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Abstract

This article tackles the multi-trip vehicule routing problem with time windows and limited du-
ration. A trip is a timed route such that a succession of trips can be assigned to one vehicle. We
provide a two-phase exact algorithm to solve it. The first phase enumerates possible ordered
lists of client matching trip maximum duration criterion. The second phase uses a Branch and
Price scheme to generate and choose best set of trips to visit all customers. We propose a set
covering formulation as the column generation master problem, where columns (variables) rep-
resent trips. The sub-problem selects appropriate timing for trips and has a pseudo-polynomial
complexity. Computional results on Solomon’s benchmarks are presented. The computional
times obtained with our new algorithm are much lower than the ones obtained in the sole exact
algorithm previously published on this problem.

Keywords : Vehicle routing, Time windows, Multi-trip, Column Generation, Dynamic pro-
gramming, Branch and Price
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1 Introduction

The Multi-Trip Vehicle Routing Problem with Time Windows (MTVRPTW) is a variant of
the classical Vehicle Routing Problem with Time Windows (VRPTW) where vehicles can be
scheduled more than one trip within a workday or planning time horizon. The multi-trip feature
is needed when the vehicles fleet size is limited. In this study, we consider a special case of the
MTVRPTW, called MTVRPTW-LD, where trips (routes) have a limited duration. Motivations
to impose this duration limit can be management issues, e.g. limiting the maximum driving
time for drivers, or can follow from the nature of transported goods, e.g. delivering perishable
goods.

This problem was addressed first in Azi et al. (2007) and Azi et al. (2010). In Azi et al.
(2007), the authors proposed an exact method for the single vehicle case. The multi-vehicles
variant is considered in Azi et al. (2010) and updated numerical results are given in Azi (2010).
We describe in the present article a new exact method for this latter problem. This method is
based on Azi’s investigations and on our own works on MTVRPTW reported in Hernandez et al.
(2009). Using the same instances as in Azi (2010), which are based on Solomon’s - Solomon
(1987) - we show that the new algorithm allows large improvements in terms of computing
times.

This article is organized as follows. The following section is devoted to related works on
Vehicle Routing Problem with Time Windows, more specifically on the multi-trips variant
problem and on the strategies to solve it. The principle of column generation used in Branch
and Price schemes is described in the same section. In section 4, we present our new exact
method for MTVRPTW-LD, which is composed of two phases like in Azi et al. (2010). In
section 5, consistently with the choice made in Azi et al. (2010) and Azi (2010), we present
results for Solomon benchmark instances, including analysis of effects of size of customer time
windows and trip max duration on solutions and performance, and compare these with results
obtained in Azi (2010). Following sections are devoted to general discussion, conclusion, and
perspectives.

2 Literature review

As Azi et al. (2007), we note that papers about VRPTW with limited fleet and multi-trip are
scarce in the literature. Most of the few works reported so far on solving this problem involved
metaheuristics.

2.1 Multi-trip vehicle routing problem

As far as we know, Fleischmann (1990), as cited by Battarra et al. (2009), is the first study
including the multi-trip idea in the vehicle routing problem without Time Windows. The author
used a savings based algorithm to construct the routes and a bin packing heuristic to combine
them on vehicles. The same principles have been used in Taillard et al. (1996). In their study,
routes are constructed by a Tabu search algorithm. According to Sen and Bülbül (2008), the
study in Brandão and Mercer (1998) is about a rich vehicle routing problem with multi-trips
and many additional considerations like time windows, heterogeneous fleet, maximum legal
driving time per day for drivers, unloading time of vehicles, etc. The authors developped a
tabu search to solve this problem. In Sen and Bülbül (2008) is also mentionned the multi-phase
algorithm reported in Petch and Salhi (2003), which can be considered as the combination of
two approaches mentionned in Taillard et al. (1996) and Brandão and Mercer (1998). Other
works analysed in Sen and Bülbül (2008) include Olivera and Viera (2007), a method based
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on an adaptive memory procedure, Salhi and Petch (2007) which involves a genetic algorithm
to solve the MTVRPTW, and Alonso et al. (2008). In this latter paper is studied the case
of periodic vehicle routing problem with time windows and multi-trips, in which one customer
can be served 1 to t times in a planning period, and in which split and delivery is allowed. A
tabu search is applied to solve the problem. In Battarra et al. (2009), the authors decompose
the MTVRPTW into two easier problems, and create two heuristics to solve them. The first
heuristic deals with the creation of routes and the second with a bin packing problem. The
complete algorithm is iterative and is based on a self adaptive guidance strategy which enforces
the route heuristic to compute only the routes that can improve the solution.

2.2 Exact method for vehicle routing problem with time windows and multi-
trips

To our knowledge, the first exact method on MTVRPTW-LD was proposed in Azi et al. (2007).
The authors considered the case of the delivery of perishable goods with a single vehicle. They
created an algorithm with two phases of dynamic programming. In the first phase, dynamic
programming is used to generate all non-dominated routes. A graph where the nodes represent
the routes obtained in phase 1 is then created. Transitions of this graph represent the possible
successions of routes. Note that the size of routes’ graph is bounded thanks to the limit on
route duration. In the second phase, dynamic programming is used to generate the working
day for the vehicle from the routes’ graph and with the dominance rule given in Feillet et al.
(2004). In Azi et al. (2010), the authors considered the same problem but with an homogeneous
fleet instead of a single vehicle. The first phase is similar to the single vehicle case. The second
phase uses the Column Generation technique to generate the working day for each vehicle. In
the Column Generation scheme, the pricing problem is in fact similar to the ESPPRC used in
the second phase of Azi et al. (2007), besides cost modification implied by dual variables. Note
that in both single and multi-vehicle cases, the graph of non-dominated routes is generated only
once.

As our work presented here is also based on Column Generation and the Branch and Price
scheme, we recall hereafter how it has been applied so far to VRPTW.

2.3 Column Generation

The Branch and Price is a Branch and Bound where the lower bound is computed by Column
Generation. This technique is used to solve huge mixed integer programs. Column Generation
consists in decomposing the whole problem into two simpler problems, called master problem
and sub-problem. These two problems are solved iteratively. This process stops when there is
no longer a solution for the sub-problem.

The first application of this method on the VRPTW is given in Desrochers et al. (1992).
In the VRPTW case, the master problem is a set covering problem, and the sub-problem
corresponds to an elementary shortest path problem with resource constraints (ESPPRC). The
ESPPRC sub-problem is defined over a graph G′ = (N ∪{o, d}, E), where N ∪{o, d} and E are
the sets of nodes and arcs, respectively. N is the set of nodes for each customer in V \ {v0}.
Nodes o is the node for the depot 0 at the beginning of a route and d is the node for 0 at the
route end. The set E contains arcs (o, j), ∀j ∈ N ; arcs (i, d), ∀i ∈ N ; and arcs (i, j), ∀i, j ∈ N
such that customer j can be visited after customer i by at least one feasible route. A cost cij
is associated with each arc (i, j) ∈ E.

Each feasible route is represented by a path in G′. The following |N |+2 resource constraints
are needed on the ESPPRC, so that time windows are encountered and vehicle capacity is not
exceeded: the time t, the vehicle load q, and V i for each customer i ∈ N indicating if the

3



customer i has been visited along the path. The resource intervals are the customer time
windows for t, [0, Q] for q, where Q is the vehicle capacity, and [0, 1] for each V i. This set of
resources is denoted by R = {t, q, V 1, · · · , V |N |}.

In order that the Column Generation scheme will produce an exact solution, the ESPPRC
needs to be solved exactly. Since the ESPPRC is NP-hard (see Dror (1994)), Desaulniers et al.
(2008) proposed a metaheuristic alternative to find new columns. When none can be found by
the metaheuristic, then the exact algorithm for ESPPRC is called.

3 Multi-trip vehicle routing problem with time windows and
limited duration

Formally, the MTVRPTW-LD is defined as follows. Let G = (V,A) be a directed graph where
V = {0, · · · , n} and A is the set of arcs (i, j). 0 represents the depot and 1, · · · , n the customers.
A cost cij and a travel time tij are attached to each arc (i, j) ∈ A. The fleet comprises U vehicles,
all with same load capacity Q. Let [0, T ] be the planning time horizon, and tmax the duration
limit of a trip. For each i ∈ {1, · · · , n} is defined a demand di and a service time sti. Each client
must be served within a time window [ai, bi] with ai, bi ∈ [0, T ]. However, vehicles can arrive at
a client i earlier than ai and wait. The problem is to find a set of trips with the lowest cost and
using at most U vehicles, and such that (i) all customers are served, (ii) two trips cannot be
travelled at the same time by the same vehicle, (iii) loads comply with the capacity of vehicles
and (iv) time constraints at the clients and depot are met. In this case, the trip duration is
the elapsed time between the depot departure time, after the vehicle has been loaded, and the
arrival time to the last customer of the trip, before the delivery. The schedule of a vehicle must
also include, in the complete trip duration, the loading time, the service time to last customer
and return time to depot.

We can model the MTVRPTW-LD with the following MIP:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (1)

subject to ∑
{j∈V |(i,j)∈A}

xk
ij = δk

i , (i ∈ V \ {0}, k ∈ K) (2)

∑
k∈K

δk
i ≥ 1, (i ∈ V \ {0}) (3)

∑
{j∈V |(i,j)∈A}

xk
ij −

∑
{j∈V |(i,j)∈A}

xk
ji = 0, (i ∈ V, k ∈ K) (4)

∑
{i∈V |(0,i)∈A}

xk
0i ≤ 1, k ∈ K (5)

∑
(i,j)∈A

dix
k
ij ≤ Q, k ∈ K (6)

αk = β
∑
{i∈V }

stiδ
k
i , k ∈ K (7)

Sk
i + sti + tij − Sk

j +Mxk
ij ≤M, (i, j) ∈ A, i, j 6= 0, k ∈ K (8)

Sk
i + sti + ti0 − dback

k +Mxk
i0 ≤M, (i, 0) ∈ A, k ∈ K (9)
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dstart
k + αk + st0 + t0i − Sk

i +Mxk
0i ≤M, (0, i) ∈ A, k ∈ K (10)

Sk
i ≤ dstart

k + αk + tmax, i ∈ V, k ∈ K (11)∑
{i∈V |(0,i)∈A}

xk
0i −

∑
u∈U

σu
k = 0, k ∈ K (12)

σu
k + σu

l − yu
kl − yu

lk ≤ 1, k, l ∈ K, k 6= l, u ∈ U (13)

1− yu
kl − yu

lk ≥ 0, k, l ∈ K, k 6= l, u ∈ U (14)

dback
k − dstart

l +Myu
kl ≤M,k, l ∈ K,u ∈ U (15)

aiδ
k
i ≤ Sk

i ≤ biδk
i , i ∈ V, k ∈ K (16)

a0 ≤ dstart
k ≤ b0, k ∈ K (17)

a0 ≤ dback
k ≤ b0, k ∈ K (18)

0 ≤ dstart
k ≤ T, k ∈ K (19)

0 ≤ dback
k ≤ T, k ∈ K (20)

xk
ij ∈ {0, 1}, (i, j) ∈ A, k ∈ K (21)

yu
kl ∈ {0, 1}, k, l ∈ K,u ∈ U (22)

σu
k ∈ {0, 1}, k ∈ K,u ∈ U (23)

δk
i ∈ {0, 1}, i ∈ V \ {0}, k ∈ K (24)

αk ≥ 0, k ∈ K (25)

where xk
ij , σ

u
k , yu

kl, δ
k
i , Sk

i , αk, dstart
k and dback

k are the decision variables. xk
ij indicates if the

arc (i, j) is in trip rk or not, σu
k indicates if trip rk is traveled by vehicle u, yu

kl indicates whether
trip rl is traveled after trip rk by vehicle u or not, δk

i indicates if customer i is visited by trip
rk. For a customer i visited by a trip rk, Sk

i is the starting time of service. αk, dstart
k and dback

k

are the loading time, the starting time of service and the arrival time of trip rk to the depot,
respectively.

K is the maximal number of trips needed to guarantee the coverage of all client nodes in
the optimal solution. In this case, K is the number of customers.

Constraints (2) and (3) enforce the visit of every customer. Customers are allowed to be
visited more than once. This relaxation is valid since, due to triangle inequality of distances, it
is not optimal to visit a customer more than once. Constraints (4)-(5) define the trip structure
and constraints (6) concern vehicle capacity. Constraints (7) define the vehicle loading time
as the sum of the service times of all customers in a trip, multiplied by a given coefficient β.
Constraints (8)-(10) and (16)-(18) concern the compliance of trips to time windows constraints.
Note that in the solution, subtours are forbidden by previous inequalities. Constraints (19)-(20)
concern the respect of planning horizon. Constraints (11) correspond to the deadline constraint
for serving a customer. Note that constraints (16) ensure that Sk

i is set to 0 when customer
i is not in trip rk, and, consequently, constraint (11) is automatically satisfied in this case.
Constraints (12)-(15) order the routes on available vehicles.
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4 A new exact method for the MTVRPTW-LD

4.1 Introduction, formulation and definitions

In practice this formulation is not tractable for any instances of reasonable size and its linear
relaxation is very weak. Thus we propose a two-phase algorithm to solve it, where, as in Azi
et al. (2010), the first phase enumerates possible routes, and the second phase uses a Branch
and Price scheme to choose best covering set of routes. We will require following definitions.

Definition 4.1 Structure
A structure is an ordered list of customers than can be visited during a trip while satisfying

their time constraints. A structure has a cost ck, a travel distance Dk and a minimal complete
trip duration dmin

k needed to visit these customers and come back to depot, in this order.

Definition 4.2 Trip timed structure
A trip timed structure is a structure with a time window [Ak,Bk] that can be calculated

such that Ak (Bk, respectively) is the earliest departure time (latest arrival time, respectively)
permitting to visit all customers of sk and back to the depot with exactly the duration dmin

k . It
will be hereafter simply denominated ”structure”.

Definition 4.3 Trip
A trip rk is defined as a structure sk associated to a fixed starting time dstart

k ≥ Ak. Because
dmin

k is an attribute of structures, the arrival time of a trip dstart
k +dmin

k is also known. We will
say that a trip has a fixed time position.

4.2 Enumeration phase

As long as the duration limit is relatively short, it is possible to generate all the non-dominated
structures (see Azi et al. (2010)). This problem is addressed via an approach that exploits an
algorithm solving the elementary shortes path problem with resource constraints given in Feillet
et al. (2004).

This algorithm consists in extending labels from one node to another through the graph
G′ defined in section 2.3. Each label represents a partial feasible path from the depot to one
customer. To initialize the labelling process, one label is created on node o. This label is
then extended to all successors of node o. Nodes are iteratively treated until no new labels
are created. When a node is treated, all its new labels are extended towards every possible
successor node. Once a label has been extended, its resource intervals are verified and the label
is rejected if infeasible.

This basic method generates many labels. In order to decrease the number of generated
labels, a label dominance relation is applied during the solution process on the generated labels
associated with the same node.

For the classic VRPTW, a path k from node o to node j is labeled with Lk. Lk is defined by
|N |+4 parameters represented by the vector Lk = {ck, j, T t

k, T
q
k , V

1
k , · · · , V

|N |
k }, where ck is cost

of this partial path, j is the node to which the label is attached, T t
k and T q

k are the accumulated
values of time and load, respectively, and V i

k = 1 if node i is unreachable, 0 otherwise.
The dominance relation for VRPTW is as follows: If k and k′ are two different paths from

node o to node j with labels Lk and Lk′ , respectively, then path k dominates k′ if and only if
ck ≤ ck′ , T t

k ≤ T t
k′ , T q

k ≤ T
q
k′ and V i

k ≤ V i
k′ , ∀i.

That is, path k dominates k′ if its cost ck is not greater, does not consume more resource
for every resource considered, and every unreachable node is also unreachable for k′. As stated
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in Feillet et al. (2004), it is guaranteed that no potential optimal solution can be eliminated by
this dominance relation.

In our case, the problem is not to find an elementary shortest path within the whole graph
G′ as it is for the VRPTW case. We need to find an elementary shortest path for each subset
of customers that can be visited without violating constraints. This is why we adapted this
algorithm, mainly by modifying resources and dominance rules, as explained hereunder.

Resources and dominance rule:

First, like in Azi et al. (2007), the cost cij on each arc is replaced by cij − (max(i,j)∈Acij + 1).
The aim is to generate all feasible non dominated routes. In order to do this, we define the
labels as follows:

Definition 4.4 Label.
A path p from the origin 0 to node j is labeled with Lp = {cp, j, hp, qp, d

min
p ,Ap,Bp,W

1
p , · · · ,Wn

p },
where cp is the reduced cost of this path, hp and qp are the values of time and load resources,
respectively, accumulated along this path; dmin

p is the minimal trip duration of the path repre-
sented by Lp; Ap and Bp are the start and end of the label time window as specified in definition
4.2; and W i

p = 1 if node i is visited by Lp, 0 otherwise.

During the extension of label Lp from a node i to j, to obtain Lp′ , the label ressources are
updated as follows:

• cp′ = cp + cij where cij is the cost of arc (i, j)

• hp′ is calculated by adding all loading, service and travel times along the path from 0 to
j. If hp′ < aj , then hp′ is set to aj (waiting is allowed).

• W j
p′ = 1 and W g

p′ = W g
p , ∀g ∈ V ′ \ j

• To compute the minimal trip duration dmin
p′ of Lp′ , the waiting time is reduced as much

as possible by delaying the departure time from depot to the latest possible date.

• To compute the time window of label Lp′ , the maximum advancement and the maximum
retardation of the label is computed, such that none of time constraints at customers is
violated. The updated start and end of label’s time window are thus obtained.

As for dominance, we use the following relation:

Definition 4.5 Dominance relation.
If p and p′ are two different paths from origin 0 to node j with labels Lp and Lp′, respectively,

then p dominates p′ if and only if the nodes visited by p and by p′ are the same (W i
p = W i

p′

for every customer i), the time window of Lp includes the time window of Lp′ (Ap ≤ Ap′ and
Bp ≥ Bp′), and cp ≤ cp′, hp ≤ hp′, qp ≤ qp′, dmin

p ≤ dmin
p′ .

That is a path p dominates a path p′ if (i) its cost cp is not greater, (ii) it does not consume
more resource for every resource considered, (iii) it visits the same customers and (iv) it has at
least the same temporal positions.
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Lemma 4.1 If label L1 dominates label L2 then for all labels L4 extended from L2 there is a
label L3 which dominates label L4.

Proof:
Let L1 dominates L2 at node j. Then, we know that these two labels visit the same customers,
the time window of L1 includes the time window of L2, c1 ≤ c2, h1 ≤ h2, q1 ≤ q2 and
dmin

1 ≤ dmin
2 . For every feasible label L4 arriving at node g at time h extended to L2, there

exists a feasible label L3 arriving at node g at time h extended to L1, such that the nodes visited
by L3 after the node j are the same, and are visited in the same order, than the nodes visited
by L4 after the node j. If there was no label L3 with these properties, then either h2 < h1,
the time window of L1 would not include the time window of L2 or dmin

2 < dmin
1 , and thus

L1 would not dominate L2. We note by path the partial path between j and g. The resource
consumptions on this partial path are the same. Thus q3 ≤ q4 and L3 and L4 visit the same
customers.

The reduced cost cpath and the minimal trip duration dmin
path along the path from j to g are

the same for L3 and L4 because the nodes are visited in same order and at the same times.
Thus, we can consider that the reduced cost of L3 is equal to c1 + cpath and that the reduced
cost of L4 is equal to c2 + cpath. Consequently we have c3 ≤ c4.

We can also consider that the minimal trip duration of L3 is equal to dmin
1 + dmin

path + dmin
wait3

and that the minimal trip duration of L4 is equal to dmin
2 + dmin

path + dmin
wait4

where dmin
wait3

(resp.
dmin

wait4
) is the minimal waiting time necessary to connect the path represented by L1 (resp. L2)

and the path path for L3 (resp. L4).
We know that, due to the dominance, dmin

1 + dmin
path ≤ dmin

2 + dmin
path. The question is to know

if dmin
wait3

≤ dmin
wait4

. We know that the time window of L1 includes the time window of L2 and
thus the arrival time to node j of L1 can be delayed until the arrival time to node j of L2.
Consequently the arrival time to node j of L3 can be delayed until the arrival time to node j
of L4 and it follows that dmin

wait3
≤ dmin

wait4
and dmin

1 + dmin
path + dmin

wait3
≤ dmin

2 + dmin
path + dmin

wait4
.

Once cost and route duration have been checked, the last concern to obtain proof of our
dominance relation lemma is time windows. We know that dmin

1 ≤ dmin
2 and [A2,B2] ⊆ [A1,B1]

so if we can consider that [A′1,B′1] = [A2,B2] as the time window for L1 then if we add path to
L2 and path to L1 with this time window, we obtain [A′3,B′3] = [A4,B4] as time windows for L3

and L4. Since, we have [A2,B2] = [A′1,B′1] ⊆ [A1,B1] thus the time windows of L3 will include
[A′3,B′3] and we will have [A2,B4] ⊆ [A3,B3].

Thus we have c3 ≤ c4, h3 ≤ h4, q3 ≤ q4 and dmin
3 ≤ dmin

4 and the time window of L3 includes
the time window of L4 then label L3 dominates L4.

���

The labeling and dominance process can be illustrated with the example given in Figure 1.
In this exemple, the node D represents the depot and nodes 1,2,3,4 the customers. α is equal
to 3 and the costs marked on arcs take this value into account. The demand and the service
time at each customer are set to 0.

Let us compare two labels L1 and L2, with the following values (see definition 4.4): L1 =
{−5,3,6,0,4,2,8,1,1,1,0}, L2 = {−5,3,6,0,4,2,6,1,1,1,0}. L1 and L2 visit respectivly nodes 2,1,3
and nodes 1,2,3, in these orders. Thanks to our dominance relation, L1 dominates L2 at
node 3. In this example, if we extend L2 to node 4, we obtain a label L4 such that L4 =
{−7,4,7,0,5,2,7,1,1,1,1} and L4 visits nodes 1,2,3,4 in this order. If we extend L1 to node 4,
we obtain a label L3 such that L3 = {−7,4,7,0,5,2,9,1,1,1,1} and which visits nodes 2,1,3,4 in
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Figure 1: Illustration of dominance relation

this order. L3 visits the same nodes as L4, it has the same cost, time, load and minimal trip
duration as L4 but its time window includes the time window of L4. Thus L3 dominates L4.

This lemma ensures that the dominance relation, defined in Definition 4.5, does not delete
labels that could potentially contribute to the optimal solution.

Please note that the atteignability of clients is implicitly included in our definitions, thanks
to the combination of explicit resources.

4.3 Column Generation

The second phase of the algorithm is based on Column Generation and Branch and Price. We
propose a set covering formulation where columns (variables) represent trips (see Definition
4.3).

Master problem formulation:

The itinerary to planify for a vehicle consists in a set of successive trips. Two trips of a given
vehicle cannot overlap in time. We partition the planning horizon in a set of time intervals ∆t.
During each ∆t, at most U vehicles should be used. ∆t is defined by ∆t = [lmin ∗ t, lmin ∗ (t+1)[
where lmin is a small value guaranteeing that the duration of any trip will be greater than lmin,
and t ∈ {0, · · · , b T

lmin
c}. The set of variables is denoted Ω. With these assumptions we can

formulate the master problem as follows:

z(Ω) = minimize
∑
rk∈Ω

ckθk (26)

subject to

∑
rk∈Ω

aikθk ≥ 1 (vi ∈ V \ {v0}), (27)

∑
rk∈Ω

btkθk ≤ U (∀∆t), (28)

θk ≥ 0 (rk ∈ Ω), (29)
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where ck is the cost of trip rk, aik indicates whether customer i is visited by trip rk or
not, btk ∈ [0, 1] is the fraction of the time interval ∆t occupied by trip rk and θk are decision
variables. Constraints (27) enforce that every customer is visited at least once. For each trip
rk,
∑

t btk > 1. This is true because the length of any interval is inferior to the duration of any
trip. Thus, constraints (28) enforce that at most U vehicles are used during any time interval.

In practice, this model contains a huge number of variables. We propose to solve it using
a Branch and Price algorithm. Branch and Price is a special case of Branch and Bound where
bounds are computed using a Column Generation technique. The Column Generation principle,
explained in Feillet (2007) (see also Desrochers et al. (1992)), consists in decomposing the whole
problem into a master problem and a subproblem. This technique is an iterative process that
alternately solves a restricted master problem and a subproblem.

For each iteration w, the restricted master problem corresponds to the linear relaxation of
the model restricted to a subset Ωw of its variables Ω. It is solved by a simplex algorithm to
provide primal and dual variable values.

The subproblem consists in finding the negative reduced cost variables in the master problem
variable set. These variables are added to the variable set of the restricted master problem before
beginning another iteration. Only trips rk with a negative reduced cost can possibly decrease
the cost of the current solution. The process stops when the subproblem cannot generate any
negative reduced cost variable.

The dual of the master problem is given hereafter:

y(Ω) = maximize
∑

i∈V \{0}

λi − U
∑

t

µt (30)

subject to: ∑
i∈V \{0}

aikλi −
∑
∆t

btkµt ≥ ck(rk ∈ Ω) (31)

λi ≥ 0 (32)

µt ≥ 0 (33)

The subproblem:

The subproblem consists in finding trips (structure fixed in time) with a negative reduced cost
ck−

∑
i∈V \{0} aikλi+

∑
∆t
btkµt, where λi and µt are dual variables respectively corresponding to

primal constraints (27 and 28). For the set of trips corresponding to a common given structure,
only time position varies and affects the reduced cost. Every non-dominated structure has been
previously enumerated (set S). Thus, the subproblem consists in finding, for every structure
sk, new trips, which are generated by selecting a time position in the time window [Ak,Bk] and
kept as new columns only if their reduced cost is negative. In fact, for a given structure, only
the trip with the lowest negative reduced cost is kept as new column.

In order to find this time position, we have created a scheduling sub-algorithm. For each
structure sk in S, our algorithm translates sk in its time window by unit time steps and computes
the reduced cost of associated trip. Please note that the length of unit time step corresponds to
the time granularity of the instance and is not to be confused with the length of a time interval.
As soon as a negative reduced cost is obtained, translation stops. Otherwise translation stops
when all possible temporal positions within the time windows of sk have been tried. This
algorithm has a polynomial-time complexity.

When no such columns can be found, the Column Generation process stops.
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Figure 2: Branching strategy

Initialization process:

An initial solution is required in order to start the Column Generation process. Finding an
initial solution might be not trivial or even impossible, as the fleet is limited. We thus create
an initial ”Super-trip” that visits all customers and associate a great cost to this trip. The
Super-trip is generally not feasible for the real problem but it satisfies the master problem.

Definition 4.6 Super-trip Let r∗ be the trip with cost c∗ = 2
∑

rk∈Ω ck. r∗ contains all the
customers, its time windows is equal to the depot time windows and all btk are equal to the
number of vehicles allowed.

4.4 Branch and Price scheme

Column Generation is applied at each node of a search tree generated by the Branch and Price
algorithm to compute a lower bound. Classically, when solving VRPTW, the branching is made
on arcs’ flows. This scheme is used because the alternative to branch on selection of routes for the
clients’ set covering would often cause the branching tree to be badly equilibrated which would
result in poor performance. Our algorithm also involves branching on arcs. Nervertheless, in our
case and unlike for VRPTW, because of temporal constraints, having all arcs with an integer
flow does not imply that the solution (set of θks) is integer. Then, once all arc flows are integer
on a given node, we apply a repair strategy, which provides a simple rescheduling functionality
without changing solution cost and which is explained below. If the repair algorithm does not
succeed, we branch on arcs that have not been directly forced by the branching till then but were
made integer as a consequence of the optimization process. Figure 2 illustrates this principle.

Branching scheme on arcs:

The branching is applied on an arc (i, j) if its flow is fractional. Two branches are created: one
branch with xij = 1, where customer j must be visited immediately after customer i, and one

11



branch with xij = 0 otherwise. In the first case, all arcs (k, j) and (i, k), with k 6= j 6= i, are
forbidden and all corresponding xkj and xik are fixed to 0. To update the set of variables of
the restricted master problem, all θk representing the route rk that use an arc (i, j) with the
associated xij = 0, are set to zero.

Repair strategy:

When all arc flows are integer, the set of arcs containing units of flow is the same as the set
of arcs which compose the structures (see Definition 4.2) of trips selected in current candidate
solution. In this case and when the candidate solution is fractional, at least one of these
structures appears at least twice in the set of selected trips, at two different temporal positions.
The repairment consists in rescheduling in order to obtain an integer solution for this node if
there is one.

From the scheduling theory standpoint, we may define the problem as a set of N tasks
T = {T1, . . . , TN} such each Ti (representing the structure si) admits a release date ri (Ai,
the beginning of time window of the structure si) a deadline d̃i (Bi, the end of time window
of structure si) and a duration pi (dmin

i , the minimal trip duration for structure si). So, the
starting time of Ti must be after the release date and the completion time must be before d̃i.
For this scheduling analysis, let us restrict the problem to a single vehicle case, or equivalently
for scheduling, to a single processor. Let Ti and Tj be two tasks then [ti, ti +pi]∩ [tj , tj +pj ] = ∅
with ti designs the starting time of task Ti. The aim is to find a feasible schedule. We will
suppose that each task admits a height of size one. We denote this problem as Π.

The integer constraints are relaxed: at time t, x% of a route k may be consumed by a vehicle
u, and y% by another vehicle u′. Then, we define the fractional problem of Π as follows:

Definition 4.7 A feasible fractional solution of the problem Π is a relaxation on the height
integer value: ∃ Ti such that

• ti1 ≤ ti2 ≤ . . . ≤ tik such that ri ≤ ti1 and tik + pi ≤ d̃i;

• Let hi1 , hi2 , . . . , hik be the fractional height of the tasks Ti with
∑k

j=1 hij = 1.

Notice that with this definition several tasks may be executed at time t. Nevertheless, the
sum of height-tasks processed at time t cannot be greater than one.

Remark: A feasible fractional solution may not imply a feasible integer solution. To
demonstrate this, let us consider the following instance:

• T1 with p1 = 2, r1 = 6 and d̃1 = 10;

• T2 with p2 = 2, r1 = 1 and d̃2 = 5;

• T3 with p1 = 6, r1 = 0 and d̃3 = 11;

Consider the feasible fractional solution given by the Figure 3.

• t11 = 6, t12 = 8

• t21 = 1, t22 = 3

• t31 = 0, t32 = 5

• and ∀i, j, hij = 1/2
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Figure 3: A counter-example for the non-existence of a feasible integer solution from a feasible
fractional solution

There is no feasible integer solution:

• If the first scheduled task is T3 then the constraints cannot be respected for task T2.

• If the first scheduled task is T2 then the lower bound for the starting time for task T1 is 3.
So the completion time of the task T3 is at least 9. The deadline for T1 is not respected.

The complexity of assessing the existence of a feasible integer solution is given by Theorem
4.1.

Theorem 4.1 The problem of assessing the existence of an integer feasible solution for the
problem Π is NP−complete.

Proof:
The problem of existence of a feasible integer solution is NP−complete. Indeed, the problem Π
is exactly the same as the scheduling problem denoted by 1|pi, ri, d̃i|Cmax

1 for the minimization
of Cmax = maxi{ti + pi} which is proved NP−complete, see Lenstra et al. (1977).

���

Note that there exists a Branch and Bound algorithm for solving 1|pi, ri, d̃i|Cmax problem,
see Bratley et al. (1971) and Blazewicz et al. (2007). We do not hold this method back, since
the aim is to develop a method for a constant limited number of vehicles not only for a single
vehicle.

In fact, this scheduling problem is similar to the VRPTW. At this node of the Branch and
Price tree, there is a set of structures with their time windows and durations. Note that, unlike
the VRPTW customers, the structure must be processed before the end of its time window
[Ak,Bk] thus the end is replaced by Bk − dmin

k . With this simple modification, we have a
VRPTW instance in which customers correspond to timed structures, customer demands are
equal to 0 and distances (resp. costs) between two customers i and j are equal to the travel
distance of structure sj (resp. the cost of structure sj). In order to solve this VRPTW, we use
the Branch and Price algorithm described in Desrochers et al. (1992). Note that the Branch
and Price algorithm is very fast. This is due to the fact that the cost of the optimal solution
at root node is the same as the cost of the optimation solution for the node where an integer
solution is found.

1In scheduling theory, the problems are characterized by the three fields notation scheme α|β|γ, proposed by
Graham et al. (1979), where α designates the environment processors, β the characteristics of the job and γ the
criteria.
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Remark about pruning:

The way we have defined the initial solution of master problem (Super-trip) allows to prune
some branches during the Branch and Price process thanks to the following lemma:

Lemma 4.2 If the Super-trip r∗ is present in the optimal Master Problem solution at the
current node, then there is no integer solution that does not contain the trip r∗ in the sub-
trees of this node.

The proof of this lemma is out of the scope of this paper and is given in Hernandez (2010).
From this Lemma, it is possible to prune the branching tree when the subtree of the current

node does not contain an integer solution other than the Super-trip. Our algorithm implements
this pruning condition which has proved effective during the tests on Solmon’s instances.

5 Results

5.1 Presentation

In this section, many results obtained with our exact algorithm are reported. First, the test
instances of Solomon are presented, and we give the results for these instances, with 25 and
50 customers. Then, we analyse the impact of phase 1 dominance rule on Solomon’s instances
with 25 customers. The impact of limit duration and time windows is also investigated. The
computing platform is a Pentium 4 2.0 GHz with 2 GB of RAM using GLPK to solve the master
problem. The comparison with results in Azi (2010) is given in the following section.

5.2 Test instances

Our tests were performed using the well-known VRPTW benchmark instances created by
Solomon (1987). These instances are divided into six classes that are a combination of two
criteria. The first criterion concerns the spatial position of customers. There are three different
spatial layouts: customers in clusters (”C” type), customers randomly located (”R” type), and
intermediate case with part of customers clustered and the rest randomly located (”RC” type).
The second criterion concerns the tightness of time constraints at customers. There are two
types: tight time windows and small planning time (type ”1”) and large time windows and
planning time (type ”2”). Combining these two criteria, there are six basic classes which are
denominated: ”C1”, ”C2”, ”R1”, ”R2”, ”RC1” and ”RC2”. In total, there are 56 instances
with 100 customers. Please note that for a given class, there are several instances with different
customer time windows, but the spatial layout of customers is the same for the whole class.
Instances are denoted as in following example: C201-25 correspond to the fist instances of class
”C2” where only the first 25 customers are considered. In this study, instances with tight plan-
ning time horizon were discarded. In fact, the short horizon does not allow a significant number
of routes to be affected to the same vehicle. For these results, due to the difference between
the service time of the instances of class C2 and the service time of instances of classes R2 and
RC2, two different tmax values were tested. For instances of classes R2 and RC2, tmax were
set to 75 and 220 for instances of class C2. Finally, for all tests, the parameter β for the trip
loading time was set to 0.2 and the limit computation time was fixed to 30 hours.

5.3 Results on Solomon’s benchmark

We close 25 of the 27 Solomon’s instances with 25 customers and large time horizon and 2
vehicles and 22 of the 27 with 50 customers with large time horizon and 4 vehicles. The last 7
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Instance Root Solution Solution Total Time Root time Phase1 time iter column
c201-25 646.51 659.02 1.561 0.046 0 64 124
c202-25 634.772 653.37 45.819 0.499 0.031 564 555
c203-25 626.017 646.4 247.189 1.795 0.031 1133 854
c204-25 592.06 602.46 252.825 5.09 0.047 673 1268
c205-25 607.913 636.39 38.325 0.141 0 1209 304
c206-25 603.333 636.39 637.612 0.296 0.015 17034 576
c207-25 588.783 603.22 98.273 0.718 0.015 1159 725
c208-25 597.348 613.2 38.154 0.39 0.015 580 484
r201-25 757.79 762.43 0.234 0.046 0 8 174
r202-25 645.78 645.78 0.796 0.453 0.031 7 635
r203-25 620.177 621.97 2.216 0.89 0.078 12 859
r204-25 575.655 579.68 5.026 1.561 0.062 20 1005
r205-25 626.48 634.09 0.827 0.202 0.015 21 375
r206-25 596.74 596.74 0.686 0.515 0.031 4 713
r207-25 583.658 585.74 3.496 0.577 0.046 18 783
r208-25 575.616 579.68 6.681 1.53 0.047 23 1181
r209-25 598.107 602.39 1.67 0.281 0.016 22 562
r210-25 620.293 636.15 7.914 0.359 0.031 73 870
r211-25 568.54 575.91 25.805 1.295 0.046 198 1538
rc201-25 984.438 988.05 1.373 0.11 0 72 342
rc202-25 837.557 881.49 25.664 0.483 0.031 894 880
rc203-25 705.217 749.15 64.271 0.327 0.031 814 1088
rc204-25 - - - - - - -
rc205-25 808.579 840.35 3.746 0.249 0.015 137 598
rc206-25 726.097 761.03 35.703 0.281 0 2006 767
rc207-25 646.457 738.87 71807.37 0.859 0.031 452858 8212
rc208-25 - - - - - - -

Table 1: Results on the Solomon’s benchmark (25 customers) with tmax value set (75; 220)

instances have not been solved within a limit on computing time set to 30 hours.
Tables 1 and 2 present these results. For each instance, we have the root solution cost and

the solution cost of the Branch and Price scheme used in Phase 2, the computation time for
both phases (Total time), the computation time of Branch and Price root in Phase 2 (Root
time), the computation time of Phase 1 (Phase1 time), the number of iteration (iter) and the
number of generated columns (column).

We can note, as for the VRPTW, there is great variation for time resolution between in-
stances of the same class. We can also note a significant increase of total computation time
between the instances with 25 and 50 customers.

5.4 Impact of the dominance rule in phase 1

In this section, we evaluate the impact of the dominance rule when feasible trips are generated
with the elementary shortest path algorithum with ressource constraints in Phase 1. The number
of available vehicles (U) was set to 2 for these tests.

In Table 3, for each instance, we compare the following criteria : the number of generated
structures in Phase 1 (# trips), the computation time for both phases (Total time) and the
computation time of Phase 1 (Phase1 time), with (Dom) and without (No Dom) dominance
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Instance Root Solution Solution Total Time Root time Phase1 time iter column
c201-50 1309.63 1324.32 1.912 0.17 0.016 14 343
c202-50 1280.44 1310.79 6067.16 1.882 0.25 12085 1635
c203-50 1236.3 1247.77 386.395 9.503 0.5 176 2681
c204-50 1181.61 1195.51 3351.04 63.501 0.796 620 6824
c205-50 1245.19 1265.61 771.309 0.4 0.031 3310 683
c206-50 1241.5 1262.47 6121.5 0.781 0.063 14776 1025
c207-50 1203.8 1216.24 1675.43 3.434 0.187 2038 1624
c208-50 1231.31 1249 4781.94 1.201 0.109 8830 1284
r201-50 1397.07 1405.52 6.529 0.19 0.109 69 699
r202-50 1221.82 1229.91 86.394 9.583 0.766 101 3791
r203-50 1101.63 1104.51 67.246 18.646 2.156 30 5314
r204-50 1010.65 1031.72 22044.9 45.245 5.266 9733 7452
r205-50 1219.64 1230.26 63.471 2.032 0.297 228 1930
r206-50 1150.62 1154.53 34.229 16.453 1.625 15 4887
r207-50 1086.15 1094.83 830.624 26.448 3.016 481 6056
r208-50 1010.65 1031.72 28145.3 57.142 5.375 11521 9702
r209-50 1126.47 1143.91 1619.44 8.342 0.765 2552 3629
r210-50 1152.64 1162.14 273.593 17.915 1.64 268 4871
r211-50 - - - - - - -
rc201-50 1814.12 1876.06 16.153 0.28 0.015 432 463
rc202-50 1678.02 1763.48 3538.58 0.991 0.078 30361 1098
rc203-50 - - - - - - -
rc204-50 1406.73 1457.3 33563.8 7.791 0.281 68145 3699
rc205-50 1698.02 1780.1 4160.9 0.59 0.047 39122 1880
rc206-50 - - - - - - -
rc207-50 - - - - - - -
rc208-50 - - - - - - -

Table 2: Results on the Solomon’s benchmark (50 customers) with tmax value set (75;220)
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Instance Solution Total Time (sec) Phase1 time (sec) # trips
Dom No Dom Dom No Dom Ratio Dom No Dom Ratio Dom No Dom Ratio

c201-25 659.02 659.02 1.561 1.953 25.11 % 0 0 0.00 % 100 102 2.00 %
c202-25 653.37 653.37 45.819 64.656 41.11 % 0.031 0.016 -48.39 % 439 453 3.19 %
c203-25 646.4 646.4 247.189 356.14 44.08 % 0.031 0.032 3.23 % 639 648 1.41 %
c204-25 602.46 602.46 252.825 371.343 46.88 % 0.047 0.078 65.96 % 801 824 2.87 %
c205-25 636.39 636.39 38.325 128.296 234.76 % 0 0 0.00 % 170 202 18.82 %
c206-25 636.39 636.39 637.612 1431.06 124.44 % 0.015 0.016 6.67 % 233 274 17.60 %
c207-25 603.22 603.22 98.273 135.352 37.73 % 0.015 0.016 6.67 % 409 454 11.00 %
c208-25 613.2 613.2 38.154 141.363 270.51 % 0.015 0.016 6.67 % 297 352 18.52 %
r201-25 762.43 762.43 0.234 0.375 60.26 % 0 0 0.00 % 145 162 11.72 %
r202-25 645.78 645.78 0.796 0.859 7.91 % 0.031 0.016 -48.39 % 515 535 3.88 %
r203-25 621.97 621.97 2.216 3.328 50.18 % 0.078 0.047 -39.74 % 692 710 2.60 %
r204-25 579.68 579.68 5.026 5.234 4.14 % 0.062 0.062 0.00 % 811 849 4.69 %
r205-25 634.09 634.09 0.827 1.578 90.81 % 0.015 0.015 0.00 % 314 368 17.20 %
r206-25 596.74 596.74 0.686 0.843 22.89 % 0.031 0.031 0.00 % 643 687 6.84 %
r207-25 585.74 585.74 3.496 3.015 -13.76 % 0.046 0.047 2.17 % 738 763 3.39 %
r208-25 579.68 579.68 6.681 7.875 17.87 % 0.047 0.062 31.91 % 818 859 5.01 %
r209-25 602.39 602.39 1.67 2.453 46.89 % 0.016 0.046 187.50 % 520 603 15.96 %
r210-25 636.15 636.15 7.914 9.093 14.90 % 0.031 0.047 51.61 % 608 661 8.72 %
r211-25 575.91 575.91 25.805 41.343 60.21 % 0.046 0.093 102.17 % 858 1042 21.45 %
rc201-25 988.05 988.05 1.373 2.531 84.34 % 0 0 0.00 % 96 112 16.67 %
rc202-25 881.49 881.49 25.664 29.813 16.17 % 0.031 0.015 -51.61 % 318 340 6.92 %
rc203-25 749.15 749.15 64.271 75.642 17.69 % 0.031 0.031 0.00 % 520 546 5.00 %
rc204-25 - - - - - 0.046 0.047 2.17 % 640 685 7.03 %
rc205-25 840.35 840.35 3.746 6.265 67.25 % 0.015 0.015 0.00 % 284 341 20.07 %
rc206-25 761.03 761.03 35.703 81.533 128.36 % 0 0.015 - 206 287 39.32 %
rc207-25 738.87 - 71807.37 - - 0.031 0.047 51.61 % 455 640 40.66 %
rc208-25 - - - - - 0.047 0.078 65.95 % 658 990 50.46 %

Total - - 1545.866* 2901.943 87.72% 0.665 0.716 7.67 % 12927 14489 12.08 %

Table 3: Impact of dominance rule with tmax value set (75;220)

rule. For each criterion, we present the ratio (Ratio) between the case with dominance rule and
the case without dominance rule. A ”−” in the table indicates that the corresponding instance
could not be solved.

We can check that the solution costs are not affected by the dominance relation. The rc207-
25 instance is closed with dominance rule and not without. The bottom line of this table contains
the sum of computation time for both phases, computation times of Phase 1 and number of
generated structures in Phase 1. Note that, due to rc207-25 not being closed without dominance
rule, the sum of computation time for both phases excludes this instance. As we can see, if we
do not apply the dominance rule, the number of generated trips are increased by approxmately
12%, the computation time of phase 1 is increased by 7% and the total computation time is
increased by 87%.

Table 4 presents the same comparison with a larger tmax value set. This value is set to 100
for instances of classes R2 and RC2 and to 250 for instances of class C2. Without applying
the dominance rule, the number of generated structures is increased by 37%, the Phase 1
computation time is three times longer and the total computation time is increased by 30%. A
”−” in the table indicates that the corresponding instance could not be solved. We can note
that the impact of dominance rule is higher for a larger tmax, due to the increase of the number
of feasible structures.

5.5 Impact of duration limit

In this section, we evaluate the impact of duration limit. U is set to 2. In Table 5, we compare
the following criteria for each instance: the solution cost, the total computation time, including
both phases (Total time), the computation time of Phase 1 (Phase1 time) and the number of
generated structures in Phase 1 (# trips) for two couples of tmax values (75;220) and (100;250).
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Instance Solution Total Time (sec) Phase1 time (sec) # trips
Dom No Dom Dom No Dom Ratio Dom No Dom Ratio Dom No Dom Ratio

c201-25 540.9 540.9 0.234 0.125 -46.58 % 0 0.015 - 151 153 1.32 %
c202-25 533.43 533.43 51.548 57.125 10.82 % 0.203 0.171 -15.76 % 1503 1576 4.86 %
c203-25 532.77 532.77 352.534 462.031 31.06 % 0.577 0.593 2.77 % 3356 3529 5.15 %
c204-25 525.46 525.46 5102.61 6037.55 18.32 % 1.185 1.389 17.21 % 4551 4864 6.88 %
c205-25 529.94 529.94 1.561 1.937 24.09 % 0 0.015 - 346 473 36.71 %
c206-25 527.84 527.84 118.271 360.656 204.94 % 0.031 0.031 0.00 % 616 832 35.06 %
c207-25 525.46 525.46 28.865 150.333 420.81 % 0.235 0.234 -0.43 % 1612 2169 34.55 %
c208-25 525.46 525.46 4.745 15.876 234.58 % 0.047 0.063 34.04 % 881 1243 41.09 %
r201-25 698.18 698.18 0.749 1.937 158.61 % 0.015 0.015 0.00 % 378 457 20.90 %
r202-25 617.53 617.53 3.887 5.531 42.29 % 0.343 0.437 27.41 % 2596 2900 11.71 %
r203-25 577.74 577.74 11.068 26.172 136.47 % 0.859 1.093 27.24 % 4224 4635 9.73 %
r204-25 483.3 483.3 30.925 45.547 47.28 % 1.873 3.187 70.15 % 5721 6602 15.40 %
r205-25 559.14 559.14 3.278 4.265 30.11 % 0.094 0.156 65.96 % 1293 1724 33.33 %
r206-25 523.64 523.64 6.484 9.171 41.44 % 0.686 0.921 34.26 % 3575 4397 22.99 %
r207-25 512 512 359.762 707.674 96.71 % 1.171 1.578 34.76 % 4780 5440 13.81 %
r208-25 483.3 483.3 85.987 134.953 56.95 % 2.139 3.484 62.88 % 5841 6817 16.71 %
r209-25 517.69 517.69 12.41 15.578 25.53 % 0.39 0.593 52.05 % 2653 3511 32.34 %
r210-25 547.23 547.23 2.513 2.953 17.51 % 0.656 0.812 23.78 % 3407 4103 20.43 %
r211-25 474.49 474.49 63.506 89.5 40.93 % 2.091 6.707 220.75 % 5461 8170 49.61 %
rc201-25 849.33 849.33 2.778 6.813 145.25 % 0.016 0 - 238 302 26.89 %
rc202-25 679.86 679.86 4.277 5.219 22.02 % 0.156 0.218 39.74 % 1626 2159 32.78 %
rc203-25 593.56 593.56 11.661 24.58 110.79 % 0.453 0.734 62.03 % 2927 3917 33.82 %
rc204-25 - - - - - 1.404 3.696 163.24 % 4670 6934 48.48 %
rc205-25 702.49 702.49 2.154 4.015 86.40 % 0.125 0.171 36.80 % 1137 1865 64.03 %
rc206-25 604.12 604.12 2.232 5.109 128.90 % 0.046 0.093 102.17 % 734 1268 72.75 %
rc207-25 514.81 514.81 46.062 77.373 67.98 % 0.421 1.265 200.48 % 2385 5139 115.47 %
rc208-25 - - - - - 2.355 24.751 950.99 % 4779 12790 167.63 %

Total - - 6310.101 8252.023 30.77 % 17.571 52.422 198.34 % 71441 97969 37.13 %

Table 4: Impact of dominance rule with tmax value set (100;250)

We give the ratio between each criterion for tmax (75;220) and same criterion for tmax (100;250).
A ”−” in the table indicates that the corresponding instance could not be solved. Note that we
have chosen these values for the purpose of comparing our results with the results presented in
Azi (2010).

As expected, the solution cost decreases when duration limit increases. It can be observed
that increasing the duration limit does not necessarily increase the total computation time.
Indeed, the main time comsumption is generated by the second phase and the difficulty of the
covering problem is not necessarily correlated with the trip length.

We note an important decrease of the total computation time for the instance rc207-25 and
an important increase for the instance r207-25. Because of these peculariaties, we distinguish
two total sums, one that includes these special instances denoted Total and an other without
them denoted Total*. We have an increase of 300 % of the total computation time for Total*
and a decrease of 90 % for Total.

Also, for both Total and Total*, we can see an increase of 2200 % in computation time of
Phase 1 and an increase of 450 % of Phase 1 generated trips. Indeed the maximal number of
visited customers per feasible trip has an important impact on the dynamic programming and
the number of generated labels. However, this does not affect much the total computation time,
as the Phase 1 computation time is rather small.

5.6 Impact of time windows

In this section, we evaluate the impact of the length of time windows. U is set to 2. For this
purpose, we have reduced the length of customer time windows by half. Four means of reducing
this length have been used. In the first case (denoted Type 1), we compute the center ci of each
customer time window as follows ci = ai+bi

2 and we set its new start a′i (resp. new end b′i) to
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Instance Solution Total Time Phase1 time # trips
R2/RC2 75 100 Ratio 75 100 Ratio 75 100 Ratio 75 100 Ratio

C2 220 250 220 250 220 250 220 250
c201-25 659.02 540.9 -17.92 % 1.561 0.234 -85.01 % 0 0 0.00 % 100 151 51.00 %
c202-25 653.37 533.43 -18.36 % 45.819 51.548 12.50 % 0.031 0.203 554.84 % 439 1503 242.37 %
c203-25 646.4 532.77 -17.58 % 247.189 352.534 42.62 % 0.031 0.577 1761.29 % 639 3356 425.20 %
c204-25 602.46 525.46 -12.78 % 252.825 5102.61 1918.24 % 0.047 1.185 2421.28 % 801 4551 468.16 %
c205-25 636.39 529.94 -16.73 % 38.325 1.561 -95.93 % 0 0 0.00 % 170 346 103.53 %
c206-25 636.39 527.84 -17.06 % 637.612 118.271 -81.45 % 0.015 0.031 106.67 % 233 616 164.38 %
c207-25 603.22 525.46 -12.89 % 98.273 28.865 -70.63 % 0.015 0.235 1466.67 % 409 1612 294.13 %
c208-25 613.2 525.46 -14.31 % 38.154 4.745 -87.56 % 0.015 0.047 213.33 % 297 881 196.63 %
r201-25 762.43 698.18 -8.43 % 0.234 0.749 220.09 % 0 0.015 0.00 % 145 378 160.69 %
r202-25 645.78 617.53 -4.37 % 0.796 3.887 388.32 % 0.031 0.343 1006.45 % 515 2596 404.08 %
r203-25 621.97 577.74 -7.11 % 2.216 11.068 399.46 % 0.078 0.859 1001.28 % 692 4224 510.40 %
r204-25 579.68 483.3 -16.63 % 5.026 30.925 515.30 % 0.062 1.873 2920.97 % 811 5721 605.43 %
r205-25 634.09 559.14 -11.82 % 0.827 3.278 296.37 % 0.015 0.094 526.67 % 314 1293 311.78 %
r206-25 596.74 523.64 -12.25 % 0.686 5.104 644.02 % 0.031 0.686 2112.90 % 643 3575 455.99 %
r207-25 585.74 512 -12.59 % 3.496 359.762 10190.68 % 0.046 1.171 2445.65 % 738 4780 547.70 %
r208-25 579.68 483.3 -16.63 % 6.681 85.987 1187.04 % 0.047 2.139 4451.06 % 818 5841 614.06 %
r209-25 602.39 517.69 -14.06 % 1.67 12.41 643.11 % 0.016 0.39 2337.50 % 520 2653 410.19 %
r210-25 636.15 547.23 -13.98 % 7.914 2.513 -68.25 % 0.031 0.656 2016.13 % 608 3407 460.36 %
r211-25 575.91 474.49 -17.61 % 25.805 63.506 146.10 % 0.046 2.091 4445.65 % 858 5461 536.48 %
rc201-25 988.05 849.33 -14.04 % 1.373 2.778 102.33 % 0 0.016 0.00 % 96 238 147.92 %
rc202-25 881.49 679.86 -22.87 % 25.664 4.277 -83.33 % 0.031 0.156 403.23 % 318 1626 411.32 %
rc203-25 749.15 593.56 -20.77 % 64.271 11.661 -81.86 % 0.031 0.453 1361.29 % 520 2927 462.88 %
rc204-25 - - - - - - 0.046 1.404 2952.17 % 640 4670 629.69 %
rc205-25 840.35 702.49 -16.41 % 3.746 2.154 -42.50 % 0.015 0.125 733.33 % 284 1137 300.35 %
rc206-25 761.03 604.12 -20.62 % 35.703 2.232 -93.75 % 0 0.046 - 206 734 256.31 %
rc207-25 738.87 514.81 -30.32 % 71807.37 46.062 -99.94 % 0.031 0.421 1258.06 % 455 2385 424.18 %
rc208-25 - - - - - - 0.047 2.355 4910.64 % 658 4779 626.29 %

Total 73353.236 6308.721 -91.40 % 0.758 17.571 2218.07 % 12927 71441 452.65 %
Total* 1545.866 6262.659 305.12 % 0.727 17.15 2259.01 % 12472 69056 453.69 %

Table 5: Impact of tmax value set on the Solomon’s benchmark (25 customers)

the value ai+ci
2 (resp. bi+ci

2 ). For the second case (denoted Type 2), we compute ci =
⌊

ai+bi
2

⌋
and we set a′i (resp. new end b′i) to the value ai+ci

2 (resp. bi+ci
2 ). For the third case (denoted

Type 3), we compute ci = ai+bi
2 and we set a′i (resp. new end b′i) to the value

⌊
ai+ci

2

⌋
(resp.⌊

bi+ci
2

⌋
+ 1). For the last case (denoted Type 4), we compute ci =

⌊
ai+bi

2

⌋
and we set a′i (resp.

new end b′i) to the value
⌊

ai+ci
2

⌋
(resp.

⌊
bi+ci

2

⌋
+ 1). As a last experiment (denoted Without),

we have relaxed all customer time windows, that is, we have assigned the time window of the
depot to each customer. In this case, only three instances were considered, one for each class
because there is only one spatial layout for each class.

In Table 6, for each instance, we compare the solution cost, the total computation time
of the two phases (Total time) and the computation time of Phase 1 (Phase1 time), for the
basic case and the reduced time windows of Type 1. A ”no sol” in the table indicates that the
corresponding instance does not have a solution for this setting.

All instances with 25 customers are closed. As expected, the solution cost increases with
reduced time windows, and 8 instances have no solution in this setting. The solution time of
these instances are very small thanks to the application of the Lemma 4.2. We can also see,
unlike the effect observed in Azi (2010), that this reduction does not necessarily decreases the
total computation time.

In Table 7, for each instance, we present the solution cost and the total computation time
for the different reduction types. As a first finding, c201-25 gets a solution for reduction Types
3 and 4 and not for Types 1 and 2. We can also note for types 3 and 4 that the solution cost can
decrease with these little modifications of time windows. By using two different types of time
windows reduction, a maximum variation of 2 time units is obtained for a given client. This
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Instance Solution Total time Phase 1 time
Type 1 Base Type 1 Base Ratio Type 1 Base Ratio

c201-25 nosol 659.02 0.062 1.561 25.18 0 0 1.00
c202-25 672.71 653.37 7.484 45.819 6.12 0.015 0.031 2.07
c203-25 659.96 646.4 36.314 247.189 6.81 0.016 0.031 1.94
c204-25 629.15 602.46 267.59 252.825 0.94 0.031 0.047 1.52
c205-25 702.34 636.39 12.781 38.325 3.00 0 0 1.00
c206-25 656.53 636.39 12.985 637.612 49.10 0 0.015 -
c207-25 636.39 603.22 762.351 98.273 0.13 0 0.015 -
c208-25 636.39 613.2 70.784 38.154 0.54 0 0.015 -
r201-25 nosol 762.43 0.063 0.234 3.71 0 0 1.00
r202-25 nosol 645.78 0.312 0.796 2.55 0.015 0.031 2.07
r203-25 nosol 621.97 0.578 2.216 3.83 0.016 0.078 4.88
r204-25 655.35 579.68 76.344 5.026 0.07 0.031 0.062 2.00
r205-25 762.43 634.09 1.218 0.827 0.68 0.015 0.015 1.00
r206-25 684.89 596.74 4.093 0.686 0.17 0.016 0.031 1.94
r207-25 654.52 585.74 4.484 3.496 0.78 0.031 0.046 1.48
r208-25 609.81 579.68 191.706 6.681 0.03 0.047 0.047 1.00
r209-25 688.99 602.39 3.672 1.67 0.45 0 0.016 -
r210-25 703.62 636.15 1.437 7.914 5.51 0.015 0.031 2.07
r211-25 622.69 575.91 0.609 25.805 42.37 0.015 0.046 3.07
rc201-25 nosol 988.05 0.031 1.373 44.29 0 0 1.00
rc202-25 nosol 881.49 0.296 25.664 86.70 0 0.031 -
rc203-25 nosol 749.15 0.421 64.271 152.66 0.015 0.031 2.07
rc204-25 753.38 - 45.173 - - 0.031 0.046 1.48
rc205-25 nosol 840.35 0.109 3.746 34.37 0.015 0.015 1.00
rc206-25 978.13 761.03 1.203 35.703 29.68 0 0 -
rc207-25 949.19 738.87 231.987 71807.37 309.53 0 0.031 -
rc208-25 688.166 - 3852.62 - - 0.062 0.047 0.76

Table 6: Comparison of results obtained with reduction of type 1 and no reduction on the
Solomon’s benchmark (25 customers) with tmax value set (75;220)
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Instance Solution Total Time
Type type 1 type 2 type 3 type 4 type 1 type 2 type 3 type 4

c201-25 no sol no sol 705.03 705.03 0.062 0.078 0.312 0.328
c202-25 672.71 672.71 672.71 672.71 7.484 7.482 11.594 13.281
c203-25 659.96 659.96 659.96 659.96 36.314 24.383 25.126 29.749
c204-25 629.15 629.15 629.15 629.15 267.59 297.046 313.924 358.777
c205-25 702.34 702.34 659.02 659.02 12.781 12.359 1.484 1.453
c206-25 656.53 656.53 656.53 656.53 12.985 12.092 12.906 15.453
c207-25 636.39 636.39 636.39 636.39 762.351 738.897 778.247 784.057
c208-25 636.39 636.39 636.39 636.39 70.784 71.049 68.691 68.675
r201-25 no sol no sol no sol no sol 0.063 0.047 0.094 0.141
r202-25 no sol no sol no sol no sol 0.312 0.328 0.328 0.312
r203-25 no sol no sol no sol no sol 0.578 0.86 0.703 0.734
r204-25 655.35 655.35 654.65 654.65 76.344 75.501 75.016 70.968
r205-25 762.43 762.43 757.2 757.2 1.218 1.187 0.203 0.281
r206-25 684.89 684.89 684.89 684.89 4.093 3.562 3.312 3.624
r207-25 654.52 654.52 646 646 4.484 4.156 8.234 8.281
r208-25 609.81 609.81 609.81 609.81 191.706 194.58 190.08 189.26
r209-25 688.99 688.99 688.99 688.99 3.672 3.968 3.812 4.656
r210-25 703.62 703.62 703.62 703.62 1.437 0.859 1.484 1.406
r211-25 622.69 622.69 622.69 622.69 0.609 0.578 0.562 0.671
rc201-25 no sol no sol no sol no sol 0.031 0.031 0.031 0.046
rc202-25 no sol no sol no sol no sol 0.296 0.265 0.312 0.453
rc203-25 no sol no sol no sol no sol 0.421 0.421 0.562 0.687
rc204-25 753.38 753.38 753.38 753.38 45.173 44.171 52.268 61.78
rc205-25 no sol no sol no sol no sol 0.109 0.109 0.078 0.249
rc206-25 978.13 978.13 978.13 978.13 1.203 1.187 2.89 3.375
rc207-25 949.19 949.19 949.19 949.19 231.987 233.909 196.956 196.83

Total 1734.087 1729.105 1749.209 1815.527

Table 7: Comparision results on the Solomon’s benchmark (25 customers) with different types
of reduced time

corresponds to about 1% of time horizon for instances of classes and r2 rc2 and about 0.3% for
instances of the class c2. Thus, we can note that this problem is indeed very sensitive to time
windows.

Finally, in Table 8, we present the results obtained when we relax the time windows of
customers. We note that only three instances are considered, one for each class. For each
class, as for the case without time windows (Without), we present the solution cost, the total
resolution time and Phase 1 resolution time. As for the basic case, we give, for each class,
the cost for the instance with cheapest solution, the total resolution time for the instance with
highest total resolution time, and the Phase 1 resolution time for the instance with highest
Phase 1 resolution time. We also give, for each class, and for total resolution time and Phase 1
resolution time, the ratio of the value obtained in the basic case on the value obtained in the
no time window case.

Firstly for Table 8, the instance rc2XX-25 is not solved. Secondly, the solution cost of the
no time window case is a lower bound of the solution cost of all this class’ instances. The
total resolution time is lower than the highest resolution time of each class unlike the Phase 1
resolution time, which is always higher.
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Instance Solution Temps total Temps phase 1
Without Basic Without Basic Ratio Without Basic Ratio

c2XX-25 584.44 602.46 188.953 637.612 3.37 0.156 0.047 0.30
r2XX-25 574.23 575.91 25.031 25.805 1.03 0.141 0.078 0.55
rc2XX-25 - - - - - - - -

Table 8: Comparison of results obtained with no window of time and without reduction on the
Solomon’s benchmark with tmax value set (75;220) and no time windows

The above results show that the time windows, their length and their time positions, have
much impact on the solution existence and the solution cost. We can also note that, still, the
resolution times of Phase 1 increase when the size of time windows increases. This is due to
the dynamic programming used during this phase and the fact that the structure search space
is larger.

6 Discussion

6.1 Comparison to previous results on this problem

Table 9 gives, for each instance, the cost of the optimal solution found, the total solving time
with tmax set to (75; 220). The comparison between our results and those obtained in Azi (2010)
is given for all these data. Recall that results in Azi et al. (2010) were corrected in Azi (2010),
thus explaining that we only compare with the latter. For the total solving time, the following
ratio is also provided: processing time in Azi (2010) divided by processing time of our method.

We can distinguish two categories among instances: (i) those for which we find the same
optimal cost and (ii) the ones which we close and which were not closed in Azi (2010).

17 of the 27 Solomon instances with 25 clients and a large time horizon fall in the first
category. In these cases, we get significantly faster results, up to 25000 times faster, and 1000
times faster in average.

As for the second category, and with an available fleet size of 2, we provide an optimal solu-
tion for the instances c202-25, c203-25, c204-25, c206-25, c207-25 and c208-25 with tmax = 220
and for the instances rc202-25, rc203-25 and rc207-25 with tmax = 75.

Table 10 gives, for each instance, the cost of the optimal solution and the total solving time
for tmax = (100; 250). Like in Table 9, the comparison between our results and those obtained
in Azi (2010) is given. The numerator of the ratio is the solving time in Azi (2010) and its
denominator is the solving time provided by our method.

We can use the same 2 categories as above for the shorter tmax.
In the first category, we find 17 of the 27 Solomon instances with 25 clients and a large time

horizon. Like for the smaller tmax case, our method is 1000 times faster on average for these
instances than the method in Azi (2010), and the ratio varies between 5 times faster to 10000
times faster.

As for the second category, and with an available fleet size of 2, we provide an optimal
solution for the instances c202-25, c203-25, c207-25 and c208-25 with tmax = 250 et and for the
instances r204-25, r207-25, r208-25, r211-25, rc203-25 et rc207-25 with tmax = 100.
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Instance Solution Total Time
Azi (2010) Azi (2010) Ratio

c201-25 659.02 659.02 40361.2 1.561 25855.99
r201-25 762.43 762.43 68.3 0.234 291.88
r202-25 645.78 645.78 205.2 0.796 257.79
r203-25 621.97 621.97 1333.2 2.216 601.62
r204-25 579.68 579.68 30983.3 5.026 6164.60
r205-25 634.09 634.09 354.1 0.827 428.17
r206-25 596.74 596.74 318.4 0.686 464.14
r207-25 585.74 585.74 2853.5 3.496 816.22
r208-25 579.68 579.68 9270.3 6.681 1387.56
r209-25 602.39 602.39 262.6 1.67 157.25
r210-25 636.15 636.15 5094.1 7.914 643.68
r211-25 575.91 575.91 5648.6 25.805 218.90
rc201-25 988.05 988.05 3.1 1.373 2.26
rc204-25 - - - - -
rc205-25 840.35 840.35 28.8 3.746 7.69
rc206-25 761.03 761.03 7156.8 35.703 200.45
rc208-25 - - - - -

Total 103941.5 97.734 1063.51
Newly closed instances

c202-25 - 653.37 - 45.819 -
c203-25 - 646.4 - 247.189 -
c204-25 - 602.46 - 252.825 -
c205-25 - 636.39 - 38.325 -
c206-25 - 636.39 - 637.612 -
c207-25 - 603.22 - 98.273 -
c208-25 - 613.2 - 38.154 -
rc202-25 - 881.49 - 25.664 -
rc203-25 - 749.15 - 64.271 -
rc207-25 - 738.87 - 71807.37 -

Table 9: Comparision results with *Azi (2010) on the Solomon’s benchmark (25 customers)
with tmax value set (75;220)
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Instance Solution Total Time
Azi (2010) Azi (2010) Ratio

c201-25 540.9 540.9 1.3 0.234 5.56
c204-25 - - - - -
c205-25 529.94 529.94 116.6 1.561 74.70
c206-25 527.84 527.84 1987.2 118.271 16.80
r201-25 698.18 698.18 43.6 0.749 58.21
r202-25 617.53 617.53 25249.9 3.887 6495.99
r203-25 577.74 577.74 75729.3 11.068 6842.18
r205-25 559.14 559.14 1202.3 3.278 366.78
r206-25 523.64 523.64 28498.1 5.104 5583.48
r209-25 517.69 517.69 11173.9 12.41 900.39
r210-25 547.23 547.23 26690 2.513 10620.77
rc201-25 849.33 849.33 16.06 2.778 5.78
rc202-25 679.86 679.86 1096.3 4.277 256.32
rc204-25 - - - - -
rc205-25 702.49 702.49 262.8 2.154 122.01
rc206-25 604.12 604.12 222.7 2.232 99.78
rc208-25 - - - - -

Total 172290.06 170.516 1010.40
Newly closed instances

c202-25 - 533.43 - 51.548 -
c203-25 - 532.77 - 352.534 -
c207-25 - 525.46 - 28.865 -
c208-25 - 525.46 - 4.745 -
r204-25 - 483.3 - 30.925 -
r207-25 - 512 - 359.762 -
r208-25 - 483.3 - 85.987 -
r211-25 - 474.49 - 63.506 -
rc203-25 - 593.56 - 11.661 -
rc207-25 - 514.81 - 46.062 -

Table 10: Comparision results with Azi (2010) on the Solomon’s benchmark (25 customers)
with tmax value set (100;250)
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6.2 Analysis of performance in regards to master problem formulation

We obtain a clear enhancement in solving time for the instances solved. To analyse this ame-
liorated performance, we should compare the formulation of the master problem in the column
generation used in Azi et al. (2010) and Azi (2010) compared to ours. In these works, the
variables of the master problem are workdays which correspond to a succession of trips. The
computation of a workday involves to select a number of trip timed structures and to associate
to each trip a temporal position, as well as a successor and a predecessor. The variables of our
master problem are trips, with time position but no need to associate successor and predeces-
sor. The size of the variables’ set of our master problem is then much smaller than in Azi et al.
(2010) and Azi (2010). Our subproblem needs then to search a smaller space to find a variable
with negative reduced cost.

Furthermore, finding a workday with negative reduced cost implies to solve an ESPPRC
as the subproblem. With our own variable definition, we can avoid the ordering part of this
problem, and only need to find the best temporal position for each timed structure. Thus, we
could provide a pseudo-polynomial complexity to our subproblem. The task of ordering trips is
handled by the constraint 28 in the master problem.

The combination of these two differences, smaller variables’ set and subproblem with reduced
complexity, explains the clear reduction observed in the solving times.

7 Conclusion and future research

In this paper, we addressed the exact solution of the MTVRPTW-LD, previously introduced and
investigated in Azi et al. (2010). We proposed an efficient branch and price scheme, achieving a
fast improvement compared to Azi (2010) with regard to computing times. A main advantage
of our approach lies in the efficiency of the Column Generation subproblem, solved with a fast
pseudo-polynomial algorithm. The future research is to extend the previous scheme to the
general problem without limited duration.
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Hernandez, F. 2010. Méthodes de résolution exactes pour le problème de routage de véhicules avec
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