
HAL Id: lirmm-00617288
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00617288

Submitted on 26 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling View Selection as a Constraint Satisfaction
Problem

Imene Mami, Remi Coletta, Zohra Bellahsene

To cite this version:
Imene Mami, Remi Coletta, Zohra Bellahsene. Modeling View Selection as a Constraint Satisfaction
Problem. DEXA: Database and Expert Systems Applications, Aug 2011, Toulouse, France. pp.396-
410, �10.1007/978-3-642-23091-2_33�. �lirmm-00617288�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00617288
https://hal.archives-ouvertes.fr


Modeling view selection as a constraint
satisfaction problem

Imene Mami, Remi Coletta, and Zohra Bellahsene

LIRMM, University Montpellier 2
161 Rue Ada

F-34095 Montpellier, France
{imen.mami,coletta,bella}@lirmm.fr

Abstract. Using materialized views can highly speed up the query pro-
cessing time. This paper deals with the view selection issue, which con-
sists in finding a set of views to materialize that minimizes the expected
cost of evaluating the query workload, given a limited amount of re-
source such as total view maintenance cost and/or storage space. How-
ever, the solution space is huge since it entails a large number of possible
combinations of views. For this matter, we have designed a solution in-
volving constraint programming, which has proven to be a powerful ap-
proach for modeling and solving combinatorial problems. The efficiency
of our method is evaluated using workloads consisting of queries over the
schema of the TPC-H benchmark. We show experimentally that our ap-
proach provides an improvement in the solution quality (i.e., the quality
of the obtained set of materialized views) in term of cost saving com-
pared to genetic algorithm in limited time. Furthermore, our approach
scales well with the query workload size.

1 Introduction

The information stored at the warehouse is often organized in materialized views
which represent pre-computed portions of the most frequently asked queries [3].
Using materialized views can improve the performance and speed up the pro-
cessing of queries since the access to materialized views can be much faster than
recomputing the views. However, these materialized views have to be maintained
in response to changes to the underlying base relations. In most cases it is waste-
ful to maintain a view by re-computing it from scratch. Often, it is cheaper to
compute only the changes in the view to update its materialization which is
called the incremental view maintenance.

Materializing all the input queries can achieve the lowest query cost but the
highest view maintenance cost which can cause overhead to the system. Besides,
the query result can be too large to fit in the available storage space. Hence,
there is a need for selecting a set of views to materialize by taking into account
three important features: query cost, view maintenance cost and storage space.

The problem of choosing which views to materialize that minimize the total
query cost given a limited amount of resource such as total view maintenance



cost and/or storage space is known as the view selection problem. This is one
of the most challenging problems in data warehousing [28]. The view selection
problem is a NP-complete problem since the search space for the optimal solution
grows exponentially as the problem size increases [11,12].

In this paper, we propose a new approach to the view selection problem which
minimizes the total query cost under the case where (i) the limited resource is
the total view maintenance cost, assuming unlimited amount of storage space if
we consider that storage space is cheap and not regarded as a critical resource
anymore and (ii) both space and maintenance cost constraints exist.

Although, several heuristic algorithms have been proposed in literature to
solve the view selection problem such as deterministic algorithms i.e., greedy al-
gorithms [11,29,12,25,20,21,26,2], randomized algorithms i.e., genetic algorithms
[31,18,13,30,16,5] and simulated annealing algorithms [14,7,8] or hybrid algo-
rithms [32] which combine the strategies of pure deterministic algorithms and
pure randomized algorithms.

These heuristic algorithms provide reasonably good solutions. However, there
is no guarantee of performance because the greedy nature or the random charac-
teristic of the algorithms may make them converging to poor local minima. An
exact resolution for the view selection problem is prohibited since an exhaustive
search cannot compute an optimal solution within a reasonable time due to the
complexity of the problem.

Yet, over the past ten years, effective paradigms for exact resolution of NP-
complete problems have been proposed, such as constraint programming (CP),
structured around annual competitions [17]. Furthermore, constraint program-
ming has proven to be a powerful technique for modeling and solving combi-
natorial problems [9]. We have designed a new approach for solving the view
selection problem involving constraint programming. Our approach consists in
modeling the view selection as a Constraint Satisfaction Problem (CSP). Our
main contributions are:

1. We propose a new approach to the view selection problem. We model this
problem as a constraint satisfaction problem (CSP). Then, a constraint pro-
gramming (CP) solver can be applied to set up the search space by identifying
a set of views that minimizes the total query cost.

2. We address the view selection under the case where (i) the limited resource
is the total view maintenance cost, assuming unlimited amount of storage
space if we consider that storage space is cheap and not regarded as a critical
resource anymore and (ii) both space and maintenance cost constraints exist.

3. We highlight the anytime behavior of our approach which is able to provide
a near optimal solution to the view selection problem during a given time
interval. The quality of this solution may be improved over time (if the CPU
time is available).

4. We have implemented our approach and compared it with a randomized
method (i.e., genetic algorithm). We experimentally show that our approach
provides better performance resulting from evaluating the quality of the
solutions in term of cost savings and scales well with the query workload.



The rest of this paper is organized as follows. Section 2 describes the problem
of view selection. Section 3 provides an overview of our approach and describes
how to model the view selection problem as a constraint satisfaction problem
(CSP). In section 4, are provided the experiments results. Section 5 contains a
brief survey of related work. Finally, in section 6 we conclude and plan for future
work.

2 Problem specification

The general problem of view selection is to select a set of views to be mate-
rialized that minimizes the cost of evaluating the query workload modeled by
the frequently asked queries, given a limited amount of resource, e.g., total view
maintenance cost and/or storage space. In this paper, we consider selection-
projection-join (SPJ) queries that may involve aggregation and group by clause
as well.

In order to detect overlapping between queries of workload and capture the
dependencies among the queries, the view selection is represented as an AND-OR
view graph [11]. The union of all possible execution plans of each query forms
an AND-OR view graph where the common sub-expressions are represented
once. The AND-OR view graph is a Directed Acyclic Graph (DAG) composed
of two types of nodes: Operation nodes (Op-nodes) and Equivalence nodes (Eq-
nodes). Each Op-node represents an algebraic expression (Select-Project-Join)
with possible aggregate function. An OR-node represents a set of logical expres-
sions that are equivalent (i.e., that yield the same result). The Op-nodes have
only Eq-nodes as children and Eq-nodes have only Op-nodes as children. The
root nodes are equivalence nodes representing the queries of workload and the
leaf nodes represent the base relations. Equivalence nodes in the AND-OR view
graph correspond to the views that are candidates for materialization.

A sample AND-OR view graph is shown in figure 1. Circles represent oper-
ation nodes and boxes represent equivalence nodes. For example, in this figure,
view v1, corresponding to a single query, can be computed from v3 and r2 or v4
and r3. If there is only one way to answer or update a given query, the graph
becomes an AND view graph. We explore the view selection problem in the con-
text of AND-OR view graph, which allows a single query to be answered and
updated from multiple paths, since a good selection of materialized views can
only be found by considering the optimization of both global processing plans
and materialized view selection [32].

To each equivalence node which represents a view, is associated the following
metadata:

– Query cost Qc which represents the cost of computing a view from its related
base relations and/or views.

– Maintenance cost Mc which is the cost required for updating a view when
the related base relation is changed.

– Read cost Rc that denotes the size of the view.



Fig. 1: The AND-OR view graph of the two queries Q1 and Q2.

– Query frequency fq (if the equivalence node is a root node) which describes
the frequency of posing a given query.

– Update frequency fu which represents the frequency of updating a view in
response to change to the underlying data.

The general view selection problem for AND-OR view graphs can be formu-
lated as follows: Given an AND-OR view graph G, select the set of views to
materialize that minimizes the total query cost under the following cases:

– Where only the maintenance cost constraint is considered. Here, we address
the view selection problem by constraining the total maintenance cost needed
to update the materialized views while assuming unlimited amount of storage
space.

– Where both maintenance cost and space constraints exist. In this case, we
have a total maintenance cost limit but also a bound on the total storage
space required to materialize the selected views.

3 A new approach to the view selection problem

3.1 Motivations

In this section, we present our approach for selecting a set of views to be ma-
terialized. The optimal solution is the one which selects the right materialized
views (equivalence nodes) of the AND-OR view graph that minimizes the to-
tal query cost subject to certain constraints such as space and maintenance cost
constraints. However, the search space for the optimal solution is very large since
it entails a great number of comparisons between all possible subsets of views.



Our motivation to use constraint programming in solving the view selection
problem is that it is known to be a powerful approach for modeling and solving
combinatorial problems such as Job Shop Scheduling [4]. The success of using
constraint programming for combinatorial optimization is due to its combination
of these three features [27]:

– High level modeling. Constraint programming provides a rich constraint
language to model the problem as a Constraint Satisfaction Problem. In the
following subsections, we give a formal definition of CSP and show how to
model the view selection problem as a CSP.

– Constraint propagation. This leads to a reduction of the search space, by
excluding solutions where the constraints become inconsistent. For example,
in the case of solving the view selection problem under the maintenance
cost constraint, all the view combinations which violate this constraint are
discarded.

– Search. Constraint programming offers facilities to control the search be-
havior deciding which alternative (i.e., views combination) to try first.

3.2 Preliminaries

In this subsection, we introduce the CSP model that we have used in our ap-
proach. A constraint satisfaction problem (CSP) is composed of:

– A set of variables V AR = {var1, var2, ..., varn}
– Each variable vari has a set of values which is called the domain of values
DOM = {d1, d2, ..., dn}

– A set of constraints CST = {c1, c2, ..., cn} describes the relationship between
subsets of variables. Formally, a constraint Cijk between the variables vari,
varj , vark is any subset of the possible combinations of values of vari, varj ,
vark, i.e., Cijk ⊂ di × dj × dk. The subset specifies the combinations of
values that the constraint allows.

A CSP consists in finding solutions by assigning values to its variables that
satisfy all its constraints. Our approach consists in modeling the view selection
problem as a CSP. Its resolution is supported automatically by constraint solver
embedded in the constraint programming language.

3.3 Modeling View Selection Problem as a CSP

Formulating the view selection problem as a constraint satisfaction problem
(CSP) consists in specifying the variables of the CSP, their domains, and the
constraints that are over them in the context of view selection. In the following,
we describe each part of the specification.



3.3.1 Variables & Domains The variables of the CSP considered in mod-
eling the view selection problem are:

– Matvi which denotes for each view vi (equivalence node in the AND-OR
view graph) , if it is materialized or not materialized. It is a binary variable,
dMatvi

=0,1 (0: vi is not materialized, 1: vi is materialized).
– Qc(vi) that represents the query cost corresponding to a view vi. The domain

is a finite subset of N∗ such as dQc(vi) ⊂ N∗.
– Mc(vi) which is the maintenance cost corresponding to a view vi, where
dQc(vi) ⊂ N∗.

3.3.2 Constraints The constraints which describe the relationship between
the variables defined above are:

– The query and maintenance cost corresponding to a view are implemented
by using a depth-first traversal of the AND-OR view graph. We use the cost
formulae described in [24,21] to compute these two costs (defined in a recur-
sive way).

Query Cost:

Qc(vi) =

{
ComputingCost(vi) if Matvi = 0
min(ComputingCost(vi), ReadingCost(vi)) otherwise

ComputingCost(vi) = min
opj∈child(vi)

cost(opj) + ∑
vk∈child(opj)

Qc(vk)


The query cost corresponding to view vi which is an equivalence node in the
AND-OR view graph, is the minimum cost paths from vi to its related views
or base relations, if vi is not materialized. Otherwise, if vi is materialized,
we use the minimum of the cost of reading vi and the minimum cost paths
as defined above.
Each minimum cost path is composed of all the cost of executing the opera-
tion nodes on the path and the query cost corresponding to the related views
or bases relations of vi. The costs of executing the operations: selection, join,
projection and aggregation are estimated according to the formulas given in
[6] for cost operation estimation. In this paper, these costs are calculated in
terms of number of tuples in the involved relations.

View maintenance cost:

Mc(vi) =

{
0 if Matvi = 0∑

drl∈diffRelations(vi)
Mcost(vi, drl) otherwise



Mcost(vi, drl) = min
opj∈child(vi)

cost(opj , drl) + ∑
vk∈child(opj)

UpdatingCost(vk, drl)



UpdatingCost(vk, drl) =

{
Mcost(vk, drl) if Matvk = 0
min(Mcost(vk, drl), δ(vk, drl)) otherwise

The maintenance cost of view vi, if it is materialized, is computed by sum-
ming the number of changes in the base relations from which vi is updated.
If vi is not materialized, then there is no maintenance cost. We assume in-
cremental maintenance to estimate the view maintenance cost. Therefore,
the maintenance cost is the differential results of materialized views given
the differential (updates) of the bases relations. Let δ(vi, drl) denotes the
differential result of view vi, with respect to update drl.
The view maintenance cost is computed similarly to the query cost, but the
cost of each minimum path is composed of all the cost of executing the op-
eration nodes with respect to update drl on the path and the maintenance
cost corresponding to the related views of vi. We have been inspired by the
formula given in [21] for estimating the cost of executing the operation nodes
in response to changes to the base relations.

– The total maintenance cost of the set of materialized views is less than U
which is the total view maintenance cost limit.∑

vi∈V (G)

(Matvi
∗ (fu(vi) ∗Mc(vi))) ≤ U

Note that V (G) represents all the views in the AND-OR view graph,Mc(vi)
is the cost of maintaining a materialized view vi and fu(vi) is the update
frequency of the view vi. Here, the view selection is decided under the main-
tenance cost constraint.

– The total space occupied by the materialized views M is less than S which
is the maximum storage space.∑

vi∈V (G)

(Matvi ∗Rc(vi)) ≤ S

Recall that Rc(vi) is the size of the view vi. If the space constraint is con-
sidered, views are selected to be stored only if the necessary space for their
materialization is at most S.

– Minimize the total query cost.

minimize

 ∑
vi∈Q(G)

(fq(vi) ∗Qc(vi))





In this formula, Q(G) represents all the queries (root nodes in the AND-OR
view graph), Qc(vi) is the query cost of the view vi and fq(vi) is the query
frequency of the view vi. The total query cost is computed by summing over
the cost of processing all the queries of workload.

4 Experimental Evaluation

We have implemented our approach and compared it with a randomized method
because in previous studies [30,7,8], it was shown that randomized algorithms
provide a significant improvement in the performance compared to deterministic
algorithms. The most commonly used randomized algorithms in the context of
view selection are simulated annealing algorithms and genetic algorithms. The
motivation to compare our approach with genetic algorithm is based on the ob-
servation that genetic algorithm in contrast with simulated annealing algorithm
use a multi-directional search which allows to find a point near the global op-
timum [18]. A comparison with hybrid approaches has not been made because
of their excessive computation time [32]. The goal of the experiments is the
comparison of the solution quality resulting from evaluating the quality of the
obtained set of materialized views in term of cost savings between our method
and genetic algorithm.

4.1 Experiment Settings

The computer used for experimentation was an Intel Core 2 Duo P8600 CPU
@ 2.40 GHz machine running with 3GB of RAM and Windows XP Professional
SP3. The program was written in Java using JDK/JRE 1.6.0. We chose a work-
load of one hundred queries defined over the database schema of the TPC-H
benchmark [1]. We then randomly assigned values to the frequencies for access
and update based on uniform distribution.

In all experiments, the quality of the solutions found by the genetic algorithm
and our method was respectively measured as a ratio of the total query cost ob-
tained using the genetic algorithm and the constraint solver over the total query
cost when all the views are not materialized. Thus, we consider the "Without-
Mat" approach which does not materialize views and always recomputes queries
as a benchmark for our normalized results. The ratio was computed and averaged
over several runs for the genetic algorithm because of his probabilistic behavior.

We have implemented the genetic algorithm presented in [5] by incorporat-
ing space and maintenance cost constraints into the algorithm. The values for
population size and probabilities of the crossover and mutation operators are
assigned based on studies conducted by [10,19]. In order to let the genetic al-
gorithm converge quickly, we generated an initial population which represents
a favorable view configuration rather than a random sampling. Favorable view
configuration such as the views which satisfy the maintenance cost and space
constraints if they exist are most likely selected for materialization.



4.2 Experimental Results

The constraint solver for solving the view selection problem as a constraint
satisfaction problem (CSP) is aimed to provide the optimal solution (see figure
2(a)). However, this is not feasible at large scale because of the great number
of comparisons between all possible subsets of views which are candidate for
materialization. One way to avoid an explosion in the search space is to explore
a strictly limited number of possibilities. In this case, the constraint solver is
aimed at simply finding a feasible solution in which all constraints are satisfied.
Figure 2(b) shows the quality of the solutions returned by our approach involving
30 queries as a function of execution time. We can see, our approach provides
near optimal solutions quickly. Indeed, after only few minutes (i.e., 3 minutes
and 24 seconds), the solution found lies within 79,84% of the optimal solution.
The quality of this solution is improved over time. In the next experiments, the
constraint solver was left to run until the convergence of the genetic algorithm.

(a) Until optimal solution (b) Until 10 minutes

Fig. 2: The solution quality of our approach over time (nb of queries=30).

4.2.1 Experiments under the maintenance cost constraint In this sec-
tion, we compare the performance resulting from evaluating the quality of the
solutions found by our approach and genetic algorithm in the context where the
view selection is constrained by a total view maintenance cost limit U . In these
experiments, U is computed as a function of U(Q) which is the total mainte-
nance cost when all queries (i.e., root nodes in the AND-OR view graph) are
materialized [14]. We set U to be 4%, 8%, 16%,..., 32% of U(Q). Figure 3 com-
pares experiment results of our approach with that of genetic algorithm while



Fig. 3: Comparison of the view selection methods while varying the maintenance
cost constraint (nb of queries=70).

Fig. 4: Evaluating the performance while varying the number of queries (U=16%
of U(Q)).



varying the values of U for a workload involving 70 queries. We can see in figure
3 that our approach generates solutions with cost less than that returned by the
genetic algorithm when U < 32% of U(Q). For large values of U (U >= 32%
of U(Q)), solutions returned by the genetic algorithm have better quality com-
pared with our approach. This is because the genetic algorithm converges faster
when we relax the maintenance cost constraint and our approach needs more
time to achieve better quality. However, this would not be seen as a drawback
since the time bound for the update is usually very tight compared with the
time required for maintaining all the query workload. Figure 4 shows the costs
of the workload involving 10,20,30,40,50,60,70,80,90 and 100 queries in order
to test the scalability of the view selection methods according to the number
of queries. The maintenance cost constraint U was set to 16% of U(Q). This
graphics shows that our approach provides an improvement in the quality of
the obtained set of materialized views in term of cost savings compared with
the genetic algorithm. Furthermore, our method supports scalability when the
number of queries increases.

Fig. 5: The solution quality as a function of available storage space (number of
queries=70, U=50% of U(Q)).

4.2.2 Experiments under the maintenance cost and space constraints
In order to compare the performance of the view selection methods in the con-
text where both maintenance cost and space constraints exist, we set U to 50%
and give restrictive values to the space constraint S. In these experiments, S is
computed as a function of S(Q) which is the size of the whole workload [14].
We varied S between 4% and 32% of S(Q). Figure 5 illustrates the quality of
the solutions produced by the two methods for various values of S for a work-
load involving 70 queries. The graphic shows that our approach generates better



Fig. 6: The quality of results as a function of the number of queries (U=50% of
U(Q), S=20% of S(Q)).

solutions than the genetic algorithm in the case where the storage space is the
restrictive constraint. Experiment results depicted in figure 6 shows how well
the view selection methods scale with the problem size. The maintenance cost
constraint was set to 50% of U(Q) and the space constraint to 20% of S(Q). The
size of the problem varied from 10 to 100 queries. We observe that our approach
provides the lowest query cost while varying the number of queries. Therefore,
our approach outperforms the genetic algorithm for all query workload size. We
also show that our approach can be applied to large number of queries.

5 Related Work

As mentioned in the introduction, the view selection problem is a NP-complete
problem. Several view selection methods have been proposed in the literature
to address the view selection problem. They can be classified into three major
groups:

5.1 Deterministic algorithms based methods

Such methods usually provide a solution to the view selection problem either by
applying exhaustive search or by applying heuristics i.e., greedy algorithms to
reduce the search space. In [23], an exhaustive approach is presented for finding
the best set of views to materialize. [15] presents an optimal algorithm based
on A* algorithm [22] that vastly prune the search space compared to the al-
gorithm proposed in [23]. However, an exhaustive search cannot compute an
optimal solution within a reasonable time due to the complexity of the prob-
lem. Many approaches [11,29,12,25,20,21,26,2] using a kind of greedy strategy



to avoid having to traverse the solution space in an exhaustive search manner
have been designed. However, greedy algorithms are unsatisfactory in term of
the solution quality i.e., the quality of the obtained set of materialized views
because the greedy nature of the algorithm makes it susceptible to poor local
minima (initial solutions influence the solution greatly). In contrast with these
work, our approach provides a suitable trade-off between the computation time
and the solution quality. Indeed, we have shown that our approach provides a
good solution quality in a limited time. This is due to the use of constraint
propagation technique and facilities for controlling search behavior that are the
features of constraint programming.

5.2 Randomized algorithms based methods

Randomize algorithms such as simulated annealing algorithms [7,8,14] and ge-
netic algorithms [5,13,18,30,16] have been used and explored for the selection
of materialized views in order to improve the quality of the solution. These
algorithms use a randomized search strategy for deciding which views to ma-
terialize. Randomized algorithms provide a better solution quality than greedy
algorithms. However, they may have a tendency to converge towards local op-
tima. Besides, their successes often depend on the set-up of the algorithm as
well as the extremely difficult fine-tuning of algorithm that must be performed
during many test runs. In our approach, we simply model view selection as a
constraint satisfaction problem (CSP) and its resolution is supported automat-
ically by constraint solver embedded in the constraint programming language.
Besides, our approach provides better results compared with genetic algorithm
in term of the solution quality.

5.3 Hybrid algorithms based methods

Hybrid algorithms combine the advantages of pure deterministic algorithms and
pure randomized algorithms. A hybrid approach has been applied in [32] for
the view selection problem which combine heuristic algorithms i.e., greedy al-
gorithms and genetic algorithms. They prove that hybrid algorithms provide
better performance than either the genetic algorithms or heuristic algorithms
used alone in terms of solution quality. However, they often require longer com-
putation time and may be impractical due to their excessive computation time.

6 Conclusion

In this paper, we have presented a new approach to the view selection problem
which is based on constraint programming. More specifically, the view selection
problem has been modeled as a constraint satisfaction problem (CSP). Its res-
olution has been supported automatically by constraint solver embedded in the
constraint programming language. We have performed several experiments and
comparison with a randomized method i.e., genetic algorithm. The experiment



results have shown that our approach provides better performances compared
with the genetic algorithm in term of the solution quality (i.e., the quality of the
obtained set of materialized views) in a limited time. More precisely, we have
demonstrate experimentally that our approach provides better results compared
with genetic algorithm in term of cost savings when the view selection is decided
under the case where (i) only the maintenance cost constraint is considered, as-
suming unlimited amount of storage space and (ii) both maintenance cost and
space constraints exists. We have also shown that our approach supports scala-
bility when the number of queries increases. As a future work, we are planning
to apply our approach to a distributed database setting. Our current approach
simply takes into account the space and maintenance cost constraints. These
constraints will be per machine in a distributed context. Also, resource con-
straints such us CPU, IO, network bandwidth and the location of materialized
views will have to be taken into consideration. These new constraints will easily
be handled with our approach.

References

1. TPC-R Benchmark Standard Specication 2.01. http://www.tpc.org, January 1999.
2. Xavier Baril and Zohra Bellahsene. Selection of materialized views: A cost-based

approach. In CAiSE, pages 665–680, 2003.
3. Randall G. Bello, Karl Dias, Alan Downing, James J. Feenan Jr., James L.

Finnerty, William D. Norcott, Harry Sun, Andrew Witkowski, and Mohamed Zi-
auddin. Materialized views in oracle. In VLDB, pages 659–664, 1998.

4. Yves Caseau and François Laburthe. Improved clp scheduling with task intervals.
In ICLP, pages 369–383, 1994.

5. Leonardo Weiss F. Chaves, Erik Buchmann, Fabian Hueske, and Klemens Böhm.
Towards materialized view selection for distributed databases. In Proceedings of
the 12th International Conference on Extending Database Technology: Advances
in Database Technology, EDBT ’09, pages 1088–1099, New York, NY, USA, 2009.
ACM.

6. Rada Chirkova, Alon Y. Halevy, and Dan Suciu. A formal perspective on the view
selection problem. VLDB J., 11(3):216–237, 2002.

7. Roozbeh Derakhshan, Frank K. H. A. Dehne, Othmar Korn, and Bela Stantic. Sim-
ulated annealing for materialized view selection in data warehousing environment.
In Databases and Applications, pages 89–94, 2006.

8. Roozbeh Derakhshan, Bela Stantic, Othmar Korn, and Frank K. H. A. Dehne.
Parallel simulated annealing for materialized view selection in data warehousing
environments. In ICA3PP, pages 121–132, 2008.

9. Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving large
combinatorial problems in logic programming. The Journal of Logic Programming,
8(1-2):75 – 93, 1990.

10. David E. Goldberg. Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley, 1989.

11. Himanshu Gupta. Selection of views to materialize in a data warehouse. In ICDT,
pages 98–112, 1997.

12. Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize
under a maintenance cost constraint. In ICDT, pages 453–470, 1999.



13. Jorng-Tzong Horng, Yu-Jan Chang, and Baw-Jhiune Liu. Applying evolutionary
algorithms to materialized view selection in a data warehouse. Soft Comput.,
7(8):574–581, 2003.

14. Panos Kalnis, Nikos Mamoulis, and Dimitris Papadias. View selection using ran-
domized search. Data Knowl. Eng., 42(1):89–111, 2002.

15. Wilburt Labio, Dallan Quass, and Brad Adelberg. Physical database design for
data warehouses. In Proceedings of the Thirteenth International Conference on
Data Engineering, ICDE ’97, pages 277–288, Washington, DC, USA, 1997. IEEE
Computer Society.

16. Michael Lawrence. Multiobjective genetic algorithms for materialized view selec-
tion in olap data warehouses. In GECCO, pages 699–706, 2006.

17. Christophe Lecoutre, Olivier Roussel, and Marc R. C. van Dongen. Promoting
robust black-box solvers through competitions. Constraints, 15(3):317–326, 2010.

18. Minsoo Lee and Joachim Hammer. Speeding up materialized view selection in
data warehouses using a randomized algorithm. Int. J. Cooperative Inf. Syst.,
10(3):327–353, 2001.

19. Zbigniew Michalewicz. Genetic algorithms + data structures = evolution programs
(3rd ed.). Springer-Verlag, London, UK, 1996.

20. Hoshi Mistry, Prasan Roy, Krithi Ramamritham, and S. Sudarshan. Materi-
alized view selection and maintenance using multi-query optimization. CoRR,
cs.DB/0003006, 2000.

21. Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. Material-
ized view selection and maintenance using multi-query optimization. In SIGMOD
Conference, pages 307–318, 2001.

22. Nils J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill
Pub. Co., 1971.

23. Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Materialized view main-
tenance and integrity constraint checking: Trading space for time. In SIGMOD
Conference, pages 447–458, 1996.

24. Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and exten-
sible algorithms for multi query optimization. CoRR, cs.DB/9910021, 1999.

25. Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and ex-
tensible algorithms for multi query optimization. In SIGMOD Conference, pages
249–260, 2000.

26. Satyanarayana R. Valluri, Soujanya Vadapalli, and Kamalakar Karlapalem. View
relevance driven materialized view selection in data warehousing environment. In
Australasian Database Conference, 2002.

27. Mark Wallace. Practical applications of constraint programming. Constraints,
1:139–168, 1996. 10.1007/BF00143881.

28. Jennifer Widom. Research problems in data warehousing. In CIKM, pages 25–30,
1995.

29. Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for materialized view
design in data warehousing environment. In VLDB, pages 136–145, 1997.

30. Jeffrey Xu Yu, Xin Yao, Chi-Hon Choi, and Gang Gou. Materialized view selection
as constrained evolutionary optimization. IEEE Transactions on Systems, Man,
and Cybernetics, Part C, 33(4):458–467, 2003.

31. Chuan Zhang and Jian Yang. Genetic algorithm for materialized view selection in
data warehouse environments. In DaWaK, pages 116–125, 1999.

32. Chuan Zhang, Xin Yao, and Jian Yang. An evolutionary approach to materialized
views selection in a data warehouse environment. IEEE Transactions on Systems,
Man, and Cybernetics, Part C, 31(3):282–294, 2001.


