

λ321)sθ21+
(−λ212 − l21

Ul12
λ121 − d5l21

c5Ul12
λ122 − l21

l32
λ322 + l21

Ul32
λ321 + d5l21

c5Ul32
λ322)cθ21

(λ211 − l21
Ul12

λ122 + d5l21
c5Ul12

λ121 + l21
l32

λ321 + l21
Ul32

λ322 − d5l21
c5Ul32

λ321)cθ21+
(−λ212 − l21

Ul12
λ121 − d5l21

c5Ul12
λ122 − l21

l32
λ322 + l21

Ul32
λ321 + d5l21

c5Ul32
λ322)sθ21


 θ̇21 +




(−λ311 + l31
l32

λ321 − λ221 + l22
Ul12

λ122 − d5l22
c5Ul12

λ121 − l22
l32

λ321 − l22
Ul32

λ322 + d5l22
c5Ul32

λ321)sθ31+
(−λ312 + l31

l32
λ322 − λ222 − l22

Ul12
λ121 − d5l22

c5Ul12
λ122 − l22

l32
λ322 + l22

Ul32
λ321 + d5l22

c5Ul32
λ322)cθ31

(λ311 − l31
l32

λ321 + λ221 − l22
Ul12

λ122 + d5l22
c5Ul12

λ121 + l22
l32

λ321 + l22
Ul32

λ322 − d5l22
c5Ul32

λ321)cθ31+
(−λ312 + l31

l32
λ322 − λ222 − l22

Ul12
λ121 − d5l22

c5Ul12
λ122 − l22

l32
λ322 + l22

Ul32
λ321 + d5l22

c5Ul32
λ322)sθ31


 θ̇31 +




(−λ411 − l41
Ul12

λ122 − c5l41
d5Ul12

λ121 − l41
l32

λ321 + l41
Ul32

λ322 + c5l41
d5Ul32

λ321)sθ41+
(−λ412 + l41

Ul12
λ121 − c5l41

d5Ul12
λ122 − l41

l32
λ322 − l41

Ul32
λ321 + c5l41

d5Ul32
λ322)cθ41

(λ411 + l41
Ul12

λ122 + c5l41
d5Ul12

λ121 + l41
l32

λ321 − l41
Ul32

λ322 − c5l41
d5Ul32

λ321)cθ41+
(−λ412 + l41

Ul12
λ121 − c5l41

d5Ul12
λ122 − l41

l32
λ322 − l41

Ul32
λ321 + c5l41

d5Ul32
λ322)sθ41


 θ̇41 (23)
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