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Multi-dimensional databases have been designed to provide decision makers with the necessary
tools to help them understand their data. Compared to transactional data, this framework is par-
ticular as the datasets contain huge volumes of historized and aggregated data defined over a set of
dimensions, which can be arranged through multiple levels of granularities. Many tools have been
proposed to query the data and navigate through the levels of granularity. However, automatic
tools are still missing to mine this type of data, in order to discover regular specific patterns. In
this paper, we present a method for mining sequential patterns from multi-dimensional databases,
taking at the same time advantage of the different dimensions and levels of granularity, which is
original compared to existing work. The necessary definitions and algorithms are extended from
regular sequential patterns to this particular case. Experiments are reported, showing the interest
of this approach.

Categories and Subject Descriptors: H.2:&¢rmation Systems, Database M anagement]: Database applica-
tions, data mining

General Terms: Algorithms, Design, Performance, Theory
Additional Key Words and Phrases: Sequential Patterns, Frequent Patterns, Multi-Dimensional
Databases, Hierarchy, Multi-Level Patterns.

1. INTRODUCTION

Multi-dimensional databases have been studied for more 1Bayears. They provide an
easy-to-use interface for decision makers to navigateugtraheir data. The modeling
of such databases and the operations that can be appliedwreell defined, and im-
plemented by the main editors of database management syé&tegn Oracle, Microsoft,
IBM). However, only a few methods have been designed to aaticaily mine the relevant
knowledge from these large amounts of historized data.isnftamework, sequential pat-
terns are suitable as they aim at discovering correlatiensden events through time. For
instance, rules likéany customers buy first a TV and a DVD player at the same tint, a
then a recordeican be discovered. Scalable methods and algorithms to rastersles
have been proposed in the literature [Srikant and Agraw@b]LAs for association rules,
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2 . Marc Plantevit et al.

the efficiency of the discovery is based on sligportwhich indicates to which extend data
from the database contains the patterns.

However, these methods cannot take advantage of the fratkefvonulti-dimensional
databases, because:

—they only consider one dimension to appear in the pattevhich is usually called the
productdimension,

—they do not consider hierarchies.

Some studies claim to combine several dimensions [Pintole2081; de Amo et al.
2004; Yu and Chen 2005]. However, we argue here that they tpmwide a complete
framework for multi-dimensional sequential pattern mgifhe way we consider multi-
dimensionality is indeed generalized in the sense thagpeticontain several dimensions
combined over time [Plantevit et al. 2005]. Moreover, thaiseensions are considered at
different levelof granularity so as to automatically mine the most relevalats. Note that
mining rules at very high levels of granularity leads toialwules, whereas mining rules
at very low levels of granularity is not always possible hessathe support value becomes
too low.

In our approach, we aim at building rules likghen the sales of soft drinks are high in
Europe, exports of Perrier in Paris and exports of soda in tH& become high later on
This rule not only combines two dimensions (Location anddBot) but it also combines
them over time and at different levels of granularity (asrieeis considered as a kind of
soft drink). As far as we know, no method has been proposedite such rules, exceptin
our first proposal [Plantevit et al. 2006].

In order to mine the most relevant sequences, our approadbsigned so as to take
into account the most appropriate level of granularityludeg partially instanciated tu-
ples in sequences where the highest level is considered: pMecisely, our algorithms are
designed in order to mine frequent multi-dimensional segas that may contain several
levels of hierarchy, including the most general, usualfgmed to as thé\LL value. How-
ever, in order to avoid mining non relevant patterns, ongyrtiost specific patterns (meant
to be the most informative) are shown to the user.

The paper is organized as follows: Section 2 introduces avatirtg example illustrat-
ing the goal of our work, and then, Section 3 presents exjstinrk concerning multi-
dimensional databases, multi-dimensional approachesequential pattern mining. Sec-
tion 4 introduces basic definitions and Section 5 preddAg&Palgorithm for mining multi-
dimensional and multi-level sequential patterns. Sedipresents the results of the exper-
iments performed on synthetic and real data. In Section tomelude and present future
research directions based on the present work.

2. MOTIVATING EXAMPLE
In this section, we present an example to illustrate our @gghr. This example will be
used throughout the paper as a running example.

We consider a fact tabl€ in which transactions issued by customers are stored. More

precisely, we consider a sét containing six dimensions denoted By Cat, Age Loc,
Prod andQty, where:

—D is thedateof transactions (considering four dates, denoted [2y3.and 4),
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Mining Multi-Dimensional and Multi-Level Sequential Patterns : 3

—Cat is the customecategory(considering two categories, denoted bguc and Ret,
standing for educational and retired customers, respag}iv

—Ageis theageof customers (considering two discretized values, denloyed (young)
andO (old)),

—Locis thelocationwhere transactions have been issued (considering 6 losatienoted
by NY (New York),LA (Los Angeles)SF (San FranciscoRaris, LondonandBerlin),

—Prodis theproductof the transactions (considering seven products, dengteldxolate
pretzel whisky wine, beer, sodg M1 andM2), and

—Qty stands for thejuantityof products in the transactions (considering nine quasiiti

Table | shows the tabl& in which, for instance, the first tuple means that, at datenl, a
educational young customer bought 50 units of beer in Berlin

Let us now assume that we want to extract all multi-dimersie@equences that deal
with products and the location where they have been bouglttzat are frequent with
respect to the groups of customers and their age. To thisvemdonsider three sets of
dimensions as follows:

(1) the dimensioml, representing the date,

(2) the two dimensionkoc andProd that we callanalysis dimensionsnd which values
appear in the frequent sequences,

(3) the two dimension€at and Age which we callreference dimensionaccording to
which the support is computed.

Thus, tuples over analysis dimensions are those that apptar items that constitute the
sequential patterns to be mined. Moreover, the table istipaed into blocks according
to tuple values over reference dimensions and the suppatgdfen multi-dimensional
sequence is the ratio of the number of blocks supportingdheence over the total number
of blocks. Fig. 4 displays the corresponding blocks in owaregle.

In this framework, the multi-dimensional sequeri¢Berlin,beer, (Berlin, pretze) },
{(Londonwine)}) has support, since the partition according to the reference dimensions
contains four blocks, among which one supports the sequérits is so because, in the
first block shown in Fig. 4(1),Berlin,beer) and(Berlin, pretze)) both appear at the same
date (namely date 1), arflondonwine) appears later on (namely at date 3).

The semantics of theeference dimensioris the following. In our exampleCG and
A are these reference dimensions. In this context, a freqgemtences = ({(c1, pl),
(c2,p1)}, {(c2, p2)}) means thatin most cases, some customers sharing the saoraens
group and age, first bought produyxt in city c1 and in cityc2 at the same time, arttlen
bought producp? in city c2.

This kind of patterns is meant at discovering trends amomstpooers according to their
customer-group and age. However, it could be the case thaetbrence dimension is the
identifier of a single customer. In this case, the patterlagaé¢o thesamecustomer.

It is important to note that, in the approach of the presepepanore general patterns
can be mined, based on additional information providedhieyarchiesover dimensions.
The considered hierarchies allow for dealing with itemsitieent levels of granularity,
and this implies that further patterns can be mined.

To see this in the context of our running example, consideipaart threshold o% and
two arbitrary locationa and\’. Then, no sequence of the fof(A, pretze) }, {(A',M2)})
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4 . Marc Plantevit et al.

is frequent. On the other hand, in the first and third blocksigf 4, pretzelandM?2 appear
one after the other, according to the date of transactiansnhlifferent locations. To take
such a situation into account, we consider a specific cohstanoted byALL, o, standing
for any location and then, the sequer€€ALL, o, pretze)}, {(ALLLoc, M2)}) is frequent
since its supportis equal = 1.
Similarly, (Berlin,M2) appears only in block (2) of Fig. 4, and thus the sequence
({(Berlin,M2)}) is not frequent. But, if we consider the domain vakild as agener-
alization of the citiesBerlin, Londonand Paris, then it is easy to see that the sequence
({(EU,M2)}) is frequent, since it can be considered as appearing in tfréee blocks

shown in Fig. 4, namely in blocks (1), (2) and (3).

Table I. Running example

D Cat Age Loc Prod Qty
1 Educ Y Berlin beer 50
1 Educ Y Berlin pretzel 20
2 Educ Y London M2 30
3 Educ Y London wine 20
4  Educ Y NY M1 40
1 Educ (@] LA soda 20
2 Educ (@] Paris wine 30
2 Educ (0] Berlin pretzel 10
3 Educ (e} Paris M2 20
1 Ret Y London  whisky 20
1 Ret Y London pretzel 20
2 Ret Y Berlin M2 30
1 Ret (e} LA chocolate 50
2 Ret (@) Berlin M1 20
3 Ret (0] NY whisky 20
4 Ret (e} Paris soda 30
AI-|-L0(:
// | ™S
USA EU
N TN
LA NY Chicago Paris London Berlin

Fig. 1. Hierarchy over dimensidmoc

3. RELATED WORK

In this section, we present the context of multi-dimensialziabases and the existing
work related to sequential patterns.
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ALLprod
| \
food drink drug
sweet salted adrink s.drink ... paracetamol

NN TN TN N

chocolate -+ pretzel--- wine beer whisky soda perrier --- M2

Fig. 2. Hierarchy over dimensidarod

ALLAge Allcat ALLQty
s | ZB RN
y' o Educ Ret \ 10( 30 %u-
Age Customer Category Quantity
Fig. 3. Hierarchies over dimensioAge Cat andQty
(1) Block (EducY)
D Loc Prod (3) Block (RetY)
1 Berlin beer D Loc Prod
1 Berlin pretzel 1 London whisky
2 London M2 1 London pretzel
3 London wine 2 Berlin M2
4 NY M1
(2) Block (EducO) (4) Block (Ret O)
D Loc Prod D Loc Prod
1 LA soda 1 LA chocolate
2 Paris wine 2 Berlin M1
2 Berlin pretzel 3 NY whisky
3 Paris M2 4 Paris soda

Fig. 4. Block partition ofT (Table I) according t@, = {Cat,Age}

3.1 Multi-Dimensional Databases

A multi-dimensional databadecan be seen as a relational database defined over a particu-
lar schema, generally referred to astar schemginmon 2003]. In general, a star schema
consists of a distinguished talpewith schemd=, called thefact table andn other tables
01,...,0n With schemad\s, ..., A, called thedimension tablessuch that:

(1) If Kg,...,Kp are the (primary) keys dii, ..., &, respectively, thel =Ky U...UKp
is the key off.

(2) Forevernyi=1,...,n, Tk (¢) C Tk (&) (thus eaclK; is a foreign key in the fact table
$).

ACM Journal Name, \Vol. ., No. ., . 20...



6 . Marc Plantevit et al.

The attribute seM = F \ K is called themeasureof the star schema. Moreover, it is
possible to considdrierarchiesover attributes of the dimension tables, so as to query the
database according to different levels of granularity.

When it comes to mine such a multi-dimensional dataldgaske relevant data are “ex-
tracted” from the database through a query, and data miegtgiiques are then applied to
the answer of the query. In our approach, we follow this sgyin the following way: We
assume that the tableto be mined is defined through a query on a given multi-direevadi
databasé. The attribute set over which is defined is denoted by and we assume that
» ={Dj,...,Dn}. The setv may contain both dimension and measure attributes occur-
ring in the schema a4, and we call these attributéémensionsMoreover, dimensions in
D are assumed to be such that:

(1) The hierarchies associated to dimensional attributdss multi-dimensional database
A can be considered so as to mihat different levels of granularity.

(2) Among all dimensions im, one is associated withtatally ordereddomain, referred
to as theime dimensionand according to which sequences are constructed.

(3) A fixed subset ofp, whose elements are calledalysis dimensionslong with the
associated hierarchies allow the expression of sequepditérns. More precisely,
in our approach, a sequential pattern is a sequence of stiplef defined over the
analysis dimensions at different levels of granularity.

(4) Another subset ob, whose elements are calleeference dimensionallows to par-
tition T into blocks. Given a sequential pattegrthe number of blocks that suppart
over the total number of blocks is then defined asstingportof ¢.

We refer to the next section for formal definitions of the agis just introduced, and we
make the following remarks:

—Regarding the time dimension, it is possible to consideers# dimensions, instead of
a single dimension, provided that the cartesian produchefcbrresponding domain
values be totally ordered. However, as this more genera tasoduces no further
difficulty, but complicates notation, we restrict our apprh to a single attribute in this
respect.

—Hierarchies are explicitly used on analysis dimensiorg.drhe level of granularity on
the other dimensions is assumed tdilzedfor a given mining task.

—TFor each analysis dimensidp in 9, all values oveD; contained inT are assumed
to be expressed at tteamelevel of granularity, seen as the most specific one for the
considered mining task. However, this level does not neee thhe most specific one in
the hierarchies defined .

3.2 Sequential Pattern Discovery

An early example of research in the discovering of patterofsequences of events can
be found in [Dietterich and Michalski 1985]. In this work.etlidea is the discovery of
rules underlying the generation of a given sequence in aodmedict a plausible sequence
continuation. This idea is then extended to the discoveiyitefesting patterns (oules)
embedded in a database of sequences of sets of events (i&m®)re formal approach
in solving the problem of mining sequential patterns is thpgidriAll algorithm presented
in [Mannila et al. 1995]. Given a database of sequences,end@ch sequence is a list of
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Mining Multi-Dimensional and Multi-Level Sequential Patterns : 7

transactions ordered by transaction time, and each triosas a set of items, the goal
is to discover all sequential patterns with a user-specifi@dmum support, where the
support of a pattern is the number of data-sequences thttindhe pattern.

In [Agrawal and Srikant 1995], the authors introduce thebpgm of mining sequential
patterns over large databases of customer transactiong wheh transaction consists of
customer-id, transaction time, and the items bought inédmestiction. Formally, given a
set of sequences, where each sequence is a list of itemseéts,user-specified minimum
support threshold (minsup), the problem amounts to findratident subsequence=.,
the subsequences that appear a sufficient number of timesexample of this type of
pattern isA customer who bought a new television 3 months ago is likebuy a DVD
player now

Subsequently, many studies have introduced various mefloodining sequential pat-
terns (mainly in time-related data), most of them being Ap+iike, i.e., based on the
Apriori property which states that any super-pattern of afrexjuent pattern cannot be fre-
guent. An example using this approach is the GSP algorithikg® and Agrawal 1996],
which has motivated a lot of research work, aiming at impngyerformance. The main
approaches addressing this issue are SPADE [Zaki 2001fjx8pan [Pei et al. 2004],
SPAM [Ayres et al. 2002], PSP [Masseglia et al. 1998], DIS@i{Cet al. 2004] and
PAID [Yang et al. 2006].

3.3 Multi-Dimensional Sequential Patterns

As far as we know, three main propositions have dealt witkesddimensions when build-
ing sequential patterns. We briefly recall these propasstimelow.

The approach of [Pinto et al. 2001] is the first work dealinthvgieveral dimensions in
the framework of sequential patterns.

In this work, multi-dimensional sequential patterns arngel over a scheméy ... AnS
whereAyq,...,An are dimensions describing the data &id the sequence of items pur-
chased by the customers, ordered over time. A multi-dinograsisequential pattern is
defined as a paif(as, ...,am),S) whereg; € Ai U{+} andsis a sequence. In this case,
(a1,...,am) is said to be a multi-dimensional pattern. For instanceatttbors consider the
sequencé(x,NY,x),(b, f)), meaning that customers from NY have all bought product
and then product.

Sequential patterns are mined from such multi-dimensidatbases eithér) by min-
ing all frequent sequential patterns over the product dsieenand then grouping them
into multi-dimensional patterns, @ii) by mining all frequent multi-dimensional patterns
and then mining frequent product sequences over thesemmttdote that the sequences
found by this approach do not contain several dimensiortedine dimension time only
concerns products. Dimension product is the only dimengiahcan be combined over
time, meaning that it is not possible to have a rule indigatimat whenb is bought in
Bostonthenc is bought inNY. As our approach allows to mine such knowledge, it can be
seen as a generalization of the work in [Pinto et al. 2001].

Several other proposals directly follow the seminal paggiPinto et al. 2001]. In
[Rashad et al. 2007], the authors propose an algorithmdckltebilePrefixSparin order
to discover patterns that describe the movements of mobki#esu However, they only
consider consecutive order in their framework. The work3tefanowski and Ziembinski
2005; Stefanowski 2007] shows the relevance of multi-disieemal sequential patterns for
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8 . Marc Plantevit et al.

Web Usage Mining. Moreover, the authors propose to use hottenic and symbolic data,
with a specific handling of numeric data. According to thigigach, a multi-dimensional
sequence is supported by a multi-dimensional data sequetieey are closely similar.
However, no algorithm is defined in this paper. In [Zhang eR@07], the authors propose
the mining of multi-dimensional sequential patterns irtritisited systems.

In [Yu and Chen 2005], the authors consider sequential atténing in the framework
of Web Usage Mining. Even if three dimensions (namely, pagessions and days) are
considered, these dimensions are very particular singebisleng to a single hierarchized
dimension. Thus, the sequences mined in this work descoitrelations between objects
over time by considering only one dimension, which corresjfsao the web pages.

In [de Amo et al. 2004], the approach is based on first ordepteai logic. This
proposition is close to our approach, but more restrictedesii) groups used to compute
the support are predefined, whereas we consider the facthihatser should be able to
define them (see reference dimensions below),(@apdeveral attributes cannot appear in
the sequences. The authors claim that they aim at consigegireral dimensions but they
have only shown one dimension for the sake of simplicity. Eesr, the paper does not
provide any complete proposition to extend this pointeal multi-dimensional patterns,
as we do in our approach.

3.4 Multi-Level Rules

The work in [Srikant and Agrawal 1996] introduces the hielgrmanagement in the ex-
traction of association rules and sequential patterns. alitieors suppose that the hierar-
chical relations between the items are represented by & $gtrarchies They make it
possible to extract association rules or sequential petrcording to several levels of hi-
erarchy. Transactions are modified by adding, for every,imhancestors in the associated
hierarchy, and then, the frequent sequences are genekiaagbver, this approach cannot
be scalable in a multi-dimensional context, simply becadtting the list of all ancestors
for each item and each transaction is not efficient. Indesch & hierarchy management
implies that the size of the database be multiplied by theimam height of hierarchies to
the number of analysis dimensions. We show in Section 6 (ge€)that such a hierarchy
management is not tractable for more than three analysisrdiions.

The approach in [Han and Fu 1999] is quite different. The atgtkackle the association
rule extraction problem, in such a way that their approachhtma adapted to sequential
pattern extraction. Beginning at the highest level of trexdnichy, the rules on each level
are extracted while lowering the support when going dowrantierarchy. The process
is repeated until no rules can be extracted or until the lowse&l of the hierarchy is
reached. However, this method does not make it possiblettactxules containing items
of different levels. For exampleineanddrink cannot appear together in such a rule. This
approach thus deals with the extractionirdfa hierarchy levelssociation rules, and does
not address the general problems of extracting sequencadtitle levels of hierarchy

As can be seen from this section, the existing work, and éalpethe one described
in [Pinto et al. 2001] is said to bmtra-pattern, since sequences are mined within the
framework of a single description (the so-calfeatterr). Moreover rules are only mined
at the same level of granularity. On the other hand, in [HahFein1999], the rules are said
to beintra-level. In this paper, we propose to generalize these sudimter-leveland
inter-patternmulti-dimensional sequences.
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Compared to our previous work in [Plantevit et al. 2005], thain contribution of
this paper is to take hierarchies into account, whereaslanfévit et al. 2005], only two
levels have been considered, namely the most specific lthelalues that appear in the
table to be mined), and the most general level (denoted byPlantevit et al. 2005] and
referred to a®\LL in the present paper). Compared to the preliminary versidhi®work
in [Plantevit et al. 2006], the present paper offers a dedadind formal presentation of
the approach (see Section 4 and Section 5), as well as cotiopatamprovements and
further experiments on both synthetic and real datasetssh&t come back to this last
issue at the end of Section 6.

4. BASIC DEFINITIONS
4.1 Background

Let » = {Dj,...Dn} be a set of dimensions. Each dimensBpnis associated with a
(possibly infinite) domain of values, denoted 8gm(D;). For every dimensio®;, we
assume thatom(D;) contains a specific value denotedAlyL;.

In order to take into account the fact that items can be esprkeaccording to different
levels of granularity, we assume that each dimengptis associated with &ierarchy;
denoted byH;. Every hierarchyH; is a tree whose nodes are elementsiof(D;) and
whose root iALL;.

As usual, the edges of such a tidecan be seen ais-a relationships, and thepe-
cialization relation (respectively thgeneralizationrelation) corresponds to a top-down
(respectively bottom-up) path id;, i.e., a path connecting two nodes when scanrtitig
from the root to the leaves (respectively from the leavebéaoot).

In the case where no hierarchy is defined for a dimenBignwe consideH; as being
the tree whose root i8LL; and whose leaves are all the elementslam(D;) \ {ALL;}.
We recall in this respect that this paper is a generalizatfaur previous work [Plantevit
et al. 2005], where, for every dimensidny, no hierarchy is considered, and the symbol
is used in place oALL;.

Afact tableT over universe is a finite set of tuples= (ds, ... ,dn) such that, for every
i=1,...,n, di is an element oflom(D;) that is a leaf of the associated hierardfy In
other words, we assume that the talbléo be mined contains only most specific values
with respect to all hierarchies over dimensions.

We note that in our approach, the domains of attributes areestricted to be discrete,
even if each value occurring in the fact tafilés treated as a nominal value. Moreover, it
should be clear that discretizing continuous humericabaites can be seen as defining a
hierarchy on the corresponding domain.

Since we are interested in sequential patterns, we asswah® tbontains at least one
dimension with a totally ordered domain, correspondindn&time dimension.

Moreover, given a fact tablé over o, for everyi = 1,...,n, we denote bypomy (D)

(or simplyDom(D;) if T is clear from the context) thactive domairof D; in T, i.e., the
set of all values oflomD;) occurring inT along with their generalizations according to
H;. In the remainder of this paper, we consider only valueséreittive domains.

Given an element in Dom(D;) and the associated hierarcHy, we introduce the fol-

lowing notation:

—down(x) andup(x) denote respectively the set of direct specializationsind the sin-
gleton containing the onlglirect generalizatiorof x.

ACM Journal Name, \Vol. ., No. ., . 20...



10 . Marc Plantevit et al.

More precisiely, ifx is not a leaf inH;, thendown(x) is the set of ally in Dom(D;) such
thatH; contains an edge fromto y; otherwisedownx) is set to be equal to the empty
set. Similarly, ifx # ALL;, up(x) is the set containing the only elemgnin Dom(D;)
such thatd; contains an edge frogto x; otherwiseup(x) is set to be equal to the empty
set.

—We denote by! (respectivelyx!) the set containing along with all generalizations
(respectively specializations) gfwith respect tdH; that belong tdom(D;).

Clearly, forevernyi=1,...,n, we haveALLiT ={ALL}, ALLiL =Dom(Dj), and, ifxis a leaf
of Hj thenALL; € x' andx! = {x}. We also note that, for every we havedown(x) C x!,
up(x) € xI and{x} = x' nxt.

ExamMPLE 1. Referring back to our motivating example, the consideré@dtdimen-
sions? is defined byp = {D,Cat, Age Loc, Prod, Qty}. Considering the fact table shown
in Table I, we have for instance, D@Rrod) = {beersoda wine whisky pretzel chocolate
M1,M2}.

Fig. 2 shows the hierarchy g,y associated to the dimension Prod. It can be seen from
this figure that dow(drink) = {s_drink,a_drink} and ugdrink) = {ALLpyog}-

Moreover, Fig. 2 also shows that drink is a generalizatiosada, that is drinkc sodd
and sodae drink!. We also note that, as soda is a leaf af&d, downsodg = 0 and
sodd = {sodg.

On the other hand, as no hierarchy is associated to the dimer3, the implicit asso-
ciated hierarchy H is defined accordingly, that is, the root ofHss ALLp and all other
values in Don(D) are leaves of Ij.

We end this section but pointing out that hierarchies on dsfans could be defined as
directed acyclic graph¢DAGs). However, although this more general case can be con-
sidered in our approach, this would imply redundancies exdbmputation of frequent
sequences. We shall come back to this point in Section 5.

4.2 Dimension Partitioning

For each table defined on the univegsewe consider a partitioning ab into four sets:

—Py contains a single dimension, called teenporaldimension,
—D 4 contains thenalysisdimensions,

—D4 contains theeferencedimensions, and

—D,; contains thégnoreddimensions.

Roughly speaking, in our approach, sequences are coreiractording to the temporal
dimension inp; whose domain values are assumed tddielly ordered and the tuples
appearing in a sequence are defined over the analysis donensi? ;. Note that usual
sequential patterns only consider one analysis dimengienefally corresponding to the
products purchased or the web pages visited).

The setp,, allows to identify the blocks of the database to be countegiwdomputing
supports. This is so because the support of a sequence i@ ion of those blocks that
“support” the sequence. Note that, in the case of usual seiqlipatterns and of sequential
patterns from [Pinto et al. 2001] and [de Amo et al. 2004], 98D, is reduced to one
dimension, namely theid dimension in [Pinto et al. 2001] and thdG dimension in
[de Amo et al. 2004].
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Mining Multi-Dimensional and Multi-Level Sequential Patterns : 11

The setp; describes the ignored dimensions,,those dimensions that are used neither
to define the date, nor the blocks, nor the patterns to be miNedice thatp; may be
empty.

Based on such a partitioning af, and using a slight abuse of notation, each tuple
c= (di,...,dn) of T can be written as = (t,a,r,i) wheret, a, r andi are the restrictions
ofconoy, D4, Dy andod,, respectively.

Given a tableT, the projection oven; U D, of the set of all tuples iff having the same
restrictionr over®y is called ablock More formally, given a tuple in T, (T), the cor-
responding block, denoted IB(T,r), or simply byB(r) whenT is understood, is defined
by the relational expressiom,, ., (0, —r(T)). Moreover, we denote by (T, Dy ), or
simply by (D, ) whenT is understood, the set of all blocks that can be constructed
T andDy .

In our running example, we considex = {D}, v, = {Loc,Prod}, , = {Cat,Age},
andp; = {Qty}. Fig. 4 shows the four blocks @ (D ) that can be constructed from
tableT of Table | andp as specified just above.

4.3  Multi-Dimensional ltems and Itemsets

Given a tablel over a setp of n dimensiond1,...,Dn, over which hierarchies are as-
sumed, we consider a fixed partitionifi@:, D5, D4 ,D; } of D and we assume that, is

of cardinalitym. In this setting, we define the fundamental concepts of itechitemset in
the framework of multi-dimensional data.

DEFINITION 1 — MULTI-DIMENSIONAL ITEM. A multi-dimensional itemis a tuple
a=(d,...,dn) defined ovep 4, thatis, forevery=1,....m,D € », andd € Dom(D;).

It is important to note that multi-dimensional items can kéred with values at any level
of the hierarchies associated to analysis dimensions. fstance, in the context of our
running example(drink,U SA) and(s_drink, Paris) are multi-dimensional items.

Since multi-dimensional items are defined at differentlieweéhierarchies, it is possible
to compare them using a specificity relation defined as falow

DEFINITION 2 — ITEM SPECIFICITY RELATION. For all multi-dimensional items &
(di,...,dm) and d = (dj,....dp,), & is said to bemore specifithan a, denoted by &, &,
if foreveryi=1,...,m,d € dii.

ExAMPLE 2. Referring back to our running example, we have:

—(USAdrink) </ (USAsoda, because USA USA and sodac drink'.
—(EU,a.drink) <, (Paris,wine), because Paris EU' and winec a_drink!.

However, (Paris,wine) and (USAsoda are not comparable according te;, because
Paris and USA are not comparable with respect to the corradpig hierarchy over the
dimension Loci.e., neither Parisc USA nor Parisc USA holds.

Itis easy to see that the relatiet) is a partial ordering over the set of all multi-dimensional
items. In other words, the relation;, defined oveDom(D ;) is reflexive, anti-symmetric
and transitive.

Moreover, in order to avoid redundancies in the extractétepes, comparable items can
not belong to the same itemset. Therefore, as stated in tloevfiog definition, two items
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12 . Marc Plantevit et al.

can belong to the same itemset only if they are not compawadderding to the partial
ordering=.

DEFINITION 3 — ITEMSET. Anitemsets = {ay,...,a/} is a non-empty set of multi-
dimensional items such that, for all distincj in {1,...,k}, & and g are not comparable
with respect to<.

For instance, in the context of our running examgl@aris,wine), (USAa drink)} is an
itemset, whereaf Paris,wine), (EU,a_drink)} is not. This is so becausEU, a_drink) <|
(Paris,wine).

The basic notions of sequence and of support of a sequenadefined in the next
section.

4.4 Multi-Dimensional Sequences and their Supports

DEFINITION 4 — SEQUENCE A sequence, = (si,...,S) is a non-empty ordered list
where, forevery & 1,... 1, § is an itemset.

A sequence of the forf{a}), where a is a multi-dimensional item, is said to be an
atomic sequence

For instance, in the context of our running examglgParis,wine)}) is an atomic se-
quence, and{(Paris,wine), (USAadrink)}, {(EU, been}) is a non atomic sequence.
As will be seen later in the paper, atomic sequences playseemgal role in our approach
for mining frequent sequences while avoiding redundancies
The following definition states that computing the suppdrasequence amounts to
count the number of blocks @f (2 ) that support the sequence.

DEFINITION 5 — SUPPORT OF ASEQUENCE A block B inB (D4 ) supportsthe se-
quence; = (sy,...,5) if there exist{,...,t in Dom(D;) such that:

QD t1<...<y
(2) Foreveryi=1,...,1 and everya in 5, B contains a tuple e (t;,a) such thatn <) a.

Thesupportof ¢, denoted by su(g), is the ratio of the number of blocks that support the
sequence over the total number of blocksimy ).

Given a support threshold minsup, a sequeqéesaid to befrequentif its support is
greater than or equal to minsupe.,if sup(¢) > minsup.

Based on Definition 5 above, an itemis said to be frequent if the sequeng@}) is
frequent. We recall from the introductory section that,um approach, frequent sequences
are mined based on the maximal atomic frequent sequenéesekto agnaf-sequences
and defined as follows.

DEFINITION 6 — MAF-SEQUENCES The atomic sequencgéa}) is said to be anaxi-
mal atomic frequent sequena® an maf-sequenctor short, if ({a}) is frequent and if for
every dsuch that a<| &, the sequencéa'}) is not frequent.

As will be seen in the next section, the frequent sequencbs tmined in our approach
are constructed based on maf-sequences. More preciséigemaences provide all multi-
dimensional items that occur in sequences to be mined.

We draw attention on the fact that multi-dimensional iteraswrring in maf-sequences
are not comparable with respect+p. Thus, according to Definition 3, any set containing
such multi-dimensional items is an itemset.
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Mining Multi-Dimensional and Multi-Level Sequential Patterns : 13

The following example illustrates Definition 5 and Definitié in the context of our
running example.

EXAMPLE 3. For a support threshold minsup 3, ({(EU, a.drink)}) is a frequent
atomic sequence because, considering the blocks showg.id Rive have the following:

(1) BlockB(EducY) (See Fig. 4(1)). According to the hierarchies, we have BeglEU!
and beerc adrink!. Thus,(EU,a.drink) =<, (Berlin,beern. As (Berlin,beer) is in
B(EducY), this block supportg{(EU,adrink)}). Notice that a similar reasoning
holds when considering the tupleondonwine) in this block.

(2) Block B(EducO) (See Fig. 4(2)). As Paris is in EUand wine is in adrink!, for
similar reasons as above, this block suppdfteEU, a_drink)}).

(3) Block B(RetY) (See Fig. 4(3)). The same reasoning as in the previous twescas
holds for this block, because London is in Eaind whisky is in adrink!. Thus, this
block also support${ (EU,a drink)}).

(4) Block B(Ret O) (See Fig. 4(4)). This block does not suppgrtEU,a_drink)}) be-
cause it contains no multi-dimensional item more specifia{fEU, a_drink).

Sinces (D, ) contains4 blocks, the support of{ (EU,adrink)}) is 3, and thus, the se-
quence is frequent. Moreover, all multi-dimensional itearsuch that(EU, a_drink) <,

a, i.e., all multi-dimensional items & (di,d;) other than(EU,a drink) and such that
d; € {EU,Berlin, Paris,Londor} and & € {a drink, beerwine whisky}, lead to non fre-
guent atomic sequences since these sequences are supppdéediost one block. As a
consequence, according to Definition(§(EU,a drink)) is an maf-sequence.

It is also important to note that, although the table T congafour specializations
of (EU,a.drink), only three of them are counted in the computation of the supyf
({(EU,a.drink)}). This is so becaus@erlin,been and (Londonwine) are two special-
izations of(EU,a_drink) that belong to the same blocke., block BEducY), which,
according to Definition 5, is counted onbypncewhen computing syg{(EU,a_drink)})).

Let us now consider the sequente ({(EU,a.drink), (EU, pretze)}, {(EU,M2)})
and the same support threshold minsup} as above. It can be seen as above that

({(EU, pretze)}) and({(EU,M2)}) are also maf-sequences. Moreover, considering again
successively the blocks shown in Fig. 4, we have:

(1) Block B(EducY) (See Fig. 4(1)). We have BerlinEU', Londone EU! and beerc
a.drink!. Thus,(EU,a.drink) =<, (Berlin,beer, (EU, pretze) <, (Berlin, pretze)
and (EU,M2) <, (LondonM2). As the block BEducY) contains the two tuples
(1,Berlin,been and (1, Berlin, pretze) along with the tuplé2,LondonMz2), the se-
guence; is supported by this block.

(2) Block B(EdugO) (See Fig. 4(2)). As Paris is in EUand wine is in adrink!, for
similar reasons as above, the sequegiesupported by this block.

(3) Block B(RetY) (See Fig. 4(3)). The same as in the previous two cases halds fo
this block, because London is in Eldnd whisky is in adrink!. Thus, BRetY) also
supports the sequence

(4) Block B(RetO) (See Fig. 4(4)). This block does not support the sequence

Sinces (D, ) contains4 blocks, the support afis %, and thus, the sequence is frequent.
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In order to define sequence specialization in our approaetiirst need to define when an
itemset is more specific than another itemset.

DEFINITION 7 — ITEMSET SPECIFICITY RELATION. Lets and sbe two itemsets! &
said to bemore specific thas, denoted by s 8, if for every a in s, there exists i §
such that =, &'.

For instance, in the context of our running example, the setsy (Paris,wine)} and
{(Paris,wine), (USAsoda} are two specializations of the itemggEU,wine)}, i.e.,we
have{(EU,wine)} <,s{(Paris,wine)} and{(EU,wine)} <s {(Paris,wine), (USAsodg}.
This is so becausgEU, wine) <, (Paris,wine).

We note thatss generalizes set inclusion, in the sense that for all itegssads such
thats C s, we haves <|s S.

Moreover, the partial ordering;s defined above can be extended to sequences, so as to
define sequence specialization as follows.

DEFINITION 8 — SEQUENCESPECIFICITY RELATION. Let ¢ = (s,...,§) and ¢ =
(s,,...,9,) be sequencesc is said to bemore specific thar, denoted by <s ¢, if
there exist integers < iy <is <... < i} <I’ such that $<s s{l,sfz <is qz,...,a <is ql.

EXAMPLE 4. In the context of our running example, the following are epla® of
sequence specializations:

—({(EU,wine)}) <s ({(Paris,wine)}),
since, as seen earlief(EU,wine)} <s {(Paris,wine)}.

—({(EU,wine)}, {(EU,been}) <s ({(Paris,wine), (USAsodg}, {(Berlin,been}),
since we havég(EU,wine)} <;s {(Paris,wine), (USAsoda} and
{(EU,been} <is {(Berlin,been}.

—({(Paris,a_drink)}) <s ({(Paris,wine), (USAdrink)}, {(Berlin,been}),
since{(Paris,a_drink)} <;s {(Paris,wine), (USAdrink)}.

However,¢ = ({(Paris,wine), (USAsoda}, {(Berlin,been}) is not more specific than
¢= ({(USAwine)}, {(Berlin,been}). This is so becaus@) SAwine) %, (Paris,wine),
(USAwine) 4| (Paris,sodg and (USAwine) £, (Berlin,been; thus{(USAwine)} can-
not be compared with any itemsetgh

5. M3SP: ALGORITHMS FOR MINING MULTI-DIMENSIONAL AND MULTI-LEVEL
SEQUENTIAL PATTERNS

In this section, we give fundamental properties of frequealtti-dimensional and multi-
level sequential patterns and then, we detail the algostfon their extraction. These
algorithms are based on the following two-step process:

(1) Step 1:Maf-sequences are mined. To this end, we follow a strategpiriad from the
BUC algorithm [Beyer and Ramakrishnan 1999].

(2) Step 2:All frequent sequences that can be built up based on the érecgequences
found in Step 1 are mined. To this end, we use the SPADE algofiraki 2001].

The correctness of each of these two steps is based on tbwifodl basic properties.
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5.1 Basic Properties
In this section, we show the following:

(1) The support of sequences as defined in Definition 5 israntiotonic with respect to
the partial ordering<s (see Proposition 1 and Proposition 2). Such a monotonicity
property is indeed required in Step 1 and Step 2 above.

(2) The partially ordered sgDom(D ), =) is shown to be a lattice, the elements of
which can be generated in a non-redundant manner (see Riopay. With such
properties at hand, the processing of Step 1 above can bevadhefficiently.

First, considering atomic sequences, we have the followiogosition.

PrROPOSITION 1. Forall multi-dimensionalitems a and,af a <, & thensug({a'})) <

sup({{a})).

PROOF. Letaanda be such thaa <, & and letB be a block ofT that supportg{a’}).
Then, by Definition 5B contains at least one tuple= (d,a) whered € Dom(Dy), o €
Dom(? ) anda =, a. Therefore, we have <| & < a and thusB supportg{a}). Hence
sup(({@'})) <sup{{a})), which completes the proof. ad

Now, generalizing Proposition 1 above, the following prsition states that the support
measure for sequences is anti-monotonic with respegtto

PROPOSITION 2. For all sequenceg andd, if ¢ <Xs¢ then sugq) < supQ).

PrROOF Given two sequencaesandc’ such that; <s ¢, based on Definition 8, and using
similar arguments as in the previous proof, it is easy tolsaedvery blockB that supports
¢ also supports. Therefore, we haveup(¢) < sup(c), and the proof is complete. O

We now turn to the properties required to see how to effiggantplement Step 1 above,
i.e.,how to mine maf-sequences.

We first note in this respect that the partially ordered Betm(» ; ), <) can be given a
lattice structure provided a greatest element with resjpegt be considered.

To see this formally, we consider an additional item, detitte T ,, which is assumed
to be more specific than any other multi-dimensional iteBam(2 4 ), that is, for every
ain Dom(D,), we havea < T 4.

In this setting, given two multi-dimensional iteras= (dy, ... ,dm) anda’ = (d1,...,dy,),
the least upper bound and the greatest lower boursdamida’, denoted bytub(a,a’) and
glb(a,a’) respectively, are defined as follows:

—lub(a,a) = (ug,...,un) where, for each = 1,...m, u; is the most specific value in
dln(d)t.
—glb(a, @) is defined as follows:
If there existd in {1,...,m} such thatjil N(d)! =0thenglb(a,&) =T,
Otherwiseglb(a,a) = (gi,-..,9m) where, for each=1,...,m, g; is the most general
value ind} N ()}
It is easy to see that for adlanda’ in Dom(D ), lub(a,a’) andglb(a, &) are well defined,
showing that{Dom(D ;) U{T 4}, <) is a lattice.
In our algorithms, we ignore the additional multi-dimenmsbitem T ; (as it is of no
practical interest), and Step 1 mentioned above is achitwedgh a depth-first traversal of
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the seDom(D 4 ), starting from the most general multi-dimensional itehbLy, ... ALLy)
that we denote bQLL, in the remainder of the paper.

This algorithm follows the same strategy as BUC ([Beyer aathRkrishnan 1999]) that
we adapt to our particular context. Namely, for each atoragquencg{a}) found to be
frequent, we generate all the direct successora iof (Dom(4),=) and, for each of
them, we compute its support against thbseif the dataset consisting of those tuples
that are more specific thaam In this way, as done in BUC algorithm, the more items
are specialized, the smallest the dataset. We refer todBe6tfor a discussion on the
performance of the corresponding algorithm.

In order to implement the corresponding algorithm, we neee@féective and non re-
dundant mean to characterize the direct successq®dam(? ), =) of a given multi-
dimensional itena.

To this end, we denote byucda) the set of all direct successors of a given multi-
dimensional itera. More formally, given two multi-dimensional itenessandad’, & is in
sucda) if:

—a=, d, and
—for everya € Dom(D,), if a=<| a <X & then eithem =aora =4'.

PROPOSITION 3. For every a= (di,...,dm) in Dom(D,):

sucda) = {(di,....dfy) | (3i € {1,...,m})(d} € down(dh) A (V] # i) (d] = dj))}.

PROOF. Leta = (dy,...,dp) be suchthatdi € {1,...,m}) (df € down(di) A (V] #i)(d] =
dj)). Then, clearly, we hava <, & and for everya = (3y,...,0m) such that <, o <, &,
we haved; € d' N (d)" and for everyj #1i, & = d = di. Asd/ € down(di), we have
diL N(d)" = {di,d}. Thus, eithen = aor a = &, which shows that' € sucda).

Conversely, le®’ be insucda). Then, we have <, &, entailing that for every =
1,....md € dil. Assuming that3i € {1,...,m})(d € down(di) A (V] #i)(dj =dj)) is
not satisfied, means that for every {1,...,m}, we have(i) d/ ¢ down(d;) or (ii) there
existsj # i such thatl; # dj.
(i) Inthis case, there exisdsin Dom(D;) different thard; andd; such tha; € dil andd/ €
6%. Fora = (di,...,di—1,6i,di+1,...,dm), we havea <, a < &, which is a contradiction
with the fact that' € sucda).
(if) In this caseg] is in djl and we can assume tdtis indown(d;). Fora = (dy,...,di_1,
d,dit1,...,dm), we havea <, a <; &, which is again a contradiction with the fact that
a € sucda). Thus, the proof is complete. a

ExamMPLE 5. In the context of our running example, consider the muhiahsional
items a= (EU,beer) and d = (Paris,a drink). According to Proposition 3 above, we
have:

—suc¢a) = {(Paris,been, (Berlin,beer), (Londonbeen},
because dow{EU) = {Paris,Berlin,Londor} and dowribeer) = 0,
—suc¢a’) = {(Paris, beer), (Paris, wine), (Paris, whisky },
because dow(Paris) = 0 and dowrfa_drink) = {beerwine whisky}.
We note that, in this case, sye¢ N succa’) = {(Paris,been}, meaning that if the set
succa)Usucdd) is to be computed based on a arid(@aris, beer) is generated twice.
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As shown in the previous example, one important point in tragutation of Step 1 is to
make sure that every sequena}) is considered at most once. In other words, we have
to design a way to generate every multi-dimensional iseonly once in our algorithm.

To this end, we assume that the dimension®@ip are ordered according to a fixed
total ordering; letD; < ... < Dy, be this ordering. Given a multi-dimensional itean=
(di,...,dm), we denote by(a) the integer defined as follows:

—If a=ALL,, thenp(a) =0
—Otherwise,p(a) is the integer in{1,...,m} such thatd,,) # ALLy, and for every
j >p(a), aj = ALL;.

Then thegenerated multi-dimensional itenfiim a given multi-dimensional itera are
defined as follows.

DEFINITION 9 — GENERATED MULTI-DIMENSIONAL ITEMS. Leta= (d,...,dm) be
a multi-dimensional item. The set of multi-dimensionahggenerated froma, denoted by
gen(a), is defined by:
—Ifp(a) = 0then gelfa) = sucda)
—Otherwise,

gen@) = {(d,....dy) | (Fi € {p(a),...,m})((d] € down(di)) A (V] #1i)(d] =dj))}.

As a consequence of Definition 9, it is easy to see thatisfsuch thap(a) = 1 then we
havegena) = sucda). The following example illustrates Definition 9 in the caoxttef
our running example.

ExaMPLE 6. Referring back to Example 5, we assume that the dimensionsiha
Prod are such that Loe Prod. For a= (EU,beer and d = (Paris,a_drink), we have
p(a) = p(&) = 2. Thus, according to Definition 9 above, we obtain the foltayyi

—gen{a) = 0, because dowibeern = 0, and
—gen{a’) = {(Paris, beer), (Paris,wine), (Paris, whisky) },
because dowf@_drink) = {beerwine whisky}.

Therefore, when considering generated multi-dimensiageals instead of successors, the
multi-dimensional itenfParis, beer) is considered only once.

On the other hand, for & (EU,ALLp(oq), we havep(a) = 1, and thus, the set géa) is
equal to sucga).

In order to show an exhaustive computation of generateditdinitensional items, for
the sake of simplification, let us consider the followinggified hierarchies taken from
Fig. 1 and Fig. 2, respectively.

ALL oc — EU — Paris AlLp;oqg — drink — a_drink — beer
In this case, the generated multi-dimensional items areveha Fig. 5.

The following proposition states that, using generatedindinensional items as defined
above, all multi-dimensional items bAL L, are generated in a non redundant manner.

PROPOSITION 4. (1) Uacpomn,)9en@) =Dom(D4)\ {ALLg}.
(2) Forallaanddin Dom(D,), if a+ a then we have géa) Nngen@) = 0.
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(ALLLoc, ALLProd)

T

(EU, ALLprog) (ALL_ oc, drink)
\
(Paris, ALLprog) (EU,drink) (ALLoc,a-drink)
|
(Paris, drink) (EU, a_drink) (ALL o, beer)
|
(Paris,a_drink) (EU, beer)
\
(Paris,beer)

Fig. 5. Tree of generated multi-dimensional items

PrROOFE (1) It is easy to see from Proposition 3 and Definition 9 that dverya in
Dom(D,), gen@) C sucda). Thus, we havéJacpoms,) 9en@) € Dom(D4) \ {ALL, },
becauséLL, cannot belong to any sgena).

Conversely, lela = (dy,...,dm) € Dom(D4) \ {ALL;}. Thus we havep(a) > 0 and
do(a) 7# ALLp(a), Whichimplies thatip(dy(q)) # 0. Leta’ = (di, ..., dp,) be such thaﬂg(a) =
up(dy(a)) and, for everyi # p(a), d’ = di. Then, it is easy to see from Definition 9 that
acgena).

(2) Leta= (di,...,dm) anda = (dj,...,d;,) be such thad # & andgen(a)ngen(a) # 0
and leta = (8;...,06m) be ingen(a) ngen(@). By Definition 9 and item (1) above, we
havep(a) > 0 andp(a’) > 0, and furthermore, there existn {p(a),...,m} andi’ in
{p(@d),...,m} such that:

— & € down(d;) and for everyj #1i, 8; = d;

— & € down(d,) and for everyj # ', & = d].

Assuming that = i’, let us consider that<i’. Then,i’ > p(a), and thusd;, = ALL;. On
the other hand, a&; € down(d}), & # ALLy. Since we also havg = d, we obtain a
contradiction. As the casé< i is similar, we have thait=i’, which implies tha®; €
down(dj) ndown(d/). SinceH; is a tree, we have; = d/, which implies that = & Thus,
the proof is complete. |

It is important to note from the proof above that item (2) obpwsition 4 does not hold
if H; is a DAG but not a tree. This is so because in this case, it isilplesthatd; be in
down(di) ndown(d/) while d; # d{. This implies that, if one of the hierarchief is not a
tree, there might exist anda’ such thagena) ngen@) # 0.
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5.2 Mining Maf-Sequences

We now focus on the first step of the computation of frequegieaces, namely the com-
putation of maf-sequences. This step, referred to as Steth# deginning of the current
section, is achieved according to Algorithms 1 and 2, irgpfrom BUC [Beyer and Ra-
makrishnan 1999].

Algorithm 1 performs the following tasks:

(1) Computing all frequent minimal atomic sequences.,, all sequences of the form
({(ALLy,...,ALL_1,di,ALLi;1,...,ALLn)}) whered; is such thaup(d;) = {ALL;}.
The set of all such sequences is denoted by

(2) Pruning from the hierarchids; (i € {1,...,m}) all valuesd; such that{(ALLq,...,
ALLi_1,di,ALLi11,...,ALLy)}) is not frequent and wherd belongs to any level of
Hi.

(3) Based ornL; and the pruned hierarchies, computing all maf-sequendeg asre-
cursive function calledjetrec_.maf_seq given in Algorithm 2. The set of all maf-
sequences is denoted MAF Sin the two algorithms.

We note that the first two tasks in Algorithm 1 are achievedulh one scan of the blocks
by associating each domain elemdnof H; with the number of blocks containing at least

one tuplec such that.D; € dil. In Algorithm 1, this number is denoted lepunt(d;).

The recursive function shown in Algorithm 2 in order to corntgpmaf-sequences op-
erates on the sét;, usingprunedhierarchies. It is important to note in this respect that
considering the pruned hierarchids(i = 1, ..., m) allows to avoid redundant candidates
that are known in advanced not to be frequent.

We also note that given a candidate atomic sequéfale, sup({a})) is computed by
scanning the reduced blocks that only contain the tupledt,ds, . ..,dm) that suppors,
i.e.,the tuplesc=(t,ds,...,dm) such thaf <, (d,...,dm). The union of all these reduced
blocks is denoted bga(3 (D4 )) in Algorithm 2.

It is also important to note that, in Algorithm 2, the sucoessof frequent atomic se-
guences are generated in a non redundant manner, based oitiddefl. Moreover, in
order to make sure that only maf-sequences are mined, bgfeggting a given atomic
sequencé{a}) in the setMAFS it is necessary to check whetHdAF Salready contains
an atomic sequence more specific tHéa}). If such is the caseMAF Sis not changed,
otherwise ({a}) is inserted ilMAF S

EXAMPLE 7. Fig. 6 illustrates the output of Algorithm 1 in the contexbair running
example, assuming that minsu:p%. The computation of frequent atomic sequences is
represented by a tree in which the nodes are of the f@hydz)s, meaning that{(d1,d2)})
is an atomic sequence with suppgrt Moreover, maf-sequences are displayed as boxed
nodes in this tree.

We note that leaves in this tree are not necessarily mafeserps. For exampléALL, o,
pretze)s is a leaf, but not an maf-sequence. This is so becgdikk ¢, pretze) <, (EU,
pretze) and ({(EU, pretze)}) has been identified as being an maf-sequence.

5.3 Mining Multi-Dimensional Sequences

We now turn to Step 2 mentioned at the beginning of the cusedtion,i.e.,the compu-
tation of non atomic frequent sequences. We recall in tlspeet that maf-sequences are
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Algorithm 1: Mining Minimal Atomic Frequent Sequences and Pruning Hignees

Data: The sets (D ), the minimum support threshofdinsup
Result: The setMAF Sof all maf-sequences
begin
foreachi=1,...,mdo
| Associate every value in H; with count(d) =

foreach B € 8 (D4 ) do
foreach tuple c= (t,ds,...,dm) in Bdo
L Update all valuesount(d;), foreveryi=1,...,mandd; € diT;

/*A11 counts are computed */
L1 —0; .
foreach d; € JiZ1"H; do
if count(dj) < minsupthen
[*Pruning Hj*/
| Removed; from H;
else
[*Computing Lj */
if up(dj) = {ALL;} then
| L1 —LiU{({(ALLy,...,ALLj 1,d;,ALLj11,...,ALLp) )}

MAF S« 0;
[*Recursive computation of maf-sequences?*/
foreachae L; do

| callgetrecmafseqa, minsupoa(3(Dy)));

return MAFS

end

ALLLoc ALLProd)

(u SAALmed) (EU,ALL )4 (ALLyoc, food)s (ALLLoc,drink)s (ALLioc,drug)s
(Berlin, ALmed) (EU, food)s (EU,drink)s  (EU,drug)s (ALLLoc,salteds(ALLLoc,adrink)s(ALL oc, M2)3

(EU,salted)s | (EU, a_drink)s | | (EU,M2); | (ALL, oc, pretzels

(EU, pretze)s

Fig. 6. Tree of frequent atomic sequences
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Algorithm 2: Routinegetrec_maf_seq
Data: A multi-dimensional iterra, the minimum support threshoidinsup the set of
blocks3 (D )
Result: The current seMAFS
begin
Cand«— {a = (d1,...,0m) € gen@a) | (Vi=1,...,m)(count(d;) > minsup};
Freq«— {a € Cand| supa) > minsug;
if Freq= 0 then
if for every({a'}) € MAFS, & 4 athen
*{{a}) is an maf-sequence?*/
L MAFS— MAFSU {{{a})};

else
foreach a € Freqdo
[*Recursive call where Oq(B(Dyg)) denotes the selection
of all tuples C in the blocks of B(Dg) such that
a=<coy*
call getrec.maf_seqa, minsupoq (B (g )));

end

the basic ingredients from which all candidate sequenaebuilt up. More precisely, the
multi-dimensional items occurring in any candidate sequence are such(ff&t) is an
maf-sequence.

Frequent sequences are mined using any classical sedymitéen mining algorithm
from the literature ([Masseglia et al. 1998; Zaki 2001; Aye¢ al. 2002; Pei et al. 2004]).
In our experiments, the algorithm SPADE ([Zaki 2001]) hasrbased.

Since in standard algorithms, the dataset to be mined is pagst of the form(c,seg
wherec is a customer identifier angkqis a sequence of itemsets, the underlying table
in our approach is transformed as follows:

—Every blockB in 8 (D4 ) is assigned a unique identifild (B), playing the role of the
customer identifiers in standard algorithms.

—Every maf-sequenc a}) is associated with a unique identifier denotedd{), play-
ing the role of the items in standard algorithms.

—Every blockB in 8 (D4 ) is transformed into the paiflD(B),¢(B)) whereg(B) is a
sequence playing the role of the sequence of itemsets idatdm@lgorithms.

The sequence(B) is of the form((pys, ..., Man,),-- -, (Hp1; - - Mpn,)) Such that, for every
j=1,...,p, B contains the tupleftj,a1),..., (tj,a) wherepy =id(a) (k= 1,...,n;)
andt; < ... <tp.

The following example illustrates the transformation.

ExamMPLE 8. Referring back to our running example and considering a sufthresh-
old minsup= %, Table 1l shows the identifiers assigned to the maf-seqgsegieen in
Example 7. The blocks of Fig. 4 are displayed in their transfed format in Table IIl.
Moreover, Table IV displays all frequent sequences in ttraimsformed format as well in
their multi-dimensional format in which identifiers are taped with their actual values.
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Maf-sequencé{a}

) id(a
({(USAALLproq)}) 1
({(Berlin,ALLproq) }) 2
3

4

5

({(EU,Pretze) })
({(EU,Al. Drinks)})
({(EU,M2)})

Table Il.  Assigning identifiers to maf-sequences

ID(B) <(B)
1T | ((234),05,@.0)
2 ((1),(2.3,4).(5))
3 ((3.4).(2.5))
4 ((1),(2),(1))
Table lll. Transformed database
Transformed frequent sequences  Frequent multi-dimensional sequences
((3,4),(5)) ({(EU, pretze), (EU,a.drink)},{(EU,M2)})
(1) ({(USAALLprog) })
((2) ({(Berlin,ALLproa) })

Table IV. Frequent multi-dimensional sequencesnfidmsup= %

We end this section by discussing possible extensions oalgarithms regarding the way
frequent sequences could be presented to the users.

First, due to the fact that we consider multi-dimension#tigras, one could think of pre-
senting multi-dimensional sequences in a condensed waytxgepeating dimension val-
ues occurring at several places. Forinstance, the sequfgiidd, pretze), (EU,a drink)},
{(EU,M2)}) could be displayed agEU){(pretze), (a_drink)},{(M2)}). However, this
process is not always applicable, as for example, the sequéfEU, pretze), (US,
adrink)}, {(EU,M2)}) cannot be condensed.

Second, knowing the blocks that support a given frequentirdimhensional sequence
could be considered relevant. As seen in Example 4, the qtinfiensional sequenae=
({(EU, pretze), (EU,adrink)}, {(EU,M2)}) is frequent because it is supported by the
blocksB(EducY), B(Educ O) andB(RetY). Thus, it is possible to output this set of
blocks, associated with the sequence.

However, as this set might be huge, one could thirdasferalizinghe associated tuples,
using the hierarchies defined on the reference dimensiong inThen, this option would
lead to results of the fornr,¢) wherer is a tuple overp, andc is a frequent multi-
dimensional sequence, which is precisely what has beendsred in [Pinto et al. 2001].

Unfortunately in some cases, such a generalization mightetleced toALL-values,
which contains no information at all. Such is the case forgbguence, above, as the
most specific generalization ¢EducY), (EducO) and(RetY) is (ALLcat, ALLage).

Notice in this respect that considering the bloBKEduc Y) andB(Educ O) only, leads
to the generalizatiofEduc ALL_Age) and that, displaying(Educ ALL_Age), ¢) with sup-
port 05 as a result, means that 50% of the blocks are charactenzspdeializations of
(Educ ALL_Age) and support.

However, the generalization as shown above is not uniquiedd, the generalization
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(ALL_Cat,Y) of B(EdugY) andB(RetY) would also lead to a similar result, namely
((ALL_Cat,Y),¢) with support 05.

Therefore, the two main shortcomings of such an extensithait(i) it requires further
computation for obtaining the possible generalizationsl, that(ii) several results exist,
which might be confusing for a naive user.

6. EXPERIMENTS

The algorithms of our approach have been implemented in D&vaExperiments have
been carried out both on synthetic and real data, aimingidystg the scalability issues
with respect to the main parameters when mining multi-disiemal database®.g.,the
support threshold, the number of dimensions, the numbdeofents in every dimension).

Firstly, we study the impact of taking hierarchies into agmo Namely, we show that
considering the different levels of hierarchies as sepaatitibutes and running our previ-
ousM?SPalgorithm in this case, is less efficient than runnindSP. Secondly, we discuss
the behavior of our algorithms in the case of various syithadtasets, and thirdly, the
case of a real dataset is considered.

6.1 Hierarchy Management: M2SPvs. M3SP

As mentioned previously, taking hierarchies into accosrtrne of the main features of
the current approach, compared to that of [Plantevit et @52 On the other hand,
instead of considering herarchies as predefined treeslwwelomain values, it is possible
to consider every non root level of every hierarchy as a sg¢paittribute and to incorporate
the corresponding values into the dataset accordingly.

For example the tuplél, Berlin,been in the block(EducY) of Fig. 4 can be replaced
with (1,EU, Berlin,drink, a_drink, been asBerlin' = {Berlin,EU,ALL o} andbeer =
{beera.drink,drink, ALLpoq}. However, it should be noticed in this respect that such a
transformation requires that all hierarchies be perfentiight-balanced treeg€.,trees in
which all paths from the root to a leaf have the same length).

We recall that this way of managing hierarchies has beengs¢8rikant and Agrawal
1996] in the case of a single analysis dimension (see SeBt)nHowever, in the case of
multiple analysis dimensions such a transformation resalt significant increase of the
number of analysis dimensions, namely the number of arsatlisiensions in the trans-
formed dataset is the sum of the heights of all hierarchiéselt on the dimensions of
D 4. Then, with the transformed dataset at haldSPcan be run in order to compute all
frequent multi-dimensional sequences.

The experiments reported below show that such a transfamiatmuch less efficient
than a direct hierarchy management WwilRSP. Fig. 7(a) and Fig. 7(b) show th3SP
outperformavi?SPwhen applied on the transformed dataset. We note that, §& tixper-
iments, the cost of the transformation is not taken into antm the reported runtimes.

Considering a synthetic dataset with 800 blocks and 4 analysis dimensions, Fig. 7(a)
describes the behavior of the runtimes of the two approdgtleedV®SPand the simulation
of hierarchy management wit2SP) for values of the minimum support threshold ranging
from 100% down to 10%. Moreover, in this experiment, the agerheight of hierarchies
is 4, implying that taking hierarchies into account Wi SPrequires the transformation
of the original dataset with 4 analysis dimensions into a dataset over 16 analysis di-
mensions.
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It can be seen that the runtimeMPSPis significantly greater than that M3SP, as the
runtime ofM3SPfor minsup= 10% is less than that &fi2SPfor minsup= 100%.

Next, we consider a synthetic dataset with@I0 blocks and a support threshold equal
to 50%. Fig. 7(b) describes the behavior of the runtime®88P and the simulation
of hierarchy management withl>SP for values of the number of analysis dimensions
ranging from 1 to 5. The figure exhibits an important diffesef runtime values when
the number of analysis dimensions increases, showingttigahot possible tefficiently
manage hierarchies usin?SP.

T T 600 T T
M2SP —e— M2SP —e—
M3SP - M3SP &

500

300

Runtime (s)
Runtime (s)

200

100

o g o N s + . .
1 09 08 07 06 05 04 03 02 o0l 115 2 25 3 35 4 45 5
Minimum Support Threshold ID_Al

(&) Runtime over minimum support (b) Runtime over the number of analysis
threshold dimensions

Fig. 7. Comparison betweai*SPandM?SP

6.2 Experiments on Synthetic Datasets Using M3SP

In this section, we study the scalability MFSPaccording to several parameters, namely
the minimum support threshold, the size of the dataset ésgad in number of blocks),
the number of analysis dimensions, the height and the dégeeg¢he average number of
direct successors) of the hierarchies.

The results of these experiments are summarized in Figut@s 8he default values of
the parameters, when fixed, are as follows:

—the minimum support threshold is set to 30%,
—the number of blocks is set to 231D0,
—the number of analysis dimensions is set to 5, and

—the height and the degree of the hierarchies are resplycteeto 5 and 3, which
results in about 250 distinct domain values per analysis dimension.

Fig. 8 describes the behavior M SPin terms of runtime and memory usage according to
the size of the dataset, expressed in number of blocks,denisy that each block contains
10 tuples.

Fig. 8(a) and Fig. 8(b) show how the runtimeMPfSPbehaves according to the size
of the dataset. In Fig. 8(a), the number of analysis dimerssianges from 3 to 10 and in
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Fig. 8(b), the support threshold ranges from 90% down to 20%an be seen from these
two figures that the runtime roughly increases proportigrialthe size of the dataset, but
still keeps with acceptable values. Indeed, the runtime do¢ exceed 600 seconds in the
worst cased,e.,when the dataset contains 5000 blocks (that is 00,000 tuples), and
when 10 analysis dimensions or a minimum support thresifd2@% are considered.

On the other hand, Fig. 8(c) describes the memory usalygsPaccording the size of
the dataset for two different values of the minimum suppgmeshold (50% and 20%). It
can be seen that memory usage roughly increases propdistitmthe size of the dataset,
but is independent from the minimum support threshold value
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dataset

Fig. 8. Experiments for the size of the dataset

Fig. 9 describes the behavior MPSPin terms of runtime, memory usage and number
of maf-sequences according to the minimum support thrdshol
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Fig. 9(a) and Fig. 9(b) show how the runtimeMfSPbehaves according to the mini-
mum support threshold for different numbers of analysisatigionsice.,respectively 2, 5
and 10 dimensions for Fig. 9(a), and 15 and 20 dimensionsifpr&b)). Obviously, the
runtime increases wheminsupdecreases and when the number of analysis dimensions
increases. However, we observe that, for up to 10 analysiemkions, the runtime does
not exceed 25 seconds, even when the minimum support tHdestioe is below 20%. On
the other hand, for 20 analysis dimensions, the runtimeamas very fastly for minimum
support values below 50%, but still, remains less than 666rsts.

Fig. 9(c) shows how the numbers of frequent atomic sequeacdsmaf-sequences
behave with respect to the minimum support threshold. Thelmu of maf-sequences
obviously increases exponentially when the minimum sugihoeshold decreases, but we
notice that the reduction of the number of frequent atomgueaces, compared to the
number of maf-sequences, is about 50%. This shows thatdemirsyj maf-sequences is an
important issue of our approach, regarding efficiency.

Fig. 9(d) shows how the memory usage MfSP behaves according to the support
threshold. We point out thafl®SPis robust according to this parameter. Indeed, even if
the memory usage dfi*SPincreases when the support threshold decreases, the slepe h
low values and does not significantly increase, even whemthanum support threshold
value is below 20%.

Fig. 10 describes the behaviordfSPaccording to the number of analysis dimensions.
Fig. 10(a) shows the behavior of the runtimevbfSPaccording to the number of analysis
dimensions. Although increasing significantly, the ruriis still less that 1000 seconds
for up to 10 analysis dimensions and a low minimum suppogdhold value (20%). As
shown in Fig. 10(b), this increase mainly comes from the ttaat the number of atomic
sequences increases significantly with the number of aisalymensions.

Fig. 10(c) describes the memory usageMfSPaccording to the number of analysis
dimensions. It should be noticed that memory usage doesaadse significantly when
the value of the minimum support threshold decreases. Owottier hand, we observe
that the slopes of the two plots are decreasing when the nuaftanalysis dimensions
increases, which shows that, even for large numbers of aisalymensions (more than
15), the memory usage should still be acceptailxde @bout 1500 Mb).

To study the behavior dfi3SPaccording to the “topology” of the hierarchies, we carried
out experiments on 10 datasets with the same parameterltdeddues as given at the
beginning of the current subsection, but with differenties for the degree and the height
of the hierarchies associated to analysis dimensions.

Fig. 11 describes the behavior MfSPaccording to the degree of the hierarchies. Fig.
11(a) shows the runtime df*SPwhen the degree of hierarchies changes. Obviously,
decreasing the value of the minimum support threshold esghat runtime increases sig-
nificantly. However, it should be noticed that increasing degree of the hierarchies does
not significantly affect the performance.

Fig. 11(b) shows that, although the number of frequent at@®juences increases with
the degree of hierarchies, the number of maf-sequencesatss. This again shows that
considering maf-sequences is an important feature of quioagh regarding efficiency.

Moreover, as shown in Fig. 11(c), the memory usage is stdeptable i(e., close to
1,000 Mb) according to the degree of the hierarchies, and agasimost independent
from the minimum support threshold value.
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Fig. 9. Experiments for the minimum support threshold

Fig. 12 describes the behaviorfSPaccording to the average height of the hierarchies
associated to the analysis dimensions.

Fig. 12(a) shows the runtime over the average height of tbaththies. We note that,
although increasing significantly, the runtime is less tha®00 seconds for hierarchies
of height at most 7, even when considering a low minimum sughoeshold valuei(e.,
30%). However, the slope of the plot increases significamtign the minimum support
threshold is lower than 50%, because, in this chstSPgoes deeper in the search space.
As an example, the search space for 5 analysis dimensionareaderage depth of 10 is
modelled as a lattice with 50 levels.

As shown in Fig. 12(b), the number of frequent atomic segestiricreases when the
average depth decreases, but we stress that such is notsta@ban considering maf-
sequences. This again shows that considering maf-secaisnae important issue of our
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Fig. 10. Experiments for the number of analysis dimensions

approach regarding efficiency.

Regarding memory usage, we note from Fig. 12(c) that, on tleehand, it is quite
stable when the average height of hierarchies increaségrathe other hand, it does not
significantly depend on the minimum support threshold value

6.3 Experiments on Real Datasets

We also carried out experiments on real data from the Marg&iepartment of EDF (Elec-
tricité de France), in the context of a research collalhondbetween EDF Research and
Development and LIRMM laboratory, aiming at studying OLARnMg for discovering
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non typical temporal evolutions in data cubes

The two considered datasets, referred to as EDF1 and EDBZrilde the marketing
activity, based on a very large customer database (aboli@B36ustomers). The dataset
EDF1 (Fig. 13(a) and Fig. 13(b)) contains 8 blocks and 6 aislgimensions, and the
dataset EDF2 (Fig. 13(c) and Fig. 13(d)) contains 85 blocksanalysis dimensions. In
both cases, the average height of the hierarchies is about 2.

Fig. 13(a) and Fig. 13(c) describe the behavior of the ruatiiM3SP according to
the minimum support threshold for the two datasets. We rateruntimes in the case of
the dataset EDF1 are of the same order as those in the casatlétsy data. However, in
the case of the dataset EDF2, the runtime exceéesld0lseconds for low support values,

1The authors would like to thank Frangoise Guisnel, Sabioeti&r and Marie-Luce Picard from EDF R&D for
providing real data to assess our approach.
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which is twice as much as in the worst case of synthetic dista3dis is due to the fact
that the number of maf-sequences is very important in ttie.ca

Fig. 13(b) and Fig. 13(d) describe the behavior of the numbéfrequent atomic and
maf-sequences according to the minimum support thresbolthé two datasets. Interest-
ingly enough, it can be seen in both cases that the numberfe$es@ences is much lower
than that of frequent atomic ones. The ratio is about 10%c¢hvis much lower than that
observed in the case of synthetic data. This clearly confimasnterest of mining maf-
sequences first, as this incures a drastic reduction of thdauof candidate sequences in
the subsequent steps of the computation.

Moreover, these experiments show that, usifiRSP, relevant rules involving several
levels of hierarchies could be found. As an example, we hawsidered one reference
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dimension decribing the type of heating system of customkrses along with the fol-
lowing three analysis dimensions, the description of whgcsimplified for confidentiality
reasons:

(1) the type of contract for which a two-level hierarchy idided (contract type general-
ized into contract category).

(2) thelocation for which a three-level hierarchy is defi(reaimely, town generalized into
district and district generalized into area), and

(3) the type of place where the customers stay (e.g., appattimdividual house,...).

In this setting, fominsup= 50%, the following multi-dimensional sequence was found to
be frequent:

({(Opt1,PACA Appt), (Optl,BordeauxHousg}, {(Opt2,North, Appt)})
meaning that, for at least half of the types of heating system

(1) customers living in th®ACAdistrict and staying in an appartment subscribed a con-
tract of categoryO ptl at the same time as customers living in the t&andeauxand
staying in an invidual house, also subscribed a contracategoryOptl, and then

(2) customers living in th&lorth area and staying in an appartment subscribed a contract
of categoryOpt2.

The users showed interest in this frequent pattern, simegéaled an unexpected subscrip-
tion sequence concerning customers staying in locatiotiseo$outh of France and those
staying in the north area of France.

On the other hand, it should be clear that such a pattern)vimgpseveral analysis
dimensions with non trivial hierarchies, could not haverbdescovered using standard
approaches that cannot deal with multi-dimensional andifawel sequences.

6.4 Discussion

The experiments on both synthetic and real datasets refiorthis section show that our
approach allows tefficientlymine frequent multi-dimensional and multi-level sequence
from huge datasets. Compared to the preliminary versiohisftork in [Plantevit et al.
2006], the algorithms have been significantly improved. tagor improvements are the
following:

—In Step 1, maf-sequences are mined according to a BUC-lsdssdgy, instead of an
Apriori-like strategy, as done in [Plantevit et al. 2006].

—The transformation of the underlying database preserntétand of Section 5 allows
for a better memory usage than handling the dataset itsetfpae in [Plantevit et al.
2006].

—In Step 2, based on the transformation mentioned abovestamgard algorithm for
mining frequent sequences can be used. Having comparedfitieneies of these al-
gorithms, SPADE has shown the best performance. Thus, lgasitam was chosen,
instead of PSP, as done in [Plantevit et al. 2006].

We note that our approach may lead to the study of the rekftiprbetween the moving
up and down in the hierarchies and the tuning of the minimuppstt threshold. To
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see this, given a multi-dimensional itean= (dy, ..., dm) letlevel(@) = SI='l; where, for
i=1,...,m, I is the level ofd; in the hierarchyH;.

Then, given a minimum support threshahdnsup the average level of all levels of the
frequent maf-sequences can provide information on howaheswofminsu prelates to the
average level of the items occurring in frequent sequences.

One could even think of a pre-processing phase to computesetpfences for some
given values ofminsup In this way, one could not only get efficiently the frequent
multi-dimensional sequences given a minimum support bolelqas the output of the pre-
processing phase could be used to optimize the computaliondlso, get the appropriate
minimum support threshold value, given a desired averagd & detail in the frequent
multi-dimensional sequences to be computed.

Although this issue has not been investigated in the pragerk, it can be considered
as a valuable extension of our approach.

7. CONCLUSION

In this paper, we have proposed a novel approach for minirlg-adimensional and multi-
level sequential patterns, according to which, contratpiéowvork from [Pinto et al. 2001;
de Amo et al. 2004; Yu and Chen 2005], several analysis dirnesst several detailed
levels can be taken into account.

We have provided formal definitions and properties from \Wwhatgorithms have been
designed and implemented. Experiments on synthetic ahdassets have been reported
and show the interest and the scalability of our approach.

This work offers several research perspectives. First, estioned above, the study of
the relationship between the moving up and down in the héeras and the tuning of the
minimum support threshold can be an interesting extenditimegoresent work.

On the other hand, the efficiency of the extraction could Heaaned by considering
condensed representations of the mined knowledge, bast grotions of closed, free,
or non-derivable patterns [Mannila and Toivonen 1996; Bescget al. 1999a; 1999b;
Pei et al. 2000; Burdick et al. 2001; Zaki and Hsiao 2002; €adand Goethals 2002;
Boulicaut et al. 2003; Zaki 2004; Bonchi and Lucchese 20@8¢€&s et al. 2006].

Finally, we are aware that considering maf-sequences tergenthe frequent sequences
prevents us from extracting all most specific sequences. i$lsio because such sequences
may contain items that do not occur in maf-sequences, argl tamnot be mined by our
approach. Coping with this issue is another interestingresibn of the present work that
we plan to investigate in the near future.
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