
HAL Id: lirmm-00611959
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00611959

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge Engineering, a Useful Tool for Integrating
Food Chain

Cédric Baudrit, Patrice Buche, Guy Della Valle, Sébastien Destercke, Kamal
Kansou, Amadou Ndiaye, Nathalie Perrot, Rallou Thomopoulos, Gilles

Trystram

To cite this version:
Cédric Baudrit, Patrice Buche, Guy Della Valle, Sébastien Destercke, Kamal Kansou, et al.. Knowl-
edge Engineering, a Useful Tool for Integrating Food Chain. 6 CIGR - 6th International Symposium
on “Towards a Sustainable Food Chain: Food Process, Bioprocessing and Food Quality Management”,
Apr 2011, Nantes, France. �lirmm-00611959�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00611959
https://hal.archives-ouvertes.fr


Proceedings of the 6th CIGR Section VI International Symposium 
“Towards a Sustainable Food Chain” 

Food Process, Bioprocessing and Food Quality Management  
Nantes, France - April 18-20, 2011 

 

Knowledge Engineering, a useful tool for integrating 
food chain 

C. Baudrit1, P. Buche2, G. Della Valle3 *, S. Destercke2, K. Kansou3,4, A. Ndiaye4, N. 
Perrot1, R. Thomopoulos1, G. Trystram5. 

* 33(0)240675000, 33(0)240675043, dellaval@nantes.inra.fr 

 1 JRU 782, AgroParisTech, INRA-CEPIA, Thiverval Grignon, 78850 France 

 2 INRA - CEPIA / LIRMM / EPI GraphIK, 2 place Viala, Montpellier, 34000 France 

3 INRA- CEPIA, UR 1268 BIA,  rue de la géraudière, Nantes, 44316 France 

 4 JRU 927, INRA-CEPIA, CNRS, Univ. Bordeaux 1, Talence, 33405 France 

 5 JRU 1145, INRA-CEPIA, CNAM, AgroParisTech,  Massy, 91744 France 

 

Abstract. Issued from cognitive sciences, computer sciences and applied mathematics, Knowledge 
(K) Engineering encompasses modelling and can be roughly defined by three steps: acquisition of 
available K, representation of acquired K and computational use of represented K for simulation, 
validation and optimisation purposes. These different steps are illustrated for various applications to 
food industry like the durum wheat chain, dough mixing for breadmaking, cheese ripening,  based on 
specific approaches like decision trees and conceptual graphs, qualitative reasoning, Bayesian 
networks and optimisation under uncertainty and multi-criteria flexible querying, respectively. The 
application of such approaches opens prospects for the virtual design of food products which will be 
of help for the sustainable production of high quality foods. 
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Introduction 

Foods are now developped in response to new demands of consumers, concerned by 

environmental and nutritional issues. An evolution of the know how in food industry is needed, 

although it is difficult to simultaneously improve the qualification of the staff and upgrade the 

technological level of production lines. It is therefore important to support the capacity of 

developing practices of quality management and technology choices within the food processing 

chain. Conversely, on the scientific side, during food processing, the close interaction between 

continuous structural changes and transfer mechanisms impairs the complete modeling of 

coupled physical, chemical and microbiological phenomena. So, despite the increase of 

scientific papers in this area and the progresses of our understanding on multi-scale food 

structural changes, the knowledge is fragmented and incomplete (Perrot et al., 2006). The 

whole food processing chain can be viewed like a complex system, like for recent scientific 

issues in biology. We propose to adapt and implement concepts able to take into account this 

complexity. Their application relies on tools able to take explicitly into account the fragmented 

and heterogeneous knowledge available on the dynamics of the process, with uncertainty on 

the global behaviour of the system. Recently, some of these tools (Monte Carlo, Neural and 

Bayesian Networks, fuzzy logic, expert systems...) have been implemented in various 

applications, such as immunology (Cohen and Harel, 2007), systems engineering (Beckerman, 

2000), bioinformatics (Desiere et al., 2001). In our context, these tools have to be tested for the 

multiscale dynamic reconstruction of the processes of food models by an Integrated Knowledge 

Model (IKM) as it has been envisaged in the frame of the Dream EU project (Fig.1). 

 

Figure  1:   Example of model integration (IKM) in the EU-Dream project (GMF= 

generalized model foods; BKM = basic knowledge model). 

Generic model foods (GMF) are realistic foods considered to be representative of a whole class 

of foods through variations of process and composition. Then, cognitive maps of technical 

knowledge (know-how) on processing of the selected GMFs are to be drawn and integrated with 

the numerical models, namely BKMs. These last models may be those currently set in the food 

engineering area, and based on physical laws, chemical kinetics… usually formalized by 

ordinary and partial differential equations (see for instance Bimbenet et al., 2007); but they are 

also those available from technological know-how (expert’s rules), which have thus to be 

formalized. The purpose of Knowledge Engineering is to build this IKM and this paper illustrates 
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how it can be applied to the management of food chain processing by considering the following 

examples: durum wheat chain, breadmaking, cheese ripening. They are presented in this order 

of decreasing sizes of knowledge grain and scale of the considered domain, so that the relevant 

tools may also be described briefly. 

Decision support system to manage the durum wheat chain 

The need for food security has triggered the development of  tools combining models with 
databases in the area of predictive microbiology like Sym’Previus (Haemmerlé et al., 2007) but, 
up to our knoweledge, there are no tools available to manage a whole food chain until food 
products, integrating heterogeneous information sources on nutritional, sensory and 
technological aspects. Noting the basic role of cereals in the food of mankind, the management 
of durum wheat products has recently been addressed, taking into account experimental data, 
from scientific literature, and expert statements describing commonly admitted mechanisms in a 
qualitative way (Thomopoulos et al., 2009). Since this approach is not based on predetermined 
models, a specific learning technique has been used, namely decision trees.  

Expert knowledge representation and exploitation 

Since we address a complete  food chain, we have to build a system to handle disparate 
information presented under various forms (quantitative, descriptive…) and referring to very 
different domains (processing operations, product quality…). These issues may be addressed 
by using tools for the representation of expert knowledge like the conceptual graph model and 
rules. The latter well illustrate the link “If…then…” , like for instance (Fig.2): “Drying a pasta 
product in which peroxydase is active will yield a pasta with brown color”. Here “drying” is a unit 
operation and “color” a qualitative variable. 

 

Figure  2:   Example of use of expert knowledge: an expert rule in the conceptual graph model. 

These rules can be applied either in forward chaining in order to predict an output result in terms 
of quality, or in backward chaining to determine the possible conditions that can lead to the 
expected properties (reverse engineering). 

Experimental data exploitation by decision trees 

The management of the food chain may be performed using decision trees, which can be 
viewed as a collection of rules implementing its different variables. In the decision tree, leaves 
represent the average value (for a continuous variable) or class (for a symbolic variable), 
whereas the branch represent  the conjunction of inputs that lead to this classification (or value). 
After the trees have been learnt from the data set, we will use them in their predictive form in 
order to predict the classification, or average value, from input parameters. The knowledge 
management system involved 29 unit operations of the durum wheat chain and 56 quality 
variables characterizing the various families of products (precooked grain, couscous, pasta…). 

 



 

4 

Among those, let us examine the impact of the “cooking in water” operation on the “vitamin 
content” quality, for which 145 experimental results have been reported from 11 references. On 
the basis of vitamin initial composition and previous processing steps, once the most 
discriminating parameters are determined (here type of vitamin), a family of decision trees is 
generated. One of them is depicted in Fig.3. It provides the average value of “vitamin decrease” 
(%) as terminal leaves, the box plot below indicates the distribution of this variable around the 
average value. 

 

Figure 3: Example of descriptive decision tree learnt from the “cooking in water” data set. 

Synergy between expert knowledge and experimental data 

Expert knowledge and experimental data complete each other in two ways: (1) a confrontation 
of both is performed by testing the expert rules using a confidence rate; exceptions to the rule 
may be identified in order to build new rules (Thomopoulos, 2008); (2) an interactive procedure 
is proposed (Johnson et al., 2010) to improve the decision tree results through adequate 
knowledge elicitation. 

Formalization of expert knowledge in French breadmaking 

Among cereal processing chain, breadmaking has a specific part and the tool described by 
Young (2007), namely ‘Bread Advisor’ is one of the first software based on expert knowledge 
that proposes information about processing, and diagnoses about possible defaults. Starting 
from expert knowledge in French breadmaking, but also considering scientific results, we have 
developed a knowledge based system (KBS) based on formal algebraic representation of 
breadmaking operations allowing to predict the state of dough or bread from the inputs and 
processing conditions. In addition we have also proposed a glossary of terms of quality pasta 
and French bread loaves.  
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Knowledge and technological backgrounds: craft processing of wheat flour 

French breadmaking has long been a traditional activity relying on craftsman’s manual skills. 
Today, part of know-how is automated and it is also an industrial activity, which demonstrates a 
good knowledge of ingredients and baking process (Roussel and Chiron, 2002). This 
industrialization has been favoured by the work of breeders and geneticists for stable wheats for 
breadmaking, but it involves the risk of supply uniformity and economic dependance for the 
craft, in the long term. In addition, causal relationships between the physico-chemical 
ingredients and sensory and nutritional characteristics of bread according to the sequence of 
unit processes (mixing, ..., cooking) remain ill known. As part of any industrial process, 
knowledge related to the explanation or the implementation of these processes involve a great 
deal of tacit knowledge. The elicitation of this knowledge requires a scientific analysis of the 
processes involved, through a formalization of the results of this analysis, but also a knowledge 
survey from the different actors involved in these processes. The use of a common formalization 
of these two components allows to build a comprehensive knowledge base. This base will be 
both the evidence of current practices and the starting point for investigating future practices. 
The scientific objectives were to make knowledge emerging on accessible scientific issues and 
to develop a formal tool for representing algebraically expert knowledge expressible as rules to 
facilitate the integration of knowledge. 

Approach and results: qualitative algebra and knowledge based system  

We developed an algebra (Q-algebra) for writing as a qualitative function each set of rules for 
evaluating a characteristic of the wheat flour dough and bread. It has been used to model the 
states of the dough at the end of first mixing and end of texturing operations, the two successive 
steps of mixing (Ndiaye et al., 2009). The state of the dough at the end of first mixing is 
influenced by the characteristics of the ingredients (%flour, water, protein and pentosan 
content…);  the state of the dough at the end of texturing is defined by the following descriptors: 
smoothing velocity SV, smooth aspect SA, Extensibility Ext, stickiness Stic, Stability Stab, 
Consistency Cons, Elasticity Elas and Creamy Colour CC. This state is influenced by its 
consistency (w) at texturing start, by the target temperature at the end of mixing (x), and by the 
mixer settings: the difference in linear velocity between the arm and bowl (y) and the expected 
heat dissipated during texturing (z). These words for describing behavior of the dough and 
bread were selected thanks to a glossary  of terms defining dough quality and bread baking, 
developed in French and available on the Web (Roussel et al., 2010). The terms of language at 
different levels – empirical, technological and scientific - were identified by: (1) expressing 
explicitly semantic relationships between terms from different levels of knowledge, (2) 
accounting for rheological knowledge that can both describe the behavior of dough and suggest 
instrumental methods where only sensory assessments exist. 

 
Figure 4: Qualitative functions of dough state descriptors after mixing (Ndiaye et al., 2009) 

 

SV  (lw)(y, z)

SA  T((lw) (l  (x))T(z) (l  (z)))

Ext  (l  (w)) (l  (x))T(z) (l  (z))

Stic  ((lw)  ( (x) z))

Stab  ((lw)  (x) z)

Cons  w (l  (x)) (l z)

Elas  (l  (w)) x T(z)

CC  (l z)  
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The functional writing of the set of expert rules allows to calculate the state of a dough 
according to the state of the inputs of the operation and its settings (Fig. 4). The qualitative 
determination of the function corresponding to a set of rules is one of the main difficulties of this 
formalization, a purpose for which an algorithm for automatic determination of qualitative 
functions is being developped. Once implemeted in the KBS, it allows to determine the states of 
the inputs of the processing operation (Fig.5).  

(a)                                                                                                       (b) 

Figure 5: Examples of the KBS outputs: predictions of dough state at the end of texturing, 
starting from a standard consistency at the end of first mixing (350 ≤ w≤ 450 UB), a standard 
target temperature (22 ≤ x ≤ 25 °C), an average difference of velocity y and a heat dissipation z 
(a) medium and (b) low. Scale ranges from vvh (very excessive) to vvl (very insufficient). 

Qualitative algebra is also useful to prospect expert’s reasoning in order to build KBS (Kansou 
et al., 2008), which, in the near future, can be also used to determine the settings of the 
operation, and the dough composition, that achieve a desired state of dough (reverse 
engineering) like for the design of composite materials (Michaud et al., 2009). 

Modelisation and optimisation of the cheese ripening process 

After breadmaking, cheese manufacturing is certainly the most representative area of food 
industry in France, and it processes half of the milk produced in this country. In spite of this 
industrial importance, soft cheese like Camembert is an ecosystem and a bioreactor difficult to 
assess in its entirety. Despite extensive research conducted on this product, knowledge remains 
fragmentary and incomplete and no model provides a comprehensive representation of the 
process. In this context, we have used dynamic Bayesian networks to model the network of 
interactions occuring at different scales and reconstruct its dynamics (Baudrit et al., 2010). A 
model of cheese mass loss (Helias et al., 2007) was then considered for optimizing the ripening 
process. In this purpose, a viability kernel representing a compromise between production costs 
and ripened cheese quality was computed (Sicard et al., 2009).  

Coupling heterogeneous knowledge with dynamic Bayesian networks (DBNs) 

The concept of DBNs provides a practical mathematical formalism that enables to describe 
dynamical complex systems tainted with uncertainty. DBNs are an extension of classical 
Bayesian networks that rely on probabilistic graphical models in which nodes representing 
random variables are indexed by time. They are very useful tools for combining expert 
knowledge with data at different levels of knowledge, where the structure can be explicitly built 
on the basis of expert knowledge and conditional probability, quantifying dependence between 
variables, can be automatically learned without a priori knowledge on the basis of a dataset. 

  

Afnor score = 23.5 / 25 Afnor score = 22 / 25

  

Afnor score = 23.5 / 25 Afnor score = 22 / 25
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From operational and scientific knowledge, Baudrit et al. (2010) defined the structure of a DBN 
providing a qualitative representation of the coupled dynamics of microorganism behaviour 
(Kluyveromyces marxianus (Km), Geotrichum candidum (Gc), Brevibacterium aurantiacum (Ba) 
with their substrate consumptions (lactose (lo), lactate (la)) influenced by temperature (T) and 
involving the sensory changes (Odour, Under-rind, Coat, Colour and Humidity) of cheese during 
ripening (Fig.6). 
 

Figure 6: Dynamic Bayesian network representing the coupled dynamics of micro-organism 
growth with their substrate consumptions influenced by temperature and involving the sensory 
changes of cheese during the ripening process. 

After the learning step to define conditional probability distributions from experimental trials with 
various temperature and humidity, DBNs inferences can be carried out in order to simulate the 
behaviour of microbial activities associated with sensory development, for instance the beliefs of 
the possible trajectories of the yeast Km during ripening at 8°C (Fig.7a). This figure means, for 
instance, that at the 27th day of ripening, the concentration of Km has a probability of 39% to be 

≈ 107cfu/g FC and that it cannot be lower than 3.105. 

 (a)                                                                                                (b)                                                  (c)  

Figure 7: DBN results of (a) Km(t) probability distribution at 8°C, predictive evolutions of (b) Km 
microbial growth and (c) odour, versus experimental data for ripening performed at T= 8 (+), 12 

(o) and 16°C (), RH=98%. 

From these  results of DBNs simulations, the mean evolution of Km (Fig.7b) as well as the 
modal evolution of odour properties( Fig.7c) may be estimated and compared to experimental 
data. The model was thus shown to be able of (1) coupling and integrating heterogeneous 
knowledge at different scales; (2) predicting the evolution of microbial activities and sensory 
properties with an overall average adequacy rate of about 85% to experimental data. 

Process optimization by the viability theory and geometric calculus 
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Viability theory aims at controlling a dynamical system, here cheese during ripening, in order to 
maintain it in a given set of evolutions, namely the viability kernel. The viability kernel was 

defined by associating a  target on cheese mass at the end of ripening (≈280g) and constraints 

on microorganisms respiration. It was then computed thanks to a classical heat&mass transfer 
model, proposed by Helias et al. (2007) that predicts cheese mass, surface temperature and the 
respiration of the microorganisms. Meanwhile, the cost trajectories, involving the number of 
control variations and the ripening time are computed to define the compromise between  
cheese quality and energy consumption saving (Sicard et al., 2009). Then, optimal trajectories, 
lowering cost, were found; among those, one reached the mass target after 8 days ripening, and 
the results of its control variations are presented in Fig. 8b, to be compared to the conventional 
control performed for 12 days ripening (Fig. 8a), without quality loss. 

                 (a)                                                                                     (b) 

Figure 8: Control (T(K) ---, RH(%)  ) of ripening chambers, (a) conventional in 

industry and (b) optimal computed applying viability approach. 

Whilst setting a higher humidity (94%), it imposes a daily change of temperature between 14 
and 9°C. These controls have been applied to real ripening chambers; the analysis of 
processed cheese gave sensory results very close to those obtained under classical conditions 
(12°C, 92%). This is an example of the application of the reverse engineering approach to a 
single food processing operation. 

Conclusions 

Food processing represents a complex system with incomplete knowledge and numerous 
interactions, that are not fully available from the scientific literature, but also rely largely on 
technological expertise. Managing such a system is a real challenge, that can be addressed by 
Knoweldge Engineering. After having described briefly the principles of this approach, we have 
presented some of its recent applications to food processing and described briefly the relevant 
tools implemented in each application. By integrating models together, they may build an 
integrated mathematical model (IKM) for multistage dynamic reconstruction of foods which can 
in turn be implemented for reverse engineering. The application of such approach opens 
prospects for the virtual design of food products, which will be of help for the sustainable 
production of high quality foods. 
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