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Multi-dimensional databases have been designed to provide decision makers with the necessary

tools to help them understand their data. Compared to transactional data, this framework is par-

ticular as the datasets contain huge volumes of historized and aggregated data defined over a set of

dimensions, which can be arranged through multiple levels of granularities. Many tools have been

proposed to query the data and navigate through the levels of granularity. However, automatic

tools are still missing to mine this type of data, in order to discover regular specific patterns. In

this paper, we present a method for mining sequential patterns from multi-dimensional databases,

taking at the same time advantage of the different dimensions and levels of granularity, which is

original compared to existing work. The necessary definitions and algorithms are extended from

regular sequential patterns to this particular case. Experiments are reported, showing the interest

of this approach.

Categories and Subject Descriptors: H.2.8 [Information Systems, Database Management]: Database applica-
tions, data mining

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: Sequential Patterns, Frequent Patterns, Multi-Dimensional

Databases, Hierarchy, Multi-Level Patterns.

1. INTRODUCTION

Multi-dimensional databases have been studied for more than 10 years. They provide an
easy-to-use interface for decision makers to navigate through their data. The modeling
of such databases and the operations that can be applied are now well defined, and im-
plemented by the main editors of database management systems (e.g. Oracle, Microsoft,
IBM). However, only a few methods have been designed to automatically mine the relevant
knowledge from these large amounts of historized data. In this framework, sequential pat-
terns are suitable as they aim at discovering correlations between events through time. For
instance, rules likeMany customers buy first a TV and a DVD player at the same time, and
then a recordercan be discovered. Scalable methods and algorithms to mine such rules
have been proposed in the literature [Srikant and Agrawal 1996]. As for association rules,
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the efficiency of the discovery is based on thesupportwhich indicates to which extend data
from the database contains the patterns.

However, these methods cannot take advantage of the framework of multi-dimensional
databases, because:

—they only consider one dimension to appear in the patterns,which is usually called the
productdimension,

—they do not consider hierarchies.

Some studies claim to combine several dimensions [Pinto et al. 2001; de Amo et al.
2004; Yu and Chen 2005]. However, we argue here that they do not provide a complete
framework for multi-dimensional sequential pattern mining. The way we consider multi-
dimensionality is indeed generalized in the sense that patterns contain several dimensions
combined over time [Plantevit et al. 2005]. Moreover, thesedimensions are considered at
different levelsof granularity so as to automatically mine the most relevantrules. Note that
mining rules at very high levels of granularity leads to trivial rules, whereas mining rules
at very low levels of granularity is not always possible because the support value becomes
too low.

In our approach, we aim at building rules likeWhen the sales of soft drinks are high in
Europe, exports of Perrier in Paris and exports of soda in theUS become high later on.
This rule not only combines two dimensions (Location and Product) but it also combines
them over time and at different levels of granularity (as Perrier is considered as a kind of
soft drink). As far as we know, no method has been proposed to mine such rules, except in
our first proposal [Plantevit et al. 2006].

In order to mine the most relevant sequences, our approach isdesigned so as to take
into account the most appropriate level of granularity, including partially instanciated tu-
ples in sequences where the highest level is considered. More precisely, our algorithms are
designed in order to mine frequent multi-dimensional sequences that may contain several
levels of hierarchy, including the most general, usually referred to as theALL value. How-
ever, in order to avoid mining non relevant patterns, only the most specific patterns (meant
to be the most informative) are shown to the user.

The paper is organized as follows: Section 2 introduces a motivating example illustrat-
ing the goal of our work, and then, Section 3 presents existing work concerning multi-
dimensional databases, multi-dimensional approaches andsequential pattern mining. Sec-
tion 4 introduces basic definitions and Section 5 presentsM3SPalgorithm for mining multi-
dimensional and multi-level sequential patterns. Section6 presents the results of the exper-
iments performed on synthetic and real data. In Section 7, weconclude and present future
research directions based on the present work.

2. MOTIVATING EXAMPLE

In this section, we present an example to illustrate our approach. This example will be
used throughout the paper as a running example.

We consider a fact tableT in which transactions issued by customers are stored. More
precisely, we consider a setD containing six dimensions denoted byD, Cat, Age, Loc,
Prod andQty, where:

—D is thedateof transactions (considering four dates, denoted by 1,2,3 and 4),
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—Cat is the customercategory(considering two categories, denoted byEducandRet,
standing for educational and retired customers, respectively),

—Ageis theageof customers (considering two discretized values, denotedby Y (young)
andO (old)),

—Loc is thelocationwhere transactions have been issued (considering 6 locations, denoted
by NY (New York),LA (Los Angeles),SF (San Francisco),Paris, LondonandBerlin),

—Prod is theproductof the transactions (considering seven products, denoted by chocolate,
pretzel, whisky, wine, beer, soda, M1 andM2), and

—Qtystands for thequantityof products in the transactions (considering nine quantities).

Table I shows the tableT in which, for instance, the first tuple means that, at date 1, an
educational young customer bought 50 units of beer in Berlin.

Let us now assume that we want to extract all multi-dimensional sequences that deal
with products and the location where they have been bought, and that are frequent with
respect to the groups of customers and their age. To this end,we consider three sets of
dimensions as follows:

(1) the dimensionD, representing the date,

(2) the two dimensionsLoc andProd that we callanalysis dimensions, and which values
appear in the frequent sequences,

(3) the two dimensionsCat andAge, which we callreference dimensions, according to
which the support is computed.

Thus, tuples over analysis dimensions are those that appearin the items that constitute the
sequential patterns to be mined. Moreover, the table is partitioned into blocks according
to tuple values over reference dimensions and the support ofa given multi-dimensional
sequence is the ratio of the number of blocks supporting the sequence over the total number
of blocks. Fig. 4 displays the corresponding blocks in our example.

In this framework, the multi-dimensional sequence〈{(Berlin,beer), (Berlin, pretzel)},
{(London, wine)}〉 has support14, since the partition according to the reference dimensions
contains four blocks, among which one supports the sequence. This is so because, in the
first block shown in Fig. 4(1),(Berlin,beer) and(Berlin, pretzel) both appear at the same
date (namely date 1), and(London,wine) appears later on (namely at date 3).

The semantics of thereference dimensionsis the following. In our example,CG and
A are these reference dimensions. In this context, a frequentsequences = 〈{(c1, p1),
(c2, p1)}, {(c2, p2)}〉means that in most cases, some customers sharing the same customer-
group and age, first bought productp1 in city c1 and in cityc2 at the same time, andthen
bought productp2 in city c2.

This kind of patterns is meant at discovering trends among customers according to their
customer-group and age. However, it could be the case that the reference dimension is the
identifier of a single customer. In this case, the patterns relate to thesamecustomer.

It is important to note that, in the approach of the present paper, more general patterns
can be mined, based on additional information provided byhierarchiesover dimensions.
The considered hierarchies allow for dealing with items at different levels of granularity,
and this implies that further patterns can be mined.

To see this in the context of our running example, consider a support threshold of12 and
two arbitrary locationsλ andλ′. Then, no sequence of the form〈{(λ, pretzel)},{(λ′,M2)}〉
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is frequent. On the other hand, in the first and third blocks ofFig. 4,pretzelandM2 appear
one after the other, according to the date of transactions, but in different locations. To take
such a situation into account, we consider a specific constant, denoted byALLLoc, standing
for any location and then, the sequence〈{(ALLLoc, pretzel)},{(ALLLoc,M2)}〉 is frequent
since its support is equal to24 = 1

2.
Similarly, (Berlin,M2) appears only in block (2) of Fig. 4, and thus the sequence
〈{(Berlin,M2)}〉 is not frequent. But, if we consider the domain valueEU as agener-
alization of the citiesBerlin, LondonandParis, then it is easy to see that the sequence
〈{(EU,M2)}〉 is frequent, since it can be considered as appearing in threeof the blocks
shown in Fig. 4, namely in blocks (1), (2) and (3).

Table I. Running example
D Cat Age Loc Prod Qty
1 Educ Y Berlin beer 50
1 Educ Y Berlin pretzel 20
2 Educ Y London M2 30
3 Educ Y London wine 20
4 Educ Y NY M1 40
1 Educ O LA soda 20
2 Educ O Paris wine 30
2 Educ O Berlin pretzel 10
3 Educ O Paris M2 20
1 Ret Y London whisky 20
1 Ret Y London pretzel 20
2 Ret Y Berlin M2 30
1 Ret O LA chocolate 50
2 Ret O Berlin M1 20
3 Ret O NY whisky 20
4 Ret O Paris soda 30

ALLLoc

hhhhhhhhhhh

ppppp
NN

NN
N

USA

ww
ww LL

LL
. . . . . . EU

ppp
pp

MM
MM

M

LA NY Chicago Paris London Berlin

Fig. 1. Hierarchy over dimensionLoc

3. RELATED WORK

In this section, we present the context of multi-dimensional databases and the existing
work related to sequential patterns.
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Fig. 3. Hierarchies over dimensionsAge, Cat andQty

(1) Block (Educ,Y)

D Loc Prod
1 Berlin beer
1 Berlin pretzel
2 London M2
3 London wine
4 NY M1

(3) Block (Ret,Y)

D Loc Prod
1 London whisky
1 London pretzel
2 Berlin M2

(2) Block (Educ,O)

D Loc Prod
1 LA soda
2 Paris wine
2 Berlin pretzel
3 Paris M2

(4) Block (Ret,O)

D Loc Prod
1 LA chocolate
2 Berlin M1
3 NY whisky
4 Paris soda

Fig. 4. Block partition ofT (Table I) according toD R = {Cat,Age}

3.1 Multi-Dimensional Databases

A multi-dimensional database∆ can be seen as a relational database defined over a particu-
lar schema, generally referred to as astar schema[Inmon 2003]. In general, a star schema
consists of a distinguished tableϕ with schemaF , called thefact table, andn other tables
δ1, . . . ,δn with schemas∆1, . . . ,∆n, called thedimension tables, such that:

(1) If K1, . . . ,Kn are the (primary) keys ofδ1, . . . ,δn, respectively, thenK = K1∪ . . .∪Kn

is the key ofϕ.

(2) For everyi = 1, . . . ,n, πKi (ϕ)⊆ πKi (δi) (thus eachKi is a foreign key in the fact table
ϕ).
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The attribute setM = F \K is called themeasureof the star schema. Moreover, it is
possible to considerhierarchiesover attributes of the dimension tables, so as to query the
database according to different levels of granularity.

When it comes to mine such a multi-dimensional database∆, the relevant data are “ex-
tracted” from the database through a query, and data mining techniques are then applied to
the answer of the query. In our approach, we follow this strategy in the following way: We
assume that the tableT to be mined is defined through a query on a given multi-dimensional
database∆. The attribute set over whichT is defined is denoted byD and we assume that
D = {D1, . . . ,Dn}. The setD may contain both dimension and measure attributes occur-
ring in the schema of∆, and we call these attributesdimensions. Moreover, dimensions in
D are assumed to be such that:

(1) The hierarchies associated to dimensional attributes in the multi-dimensional database
∆ can be considered so as to mineT at different levels of granularity.

(2) Among all dimensions inD , one is associated with atotally ordereddomain, referred
to as thetime dimension, and according to which sequences are constructed.

(3) A fixed subset ofD , whose elements are calledanalysis dimensions, along with the
associated hierarchies allow the expression of sequentialpatterns. More precisely,
in our approach, a sequential pattern is a sequence of sets oftuples defined over the
analysis dimensions at different levels of granularity.

(4) Another subset ofD , whose elements are calledreference dimensions, allows to par-
tition T into blocks. Given a sequential patternς, the number of blocks that supportς
over the total number of blocks is then defined as thesupportof ς.

We refer to the next section for formal definitions of the concepts just introduced, and we
make the following remarks:

—Regarding the time dimension, it is possible to consider several dimensions, instead of
a single dimension, provided that the cartesian product of the corresponding domain
values be totally ordered. However, as this more general case introduces no further
difficulty, but complicates notation, we restrict our appraoch to a single attribute in this
respect.

—Hierarchies are explicitly used on analysis dimensions only. The level of granularity on
the other dimensions is assumed to befixedfor a given mining task.

—For each analysis dimensionDi in D , all values overDi contained inT are assumed
to be expressed at thesamelevel of granularity, seen as the most specific one for the
considered mining task. However, this level does not need tobe the most specific one in
the hierarchies defined in∆.

3.2 Sequential Pattern Discovery

An early example of research in the discovering of patterns from sequences of events can
be found in [Dietterich and Michalski 1985]. In this work, the idea is the discovery of
rules underlying the generation of a given sequence in orderto predict a plausible sequence
continuation. This idea is then extended to the discovery ofinteresting patterns (orrules)
embedded in a database of sequences of sets of events (items). A more formal approach
in solving the problem of mining sequential patterns is the AprioriAll algorithm presented
in [Mannila et al. 1995]. Given a database of sequences, where each sequence is a list of
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transactions ordered by transaction time, and each transaction is a set of items, the goal
is to discover all sequential patterns with a user-specifiedminimum support, where the
support of a pattern is the number of data-sequences that contain the pattern.

In [Agrawal and Srikant 1995], the authors introduce the problem of mining sequential
patterns over large databases of customer transactions where each transaction consists of
customer-id, transaction time, and the items bought in the transaction. Formally, given a
set of sequences, where each sequence is a list of itemsets, and a user-specified minimum
support threshold (minsup), the problem amounts to find all frequent subsequences,i.e.,
the subsequences that appear a sufficient number of times. Anexample of this type of
pattern isA customer who bought a new television 3 months ago is likely to buy a DVD
player now.

Subsequently, many studies have introduced various methods for mining sequential pat-
terns (mainly in time-related data), most of them being Apriori-like, i.e., based on the
Apriori property which states that any super-pattern of a nonfrequent pattern cannot be fre-
quent. An example using this approach is the GSP algorithm [Srikant and Agrawal 1996],
which has motivated a lot of research work, aiming at improving performance. The main
approaches addressing this issue are SPADE [Zaki 2001], PrefixSpan [Pei et al. 2004],
SPAM [Ayres et al. 2002], PSP [Masseglia et al. 1998], DISC [Chiu et al. 2004] and
PAID [Yang et al. 2006].

3.3 Multi-Dimensional Sequential Patterns

As far as we know, three main propositions have dealt with several dimensions when build-
ing sequential patterns. We briefly recall these propositions below.

The approach of [Pinto et al. 2001] is the first work dealing with several dimensions in
the framework of sequential patterns.

In this work, multi-dimensional sequential patterns are defined over a schemaA1 . . .AmS
whereA1, . . . ,Am are dimensions describing the data andS is the sequence of items pur-
chased by the customers, ordered over time. A multi-dimensional sequential pattern is
defined as a pair((a1, ...,am),s) whereai ∈ Ai ∪ {∗} ands is a sequence. In this case,
(a1, ...,am) is said to be a multi-dimensional pattern. For instance, theauthors consider the
sequence((∗,NY,∗),〈b, f 〉), meaning that customers from NY have all bought productb
and then productf .

Sequential patterns are mined from such multi-dimensionaldatabases either(i) by min-
ing all frequent sequential patterns over the product dimension and then grouping them
into multi-dimensional patterns, or(ii) by mining all frequent multi-dimensional patterns
and then mining frequent product sequences over these patterns. Note that the sequences
found by this approach do not contain several dimensions since the dimension time only
concerns products. Dimension product is the only dimensionthat can be combined over
time, meaning that it is not possible to have a rule indicating that whenb is bought in
Bostonthenc is bought inNY. As our approach allows to mine such knowledge, it can be
seen as a generalization of the work in [Pinto et al. 2001].

Several other proposals directly follow the seminal paper of [Pinto et al. 2001]. In
[Rashad et al. 2007], the authors propose an algorithm called MobilePrefixSpanin order
to discover patterns that describe the movements of mobile users. However, they only
consider consecutive order in their framework. The work in [Stefanowski and Ziembinski
2005; Stefanowski 2007] shows the relevance of multi-dimensional sequential patterns for
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Web Usage Mining. Moreover, the authors propose to use both numeric and symbolic data,
with a specific handling of numeric data. According to this approach, a multi-dimensional
sequence is supported by a multi-dimensional data sequenceif they are closely similar.
However, no algorithm is defined in this paper. In [Zhang et al. 2007], the authors propose
the mining of multi-dimensional sequential patterns in distributed systems.

In [Yu and Chen 2005], the authors consider sequential pattern mining in the framework
of Web Usage Mining. Even if three dimensions (namely, pages, sessions and days) are
considered, these dimensions are very particular since they belong to a single hierarchized
dimension. Thus, the sequences mined in this work describe correlations between objects
over time by considering only one dimension, which corresponds to the web pages.

In [de Amo et al. 2004], the approach is based on first order temporal logic. This
proposition is close to our approach, but more restricted since(i) groups used to compute
the support are predefined, whereas we consider the fact thatthe user should be able to
define them (see reference dimensions below), and(ii) several attributes cannot appear in
the sequences. The authors claim that they aim at considering several dimensions but they
have only shown one dimension for the sake of simplicity. However, the paper does not
provide any complete proposition to extend this point toreal multi-dimensional patterns,
as we do in our approach.

3.4 Multi-Level Rules

The work in [Srikant and Agrawal 1996] introduces the hierarchy management in the ex-
traction of association rules and sequential patterns. Theauthors suppose that the hierar-
chical relations between the items are represented by a set of hierarchies. They make it
possible to extract association rules or sequential patterns according to several levels of hi-
erarchy. Transactions are modified by adding, for every item, all ancestors in the associated
hierarchy, and then, the frequent sequences are generated.However, this approach cannot
be scalable in a multi-dimensional context, simply becauseadding the list of all ancestors
for each item and each transaction is not efficient. Indeed, such a hierarchy management
implies that the size of the database be multiplied by the maximum height of hierarchies to
the number of analysis dimensions. We show in Section 6 (see Fig. 7) that such a hierarchy
management is not tractable for more than three analysis dimensions.

The approach in [Han and Fu 1999] is quite different. The authors tackle the association
rule extraction problem, in such a way that their approach can be adapted to sequential
pattern extraction. Beginning at the highest level of the hierarchy, the rules on each level
are extracted while lowering the support when going down in the hierarchy. The process
is repeated until no rules can be extracted or until the lowest level of the hierarchy is
reached. However, this method does not make it possible to extract rules containing items
of different levels. For examplewineanddrink cannot appear together in such a rule. This
approach thus deals with the extraction ofintra hierarchy levelassociation rules, and does
not address the general problems of extracting sequences atmultiple levels of hierarchy.

As can be seen from this section, the existing work, and especially the one described
in [Pinto et al. 2001] is said to beintra-pattern, since sequences are mined within the
framework of a single description (the so-calledpattern). Moreover rules are only mined
at the same level of granularity. On the other hand, in [Han and Fu 1999], the rules are said
to be intra-level. In this paper, we propose to generalize these studies to inter-leveland
inter-patternmulti-dimensional sequences.
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Compared to our previous work in [Plantevit et al. 2005], themain contribution of
this paper is to take hierarchies into account, whereas in [Plantevit et al. 2005], only two
levels have been considered, namely the most specific level (the values that appear in the
table to be mined), and the most general level (denoted by * in[Plantevit et al. 2005] and
referred to asALL in the present paper). Compared to the preliminary version of this work
in [Plantevit et al. 2006], the present paper offers a detailed and formal presentation of
the approach (see Section 4 and Section 5), as well as computational improvements and
further experiments on both synthetic and real datasets. Weshall come back to this last
issue at the end of Section 6.

4. BASIC DEFINITIONS

4.1 Background

Let D = {D1, . . .Dn} be a set of dimensions. Each dimensionDi is associated with a
(possibly infinite) domain of values, denoted bydom(Di). For every dimensionDi , we
assume thatdom(Di) contains a specific value denoted byALLi .

In order to take into account the fact that items can be expressed according to different
levels of granularity, we assume that each dimensionDi is associated with ahierarchy,
denoted byHi . Every hierarchyHi is a tree whose nodes are elements ofdom(Di) and
whose root isALLi .

As usual, the edges of such a treeHi can be seen asis-a relationships, and thespe-
cialization relation (respectively thegeneralizationrelation) corresponds to a top-down
(respectively bottom-up) path inHi , i.e., a path connecting two nodes when scanningHi

from the root to the leaves (respectively from the leaves to the root).
In the case where no hierarchy is defined for a dimensionDi , we considerHi as being

the tree whose root isALLi and whose leaves are all the elements indom(Di) \ {ALLi}.
We recall in this respect that this paper is a generalizationof our previous work [Plantevit
et al. 2005], where, for every dimensionDi , no hierarchy is considered, and the symbol∗
is used in place ofALLi .

A fact tableT over universeD is a finite set of tuplest = (d1, . . . ,dn) such that, for every
i = 1, . . . ,n, di is an element ofdom(Di) that is a leaf of the associated hierarchyHi . In
other words, we assume that the tableT to be mined contains only most specific values
with respect to all hierarchies over dimensions.

We note that in our approach, the domains of attributes are not restricted to be discrete,
even if each value occurring in the fact tableT is treated as a nominal value. Moreover, it
should be clear that discretizing continuous numerical attributes can be seen as defining a
hierarchy on the corresponding domain.

Since we are interested in sequential patterns, we assume thatD contains at least one
dimension with a totally ordered domain, corresponding to thetimedimension.

Moreover, given a fact tableT overD , for everyi = 1, . . . ,n, we denote byDomT(Di)
(or simplyDom(Di) if T is clear from the context) theactive domainof Di in T, i.e., the
set of all values ofdom(Di) occurring inT along with their generalizations according to
Hi . In the remainder of this paper, we consider only values in the active domains.

Given an elementx in Dom(Di) and the associated hierarchyHi , we introduce the fol-
lowing notation:

—down(x) andup(x) denote respectively the set of alldirect specializationsand the sin-
gleton containing the onlydirect generalizationof x.

ACM Journal Name, Vol. ., No. ., . 20...
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More precisiely, ifx is not a leaf inHi , thendown(x) is the set of ally in Dom(Di) such
thatHi contains an edge fromx to y; otherwise,down(x) is set to be equal to the empty
set. Similarly, ifx 6= ALLi , up(x) is the set containing the only elementy in Dom(Di)
such thatHi contains an edge fromy to x; otherwise,up(x) is set to be equal to the empty
set.

—We denote byx↑ (respectivelyx↓) the set containingx along with all generalizations
(respectively specializations) ofx with respect toHi that belong toDom(Di).

Clearly, for everyi = 1, . . . ,n, we haveALL↑i = {ALLi}, ALL↓i = Dom(Di), and, ifx is a leaf
of Hi thenALLi ∈ x↑ andx↓ = {x}. We also note that, for everyx, we havedown(x)⊆ x↓,
up(x)⊆ x↑ and{x}= x↑∩x↓.

EXAMPLE 1. Referring back to our motivating example, the considered set of dimen-
sionsD is defined byD = {D,Cat,Age,Loc,Prod,Qty}. Considering the fact table shown
in Table I, we have for instance, Dom(Prod)= {beer,soda, wine,whisky, pretzel,chocolate,
M1,M2}.

Fig. 2 shows the hierarchy HProd associated to the dimension Prod. It can be seen from
this figure that down(drink) = {s drink,a drink} and up(drink) = {ALLProd}.

Moreover, Fig. 2 also shows that drink is a generalization ofsoda, that is drink∈ soda↑

and soda∈ drink↓. We also note that, as soda is a leaf of HProd, down(soda) = /0 and
soda↓ = {soda}.

On the other hand, as no hierarchy is associated to the dimension D, the implicit asso-
ciated hierarchy HD is defined accordingly, that is, the root of HD is ALLD and all other
values in Dom(D) are leaves of HD.

We end this section but pointing out that hierarchies on dimensions could be defined as
directed acyclic graphs(DAGs). However, although this more general case can be con-
sidered in our approach, this would imply redundancies in the computation of frequent
sequences. We shall come back to this point in Section 5.

4.2 Dimension Partitioning

For each table defined on the universeD , we consider a partitioning ofD into four sets:

—D t contains a single dimension, called thetemporaldimension,
—DA contains theanalysisdimensions,
—D R contains thereferencedimensions, and
—D I contains theignoreddimensions.

Roughly speaking, in our approach, sequences are constructed according to the temporal
dimension inD t whose domain values are assumed to betotally ordered, and the tuples
appearing in a sequence are defined over the analysis dimensions ofDA . Note that usual
sequential patterns only consider one analysis dimension (generally corresponding to the
products purchased or the web pages visited).

The setD R allows to identify the blocks of the database to be counted when computing
supports. This is so because the support of a sequence is the proportion of those blocks that
“support” the sequence. Note that, in the case of usual sequential patterns and of sequential
patterns from [Pinto et al. 2001] and [de Amo et al. 2004], thesetD R is reduced to one
dimension, namely thecid dimension in [Pinto et al. 2001] and theIdG dimension in
[de Amo et al. 2004].
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The setD I describes the ignored dimensions,i.e.,those dimensions that are used neither
to define the date, nor the blocks, nor the patterns to be mined. Notice thatD I may be
empty.

Based on such a partitioning ofD , and using a slight abuse of notation, each tuple
c = (d1, . . . ,dn) of T can be written asc = (t,a, r, i) wheret, a, r andi are the restrictions
of c onD t , DA , D R andD I , respectively.

Given a tableT, the projection overD t ∪DA of the set of all tuples inT having the same
restrictionr overD R is called ablock. More formally, given a tupler in πDR (T), the cor-
responding block, denoted byB(T, r), or simply byB(r) whenT is understood, is defined
by the relational expressionπD t∪DA (σDR =r(T)). Moreover, we denote byB (T,D R ), or
simply byB (D R ) whenT is understood, the set of all blocks that can be constructed from
T andD R .

In our running example, we considerD t = {D}, DA = {Loc,Prod}, D R = {Cat,Age},
andD I = {Qty}. Fig. 4 shows the four blocks ofB (D R ) that can be constructed from
tableT of Table I andD R as specified just above.

4.3 Multi-Dimensional Items and Itemsets

Given a tableT over a setD of n dimensionsD1, . . . ,Dn, over which hierarchies are as-
sumed, we consider a fixed partitioning{D t ,DA ,D R ,D I } of D and we assume thatDA is
of cardinalitym. In this setting, we define the fundamental concepts of item and itemset in
the framework of multi-dimensional data.

DEFINITION 1 – MULTI -DIMENSIONAL ITEM. A multi-dimensional itemis a tuple
a=(d1, . . . ,dm) defined overDA , that is, for every i= 1, . . . ,m, Di ∈DA and di ∈Dom(Di).

It is important to note that multi-dimensional items can be defined with values at any level
of the hierarchies associated to analysis dimensions. For instance, in the context of our
running example,(drink,USA) and(s drink,Paris) are multi-dimensional items.

Since multi-dimensional items are defined at different levels of hierarchies, it is possible
to compare them using a specificity relation defined as follows.

DEFINITION 2 – ITEM SPECIFICITY RELATION . For all multi-dimensional items a=
(d1, . . . ,dm) and a′ = (d′1, . . . ,d

′
m), a′ is said to bemore specificthan a, denoted by a�I a′,

if for every i= 1, . . . ,m, d′i ∈ d↓i .

EXAMPLE 2. Referring back to our running example, we have:

—(USA,drink)�I (USA,soda), because USA∈USA↓ and soda∈ drink↓.

—(EU,a drink)�I (Paris,wine), because Paris∈ EU↓ and wine∈ a drink↓.

However,(Paris,wine) and (USA,soda) are not comparable according to�I , because
Paris and USA are not comparable with respect to the corresponding hierarchy over the
dimension Loc,i.e.,neither Paris∈USA↑ nor Paris∈USA↓ holds.

It is easy to see that the relation�I is a partial ordering over the set of all multi-dimensional
items. In other words, the relation�I defined overDom(DA ) is reflexive, anti-symmetric
and transitive.

Moreover, in order to avoid redundancies in the extracted patterns, comparable items can
not belong to the same itemset. Therefore, as stated in the following definition, two items
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can belong to the same itemset only if they are not comparableaccording to the partial
ordering�I .

DEFINITION 3 – ITEMSET. An itemsets = {a1, . . . ,ak} is a non-empty set of multi-
dimensional items such that, for all distinct i, j in {1, . . . ,k}, ai and aj are not comparable
with respect to�I .

For instance, in the context of our running example,{(Paris,wine),(USA,a drink)} is an
itemset, whereas{(Paris,wine),(EU,a drink)} is not. This is so because(EU, a drink)�I

(Paris,wine).
The basic notions of sequence and of support of a sequence aredefined in the next

section.

4.4 Multi-Dimensional Sequences and their Supports

DEFINITION 4 – SEQUENCE. A sequenceς = 〈s1, . . . ,sl 〉 is a non-empty ordered list
where, for every i= 1, . . . , l, si is an itemset.

A sequence of the form〈{a}〉, where a is a multi-dimensional item, is said to be an
atomic sequence.

For instance, in the context of our running example,〈{(Paris,wine)}〉 is an atomic se-
quence, and〈{(Paris,wine),(USA,a drink)}, {(EU, beer)}〉 is a non atomic sequence.

As will be seen later in the paper, atomic sequences play an essential role in our approach
for mining frequent sequences while avoiding redundancies.

The following definition states that computing the support of a sequence amounts to
count the number of blocks ofB (D R ) that support the sequence.

DEFINITION 5 – SUPPORT OF ASEQUENCE. A block B inB (D R ) supportsthe se-
quenceς = 〈s1, . . . ,sl 〉 if there exist t1, . . . ,tl in Dom(Dt) such that:

(1) t1 < .. . < tl
(2) For every i= 1, . . . , l and everyα in si , B contains a tuple c= (ti ,a) such thatα�I a.

Thesupportof ς, denoted by sup(ς), is the ratio of the number of blocks that support the
sequence over the total number of blocks inB (D R ).

Given a support threshold minsup, a sequenceς is said to befrequentif its support is
greater than or equal to minsup,i.e., if sup(ς)≥minsup.

Based on Definition 5 above, an itema is said to be frequent if the sequence〈{a}〉 is
frequent. We recall from the introductory section that, in our approach, frequent sequences
are mined based on the maximal atomic frequent sequences, referred to asmaf-sequences
and defined as follows.

DEFINITION 6 – MAF-SEQUENCES. The atomic sequence〈{a}〉 is said to be amaxi-
mal atomic frequent sequence, or anmaf-sequencefor short, if〈{a}〉 is frequent and if for
every a′ such that a≺I a′, the sequence〈{a′}〉 is not frequent.

As will be seen in the next section, the frequent sequences tobe mined in our approach
are constructed based on maf-sequences. More precisely, maf-sequences provide all multi-
dimensional items that occur in sequences to be mined.

We draw attention on the fact that multi-dimensional items occurring in maf-sequences
are not comparable with respect to�I . Thus, according to Definition 3, any set containing
such multi-dimensional items is an itemset.
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The following example illustrates Definition 5 and Definition 6 in the context of our
running example.

EXAMPLE 3. For a support threshold minsup= 1
2, 〈{(EU, a drink)}〉 is a frequent

atomic sequence because, considering the blocks shown in Fig. 4, we have the following:

(1) BlockB(Educ,Y) (See Fig. 4(1)). According to the hierarchies, we have Berlin∈EU↓

and beer∈ a drink↓. Thus,(EU,a drink) �I (Berlin,beer). As (Berlin,beer) is in
B(Educ,Y), this block supports〈{(EU,a drink)}〉. Notice that a similar reasoning
holds when considering the tuple(London,wine) in this block.

(2) Block B(Educ,O) (See Fig. 4(2)). As Paris is in EU↓ and wine is in adrink↓, for
similar reasons as above, this block supports〈{(EU,a drink)}〉.

(3) Block B(Ret,Y) (See Fig. 4(3)). The same reasoning as in the previous two cases
holds for this block, because London is in EU↓ and whisky is in adrink↓. Thus, this
block also supports〈{(EU,a drink)}〉.

(4) Block B(Ret,O) (See Fig. 4(4)). This block does not support〈{(EU,a drink)}〉 be-
cause it contains no multi-dimensional item more specific than (EU,a drink).

SinceB (D R ) contains4 blocks, the support of〈{(EU,a drink)}〉 is 3
4, and thus, the se-

quence is frequent. Moreover, all multi-dimensional itemsa such that(EU,a drink) ≺I

a, i.e., all multi-dimensional items a= (d1,d2) other than(EU,a drink) and such that
d1 ∈ {EU,Berlin,Paris,London} and d2 ∈ {a drink,beer,wine,whisky}, lead to non fre-
quent atomic sequences since these sequences are supportedby at most one block. As a
consequence, according to Definition 6,〈{(EU,a drink)〉 is an maf-sequence.

It is also important to note that, although the table T contains four specializations
of (EU,a drink), only three of them are counted in the computation of the support of
〈{(EU,a drink)}〉. This is so because(Berlin,beer) and(London,wine) are two special-
izations of(EU,a drink) that belong to the same block,i.e., block B(Educ,Y), which,
according to Definition 5, is counted onlyoncewhen computing sup(〈{(EU,a drink)}〉).

Let us now consider the sequenceς = 〈{(EU,a drink), (EU, pretzel)}, {(EU,M2)}〉
and the same support threshold minsup= 1

2 as above. It can be seen as above that
〈{(EU, pretzel)}〉 and〈{(EU,M2)}〉 are also maf-sequences. Moreover, considering again
successively the blocks shown in Fig. 4, we have:

(1) Block B(Educ,Y) (See Fig. 4(1)). We have Berlin∈ EU↓, London∈ EU↓ and beer∈
a drink↓. Thus,(EU,a drink) �I (Berlin,beer), (EU, pretzel) �I (Berlin, pretzel)
and (EU,M2) �I (London,M2). As the block B(Educ,Y) contains the two tuples
(1,Berlin,beer) and(1,Berlin, pretzel) along with the tuple(2,London,M2), the se-
quenceς is supported by this block.

(2) Block B(Educ,O) (See Fig. 4(2)). As Paris is in EU↓ and wine is in adrink↓, for
similar reasons as above, the sequenceς is supported by this block.

(3) Block B(Ret,Y) (See Fig. 4(3)). The same as in the previous two cases holds for
this block, because London is in EU↓ and whisky is in adrink↓. Thus, B(Ret,Y) also
supports the sequenceς.

(4) Block B(Ret,O) (See Fig. 4(4)). This block does not support the sequenceς.

SinceB (D R ) contains4 blocks, the support ofς is 3
4, and thus, the sequence is frequent.
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In order to define sequence specialization in our approach, we first need to define when an
itemset is more specific than another itemset.

DEFINITION 7 – ITEMSET SPECIFICITY RELATION. Let s and s′ be two itemsets. s′ is
said to bemore specific thans, denoted by s�IS s′, if for every a in s, there exists a′ in s′

such that a�I a′.

For instance, in the context of our running example, the itemsets{(Paris,wine)} and
{(Paris,wine),(USA,soda)} are two specializations of the itemset{(EU,wine)}, i.e., we
have{(EU,wine)}�IS{(Paris,wine)} and{(EU,wine)}�IS{(Paris,wine),(USA,soda)}.
This is so because(EU,wine)�I (Paris,wine).

We note that�IS generalizes set inclusion, in the sense that for all itemsetssands′ such
thats′ ⊆ s, we haves�IS s′.

Moreover, the partial ordering�IS defined above can be extended to sequences, so as to
define sequence specialization as follows.

DEFINITION 8 – SEQUENCESPECIFICITY RELATION . Let ς = 〈s1, . . . ,sl 〉 and ς′ =
〈s′1, . . . ,s

′
l ′〉 be sequences.ς′ is said to bemore specific thanς, denoted byς �S ς′, if

there exist integers1≤ i1 < i2 < .. . < i l ≤ l ′ such that s1�IS s′i1,s2 �IS s′i2, . . . ,sl �IS s′i l .

EXAMPLE 4. In the context of our running example, the following are examples of
sequence specializations:

—〈{(EU,wine)}〉 �S 〈{(Paris,wine)}〉,
since, as seen earlier,{(EU,wine)} �IS {(Paris,wine)}.

—〈{(EU,wine)}, {(EU,beer)}〉 �S 〈{(Paris,wine),(USA,soda)}, {(Berlin,beer)}〉,
since we have{(EU,wine)} �IS {(Paris,wine),(USA,soda)} and
{(EU,beer)} �IS {(Berlin,beer)}.

—〈{(Paris,a drink)}〉 �S 〈{(Paris,wine),(USA,drink)}, {(Berlin,beer)}〉,
since{(Paris,a drink)} �IS {(Paris,wine),(USA,drink)}.

However,ς′ = 〈{(Paris,wine), (USA,soda)}, {(Berlin,beer)}〉 is not more specific than
ς = 〈{(USA,wine)}, {(Berlin,beer)}〉. This is so because(USA,wine) 6�I (Paris,wine),
(USA,wine) 6�I (Paris,soda) and(USA,wine) 6�I (Berlin,beer); thus{(USA,wine)} can-
not be compared with any itemset inς′.

5. M3SP: ALGORITHMS FOR MINING MULTI-DIMENSIONAL AND MULTI-LEVEL

SEQUENTIAL PATTERNS

In this section, we give fundamental properties of frequentmulti-dimensional and multi-
level sequential patterns and then, we detail the algorithms for their extraction. These
algorithms are based on the following two-step process:

(1) Step 1:Maf-sequences are mined. To this end, we follow a strategy inspired from the
BUC algorithm [Beyer and Ramakrishnan 1999].

(2) Step 2:All frequent sequences that can be built up based on the frequent sequences
found in Step 1 are mined. To this end, we use the SPADE algorithm [Zaki 2001].

The correctness of each of these two steps is based on the following basic properties.
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5.1 Basic Properties

In this section, we show the following:

(1) The support of sequences as defined in Definition 5 is anti-monotonic with respect to
the partial ordering�S (see Proposition 1 and Proposition 2). Such a monotonicity
property is indeed required in Step 1 and Step 2 above.

(2) The partially ordered set(Dom(DA ),�I ) is shown to be a lattice, the elements of
which can be generated in a non-redundant manner (see Proposition 4). With such
properties at hand, the processing of Step 1 above can be achieved efficiently.

First, considering atomic sequences, we have the followingproposition.

PROPOSITION 1. For all multi-dimensional items a and a′, if a�I a′ then sup(〈{a′}〉)≤
sup(〈{a}〉).

PROOF: Let a anda′ be such thata�I a′ and letB be a block ofT that supports〈{a′}〉.
Then, by Definition 5,B contains at least one tuplet = (d,α) whered ∈ Dom(Dt), α ∈
Dom(DA ) anda�I α. Therefore, we havea�I a′ �I α and thus,B supports〈{a}〉. Hence
sup(〈{a′}〉)≤ sup(〈{a}〉), which completes the proof. 2

Now, generalizing Proposition 1 above, the following proposition states that the support
measure for sequences is anti-monotonic with respect to�S.

PROPOSITION 2. For all sequencesς andς′, if ς�S ς′ then sup(ς′)≤ sup(ς).

PROOF: Given two sequencesς andς′ such thatς �S ς′, based on Definition 8, and using
similar arguments as in the previous proof, it is easy to see that every blockB that supports
ς′ also supportsς. Therefore, we havesup(ς′)≤ sup(ς), and the proof is complete. 2

We now turn to the properties required to see how to efficiently implement Step 1 above,
i.e.,how to mine maf-sequences.

We first note in this respect that the partially ordered set(Dom(DA ),�I ) can be given a
lattice structure provided a greatest element with respectto�I be considered.

To see this formally, we consider an additional item, denoted by⊤A , which is assumed
to be more specific than any other multi-dimensional item inDom(DA ), that is, for every
a in Dom(DA ), we havea�I ⊤A .

In this setting, given two multi-dimensional itemsa= (d1, . . . ,dm) anda′= (d′1, . . . ,d
′
m),

the least upper bound and the greatest lower bound ofa anda′, denoted bylub(a,a′) and
glb(a,a′) respectively, are defined as follows:

—lub(a,a′) = (u1, . . . ,um) where, for eachi = 1, . . .m, ui is the most specific value in
d↑i ∩ (d′i )

↑.

—glb(a,a′) is defined as follows:
If there existsi in {1, . . . ,m} such thatd↓i ∩ (d′i )

↓ = /0 thenglb(a,a′) =⊤A
Otherwise,glb(a,a′) = (g1, . . . ,gm) where, for eachi = 1, . . . ,m, gi is the most general
value ind↓i ∩ (d′i )

↓.

It is easy to see that for alla anda′ in Dom(DA ), lub(a,a′) andglb(a,a′) are well defined,
showing that(Dom(DA )∪{⊤A },�I ) is a lattice.

In our algorithms, we ignore the additional multi-dimensional item⊤A (as it is of no
practical interest), and Step 1 mentioned above is achievedthrough a depth-first traversal of
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the setDom(DA ), starting from the most general multi-dimensional item(ALL1, . . .ALLm)
that we denote byALLA in the remainder of the paper.

This algorithm follows the same strategy as BUC ([Beyer and Ramakrishnan 1999]) that
we adapt to our particular context. Namely, for each atomic sequence〈{a}〉 found to be
frequent, we generate all the direct successors ofa in (Dom(DA ),�I ) and, for each of
them, we compute its support against thesubsetof the dataset consisting of those tuples
that are more specific thana. In this way, as done in BUC algorithm, the more items
are specialized, the smallest the dataset. We refer to Section 6 for a discussion on the
performance of the corresponding algorithm.

In order to implement the corresponding algorithm, we need an effective and non re-
dundant mean to characterize the direct successors in(Dom(DA ),�I ) of a given multi-
dimensional itema.

To this end, we denote bysucc(a) the set of all direct successors of a given multi-
dimensional itema. More formally, given two multi-dimensional itemsa anda′, a′ is in
succ(a) if:

—a�I a′, and
—for everyα ∈ Dom(DA ), if a�I α�I a′ then eitherα = a or α = a′.

PROPOSITION 3. For every a= (d1, . . . ,dm) in Dom(DA ):

succ(a) = {(d′1, . . . ,d
′
m) | (∃i ∈ {1, . . . ,m})(d′i ∈ down(di)∧ (∀ j 6= i)(d′j = d j))}.

PROOF: Let a′= (d′1, . . . ,d
′
m) be such that(∃i ∈ {1, . . . ,m}) (d′i ∈ down(di)∧(∀ j 6= i)(d′j =

d j)). Then, clearly, we havea�I a′ and for everyα = (δ1, . . . ,δm) such thata�I α�I a′,

we haveδi ∈ d↓i ∩ (d′i )
↑ and for everyj 6= i, δ j = di = d′j . As d′i ∈ down(di), we have

d↓i ∩ (d′i )
↑ = {di,d′i}. Thus, eitherα = a or α = a′, which shows thata′ ∈ succ(a).

Conversely, leta′ be in succ(a). Then, we havea�I a′, entailing that for everyi =

1, . . . ,m, d′i ∈ d↓i . Assuming that(∃i ∈ {1, . . . ,m})(d′i ∈ down(di)∧ (∀ j 6= i)(d′j = d j)) is
not satisfied, means that for everyi ∈ {1, . . . ,m}, we have(i) d′i 6∈ down(di) or (ii) there
exists j 6= i such thatd′j 6= d j .

(i) In this case, there existsδi in Dom(Di) different thandi andd′i such thatδi ∈ d↓i andd′i ∈

δ↓i . For α = (d1, . . . ,di−1,δi ,di+1, . . . ,dm), we havea≺I α ≺ a′, which is a contradiction
with the fact thata′ ∈ succ(a).
(ii) In this case,d′j is in d↓j and we can assume thatd′i is in down(di). Forα = (d1, . . . ,di−1,

d′i ,di+1, . . . ,dm), we havea≺I α ≺I a′, which is again a contradiction with the fact that
a′ ∈ succ(a). Thus, the proof is complete. 2

EXAMPLE 5. In the context of our running example, consider the multi-dimensional
items a= (EU,beer) and a′ = (Paris,a drink). According to Proposition 3 above, we
have:

—succ(a) = {(Paris,beer),(Berlin,beer),(London,beer)},
because down(EU) = {Paris,Berlin,London} and down(beer) = /0,

—succ(a′) = {(Paris,beer),(Paris,wine),(Paris,whisky)},
because down(Paris) = /0 and down(a drink) = {beer,wine,whisky}.

We note that, in this case, succ(a)∩ succ(a′) = {(Paris,beer)}, meaning that if the set
succ(a)∪succ(a′) is to be computed based on a and a′, (Paris,beer) is generated twice.
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As shown in the previous example, one important point in the computation of Step 1 is to
make sure that every sequence〈{a}〉 is considered at most once. In other words, we have
to design a way to generate every multi-dimensional itema only once in our algorithm.

To this end, we assume that the dimensions inDA are ordered according to a fixed
total ordering; letD1 < .. . < Dm be this ordering. Given a multi-dimensional itema =
(d1, . . . ,dm), we denote byρ(a) the integer defined as follows:

—If a = ALLA , thenρ(a) = 0

—Otherwise,ρ(a) is the integer in{1, . . . ,m} such thatdρ(a) 6= ALLρ(a) and for every
j > ρ(a), a j = ALL j .

Then thegenerated multi-dimensional itemsfrom a given multi-dimensional itema are
defined as follows.

DEFINITION 9 – GENERATED MULTI -DIMENSIONAL ITEMS. Let a= (d1, . . . ,dm) be
a multi-dimensional item. The set of multi-dimensional itemsgenerated froma, denoted by
gen(a), is defined by:

—If ρ(a) = 0 then gen(a) = succ(a)

—Otherwise,
gen(a) = {(d′1, . . . ,d

′
m) | (∃i ∈ {ρ(a), . . . ,m})((d′i ∈ down(di))∧ (∀ j 6= i)(d′j = d j))}.

As a consequence of Definition 9, it is easy to see that ifa is such thatρ(a) = 1 then we
havegen(a) = succ(a). The following example illustrates Definition 9 in the context of
our running example.

EXAMPLE 6. Referring back to Example 5, we assume that the dimensions Loc and
Prod are such that Loc< Prod. For a= (EU,beer) and a′ = (Paris,a drink), we have
ρ(a) = ρ(a′) = 2. Thus, according to Definition 9 above, we obtain the following:

—gen(a) = /0, because down(beer) = /0, and

—gen(a′) = {(Paris,beer),(Paris,wine),(Paris,whisky)},
because down(a drink) = {beer,wine,whisky}.

Therefore, when considering generated multi-dimensionalitems instead of successors, the
multi-dimensional item(Paris,beer) is considered only once.

On the other hand, for a= (EU,ALLProd), we haveρ(a) = 1, and thus, the set gen(a) is
equal to succ(a).

In order to show an exhaustive computation of generated multi-dimensional items, for
the sake of simplification, let us consider the following simplified hierarchies taken from
Fig. 1 and Fig. 2, respectively.

ALLLoc→ EU→ Paris ALLProd→ drink→ a drink→ beer

In this case, the generated multi-dimensional items are shown in Fig. 5.

The following proposition states that, using generated multi-dimensional items as defined
above, all multi-dimensional items butALLA are generated in a non redundant manner.

PROPOSITION 4. (1)
S

a∈Dom(DA ) gen(a) = Dom(DA )\ {ALLA }.

(2) For all a and a′ in Dom(DA ), if a 6= a′ then we have gen(a)∩gen(a′) = /0.
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(ALLLoc,ALLProd)

(EU,ALLProd)

mmmmmmmmmm
(ALLLoc,drink)

QQQQQQQQQQQ

(Paris,ALLProd) (EU,drink)

QQQQQQQQQQ

(ALLLoc,a drink)

(Paris,drink) (EU,a drink) (ALLLoc,beer)

(Paris,a drink) (EU,beer)

(Paris,beer)

QQQQQQQQQQ

Fig. 5. Tree of generated multi-dimensional items

PROOF: (1) It is easy to see from Proposition 3 and Definition 9 that for everya in
Dom(DA ), gen(a) ⊆ succ(a). Thus, we have

S

a∈Dom(DA ) gen(a)⊆ Dom(DA ) \ {ALLA },
becauseALLA cannot belong to any setgen(a).

Conversely, leta = (d1, . . . ,dm) ∈ Dom(DA ) \ {ALLA }. Thus we haveρ(a) > 0 and
dρ(a) 6= ALLρ(a), which implies thatup(dρ(a)) 6= /0. Leta′= (d′1, . . . ,d

′
m) be such thatd′ρ(a) =

up(dρ(a)) and, for everyi 6= ρ(a), d′i = di. Then, it is easy to see from Definition 9 that
a∈ gen(a′).
(2) Leta = (d1, . . . ,dm) anda′ = (d′1, . . . ,d

′
m) be such thata 6= a′ andgen(a)∩gen(a′) 6= /0

and letα = (δ1 . . . ,δm) be in gen(a)∩gen(a′). By Definition 9 and item (1) above, we
haveρ(a) > 0 andρ(a′) > 0, and furthermore, there existi in {ρ(a), . . . ,m} and i′ in
{ρ(a′), . . . ,m} such that:
– δi ∈ down(di) and for everyj 6= i, δ j = d j

– δi′ ∈ down(d′i′) and for everyj 6= i′, δ j = d′j .
Assuming thati 6= i′, let us consider thati < i′. Then,i′ > ρ(a), and thusdi′ = ALLi′ . On
the other hand, asδi′ ∈ down(d′i′), δi′ 6= ALLi′ . Since we also haveδi′ = di′ , we obtain a
contradiction. As the casei′ < i is similar, we have thati = i′, which implies thatδi ∈
down(di)∩down(d′i ). SinceHi is a tree, we havedi = d′i , which implies thata = a′. Thus,
the proof is complete. 2

It is important to note from the proof above that item (2) of Proposition 4 does not hold
if Hi is a DAG but not a tree. This is so because in this case, it is possible thatδi be in
down(di)∩down(d′i ) while di 6= d′i . This implies that, if one of the hierarchiesHi is not a
tree, there might exista anda′ such thatgen(a)∩gen(a′) 6= /0.
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5.2 Mining Maf-Sequences

We now focus on the first step of the computation of frequent sequences, namely the com-
putation of maf-sequences. This step, referred to as Step 1 at the beginning of the current
section, is achieved according to Algorithms 1 and 2, inspired from BUC [Beyer and Ra-
makrishnan 1999].

Algorithm 1 performs the following tasks:

(1) Computing all frequent minimal atomic sequences,i.e., all sequences of the form
〈{(ALL1, . . . ,ALLi−1,di ,ALLi+1, . . . ,ALLm)}〉 wheredi is such thatup(di) = {ALLi}.
The set of all such sequences is denoted byL1.

(2) Pruning from the hierarchiesHi (i ∈ {1, . . . ,m}) all valuesdi such that〈{(ALL1, . . . ,

ALLi−1,di ,ALLi+1, . . . ,ALLm)}〉 is not frequent and wheredi belongs to any level of
Hi .

(3) Based onL1 and the pruned hierarchies, computing all maf-sequences using a re-
cursive function calledget rec ma f seq, given in Algorithm 2. The set of all maf-
sequences is denoted byMAFSin the two algorithms.

We note that the first two tasks in Algorithm 1 are achieved through one scan of the blocks
by associating each domain elementdi of Hi with the number of blocks containing at least
one tuplec such thatc.Di ∈ d↓i . In Algorithm 1, this number is denoted bycount(di).

The recursive function shown in Algorithm 2 in order to compute maf-sequences op-
erates on the setL1, usingprunedhierarchies. It is important to note in this respect that
considering the pruned hierarchiesHi (i = 1, . . . ,m) allows to avoid redundant candidates
that are known in advanced not to be frequent.

We also note that given a candidate atomic sequence〈{a}〉, sup(〈{a}〉) is computed by
scanning the reduced blocks that only contain the tuplesc = (t,d1, . . . ,dm) that supporta,
i.e.,the tuplesc= (t,d1, . . . ,dm) such thata�I (d1, . . . ,dm). The union of all these reduced
blocks is denoted byσa(B (D R )) in Algorithm 2.

It is also important to note that, in Algorithm 2, the successors of frequent atomic se-
quences are generated in a non redundant manner, based on Definition 9. Moreover, in
order to make sure that only maf-sequences are mined, beforeinserting a given atomic
sequence〈{a}〉 in the setMAFS, it is necessary to check whetherMAFSalready contains
an atomic sequence more specific than〈{a}〉. If such is the case,MAFS is not changed,
otherwise,〈{a}〉 is inserted inMAFS.

EXAMPLE 7. Fig. 6 illustrates the output of Algorithm 1 in the context ofour running
example, assuming that minsup= 3

4. The computation of frequent atomic sequences is
represented by a tree in which the nodes are of the form(d1,d2)s, meaning that〈{(d1,d2)}〉
is an atomic sequence with supports

4. Moreover, maf-sequences are displayed as boxed
nodes in this tree.

We note that leaves in this tree are not necessarily maf-sequences. For example,(ALLLoc,

pretzel)3 is a leaf, but not an maf-sequence. This is so because(ALLLoc, pretzel)�I (EU,

pretzel) and〈{(EU, pretzel)}〉 has been identified as being an maf-sequence.

5.3 Mining Multi-Dimensional Sequences

We now turn to Step 2 mentioned at the beginning of the currentsection,i.e., the compu-
tation of non atomic frequent sequences. We recall in this respect that maf-sequences are
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Algorithm 1: Mining Minimal Atomic Frequent Sequences and Pruning Hierarchies

Data: The setB (D R ), the minimum support thresholdminsup

Result: The setMAFSof all maf-sequences
begin

foreach i = 1, . . . ,m do
Associate every valued in Hi with count(d) = 0;

foreach B∈ B (D R ) do
foreach tuple c= (t,d1, . . . ,dm) in B do

Update all valuescount(δi), for everyi = 1, . . . ,m andδi ∈ d↑i ;

/*All counts are computed */
L1← /0;
foreach d j ∈

Si=m
i=1 Hi do

if count(d j) < minsupthen
/*Pruning H j */

Removed j from H j

else
/*Computing L1 */

if up(d j) = {ALL j} then
L1← L1∪{〈{(ALL1, . . . ,ALL j−1,d j ,ALL j+1, . . . ,ALLm)}〉};

MAFS← /0;
/*Recursive computation of maf-sequences */
foreach a∈ L1 do

call get rec ma f seq(a,minsup,σa(B (D R )));

return MAFS
end

(ALLLoc,ALLProd)

(USA,ALLProd)3

gggggggggg

(EU,ALLLoc)4

pppppp
(ALLLoc, f ood)4

NNNNNN

(ALLLoc,drink)4

WWWWWWWWWW

(ALLLoc,drug)4

ZZZZZZZZZZZZZZZZZZZ

(Berlin,ALLProd)4

ppppp

(EU, f ood)3 (EU,drink)4

LLLLLLL

(EU,drug)4

VVVVVVVVVVVV
(ALLLoc,salted)3

LLLLLL

(ALLLoc,a drink)4

MMMMMMM

(ALLLoc,M2)3

KKKKKK

(EU,salted)3 (EU,a drink)3 (EU,M2)3 (ALLLoc, pretzel)3

(EU, pretzel)3

Fig. 6. Tree of frequent atomic sequences
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Algorithm 2: Routineget rec ma f seq
Data: A multi-dimensional itema, the minimum support thresholdminsup, the set of

blocksB (D R )

Result: The current setMAFS
begin

Cand← {α = (δ1, . . . ,δm) ∈ gen(a) | (∀i = 1, . . . ,m)(count(δi)≥minsup)};
Freq←{α ∈Cand| sup(α)≥minsup};
if Freq= /0 then

if for every〈{a′}〉 ∈MAFS, a′ 6�I a then
/*〈{a}〉 is an maf-sequence */

MAFS←MAFS∪{〈{a}〉};

else
foreach α ∈ Freqdo

/*Recursive call where σα(B (D R )) denotes the selection

of all tuples c in the blocks of B (D R ) such that

α�I c.DA */
call get rec ma f seq(α,minsup,σα(B (D R )));

end

the basic ingredients from which all candidate sequences are built up. More precisely, the
multi-dimensional itemsa occurring in any candidate sequence are such that〈{a}〉 is an
maf-sequence.

Frequent sequences are mined using any classical sequential pattern mining algorithm
from the literature ([Masseglia et al. 1998; Zaki 2001; Ayres et al. 2002; Pei et al. 2004]).
In our experiments, the algorithm SPADE ([Zaki 2001]) has been used.

Since in standard algorithms, the dataset to be mined is a setpairs of the form(c,seq)
wherec is a customer identifier andseqis a sequence of itemsets, the underlying tableT
in our approach is transformed as follows:

—Every blockB in B (D R ) is assigned a unique identifierID(B), playing the role of the
customer identifiers in standard algorithms.

—Every maf-sequence〈{a}〉 is associated with a unique identifier denoted byid(a), play-
ing the role of the items in standard algorithms.

—Every blockB in B (D R ) is transformed into the pair(ID(B),ς(B)) whereς(B) is a
sequence playing the role of the sequence of itemsets in standard algorithms.

The sequenceς(B) is of the form〈(µ11, . . . ,µ1n1), . . . ,(µp1, . . . ,µpnp)〉 such that, for every
j = 1, . . . , p, B contains the tuples(t j ,a1), . . . ,(t j ,an j ) whereµjk = id(ak) (k = 1, . . . ,n j )
andt1 < .. . < tp.

The following example illustrates the transformation.

EXAMPLE 8. Referring back to our running example and considering a support thresh-
old minsup= 3

4, Table II shows the identifiers assigned to the maf-sequences given in
Example 7. The blocks of Fig. 4 are displayed in their transformed format in Table III.
Moreover, Table IV displays all frequent sequences in theirtransformed format as well in
their multi-dimensional format in which identifiers are replaced with their actual values.
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Maf-sequence〈{a}〉 id(a)

〈{(USA,ALLProd)}〉 1
〈{(Berlin,ALLProd)}〉 2
〈{(EU,Pretzel)}〉 3
〈{(EU,Al. Drinks)}〉 4
〈{(EU,M2)}〉 5

Table II. Assigning identifiers to maf-sequences

ID(B) ς(B)

1 〈(2,3,4),(5),(4),(1)〉
2 〈(1),(2,3,4),(5)〉
3 〈(3,4),(2,5)〉
4 〈(1),(2),(1)〉

Table III. Transformed database

Transformed frequent sequences Frequent multi-dimensional sequences
〈(3,4),(5)〉 〈{(EU, pretzel),(EU,a drink)},{(EU,M2)}〉
〈(1)〉 〈{(USA,ALLProd)}〉
〈(2)〉 〈{(Berlin,ALLProd)}〉

Table IV. Frequent multi-dimensional sequences forminsup= 3
4

We end this section by discussing possible extensions on ouralgorithms regarding the way
frequent sequences could be presented to the users.

First, due to the fact that we consider multi-dimensional patterns, one could think of pre-
senting multi-dimensional sequences in a condensed way, bynot repeating dimension val-
ues occurring at several places. For instance, the sequence〈{(EU, pretzel), (EU,a drink)},
{(EU,M2)}〉 could be displayed as〈(EU){(pretzel),(a drink)},{(M2)}〉. However, this
process is not always applicable, as for example, the sequence 〈{(EU, pretzel), (US,

a drink)}, {(EU,M2)}〉 cannot be condensed.

Second, knowing the blocks that support a given frequent multi-dimensional sequence
could be considered relevant. As seen in Example 4, the multi-dimensional sequenceς =
〈{(EU, pretzel), (EU,a drink)}, {(EU,M2)}〉 is frequent because it is supported by the
blocksB(Educ,Y), B(Educ,O) andB(Ret,Y). Thus, it is possible to output this set of
blocks, associated with the sequence.

However, as this set might be huge, one could think ofgeneralizingthe associated tuples,
using the hierarchies defined on the reference dimensions inD R . Then, this option would
lead to results of the form(r,ς) wherer is a tuple overD R andς is a frequent multi-
dimensional sequence, which is precisely what has been considered in [Pinto et al. 2001].

Unfortunately in some cases, such a generalization might bereduced toALL-values,
which contains no information at all. Such is the case for thesequenceς above, as the
most specific generalization of(Educ,Y), (Educ,O) and(Ret,Y) is (ALLCat,ALLAge).

Notice in this respect that considering the blocksB(Educ,Y) andB(Educ,O) only, leads
to the generalization(Educ,ALL Age) and that, displaying((Educ,ALL Age),ς) with sup-
port 0.5 as a result, means that 50% of the blocks are characterized by specializations of
(Educ,ALL Age) and supportς.

However, the generalization as shown above is not unique. Indeed, the generalization
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(ALL Cat,Y) of B(Educ,Y) and B(Ret,Y) would also lead to a similar result, namely
((ALL Cat,Y),ς) with support 0.5.

Therefore, the two main shortcomings of such an extension are that(i) it requires further
computation for obtaining the possible generalizations, and that(ii) several results exist,
which might be confusing for a naive user.

6. EXPERIMENTS

The algorithms of our approach have been implemented in Java1.5. Experiments have
been carried out both on synthetic and real data, aiming at studying the scalability issues
with respect to the main parameters when mining multi-dimensional databases (e.g.,the
support threshold, the number of dimensions, the number of elements in every dimension).

Firstly, we study the impact of taking hierarchies into account. Namely, we show that
considering the different levels of hierarchies as separate attributes and running our previ-
ousM2SPalgorithm in this case, is less efficient than runningM3SP. Secondly, we discuss
the behavior of our algorithms in the case of various synthetic datasets, and thirdly, the
case of a real dataset is considered.

6.1 Hierarchy Management: M2SPvs. M3SP

As mentioned previously, taking hierarchies into account is one of the main features of
the current approach, compared to that of [Plantevit et al. 2005]. On the other hand,
instead of considering herarchies as predefined trees over the domain values, it is possible
to consider every non root level of every hierarchy as a separate attribute and to incorporate
the corresponding values into the dataset accordingly.

For example the tuple(1,Berlin,beer) in the block(Educ,Y) of Fig. 4 can be replaced
with (1,EU,Berlin,drink,a drink,beer) asBerlin↑ = {Berlin,EU,ALLLoc} andbeer↑ =
{beer,a drink,drink,ALLProd}. However, it should be noticed in this respect that such a
transformation requires that all hierarchies be perfectlyheight-balanced trees (i.e., trees in
which all paths from the root to a leaf have the same length).

We recall that this way of managing hierarchies has been usedby [Srikant and Agrawal
1996] in the case of a single analysis dimension (see Section3.4). However, in the case of
multiple analysis dimensions such a transformation results in a significant increase of the
number of analysis dimensions, namely the number of analysis dimensions in the trans-
formed dataset is the sum of the heights of all hierarchies defined on the dimensions of
DA . Then, with the transformed dataset at hand,M2SPcan be run in order to compute all
frequent multi-dimensional sequences.

The experiments reported below show that such a transformation is much less efficient
than a direct hierarchy management withM3SP. Fig. 7(a) and Fig. 7(b) show thatM3SP
outperformsM2SPwhen applied on the transformed dataset. We note that, in these exper-
iments, the cost of the transformation is not taken into account in the reported runtimes.

Considering a synthetic dataset with 50,000 blocks and 4 analysis dimensions, Fig. 7(a)
describes the behavior of the runtimes of the two approaches(i.e., M3SPand the simulation
of hierarchy management withM2SP) for values of the minimum support threshold ranging
from 100% down to 10%. Moreover, in this experiment, the average height of hierarchies
is 4, implying that taking hierarchies into account withM2SPrequires the transformation
of the original dataset with 4 analysis dimensions into a newdataset over 16 analysis di-
mensions.

ACM Journal Name, Vol. ., No. ., . 20...



24 · Marc Plantevit et al.

It can be seen that the runtime ofM2SPis significantly greater than that ofM3SP, as the
runtime ofM3SPfor minsup= 10% is less than that ofM2SPfor minsup= 100%.

Next, we consider a synthetic dataset with 30,000 blocks and a support threshold equal
to 50%. Fig. 7(b) describes the behavior of the runtimes ofM3SPand the simulation
of hierarchy management withM2SP for values of the number of analysis dimensions
ranging from 1 to 5. The figure exhibits an important difference of runtime values when
the number of analysis dimensions increases, showing that it is not possible toefficiently
manage hierarchies usingM2SP.
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Fig. 7. Comparison betweenM3SPandM2SP

6.2 Experiments on Synthetic Datasets Using M3SP

In this section, we study the scalability ofM3SPaccording to several parameters, namely
the minimum support threshold, the size of the dataset (expressed in number of blocks),
the number of analysis dimensions, the height and the degree(i.e., the average number of
direct successors) of the hierarchies.

The results of these experiments are summarized in Figures 8-12. The default values of
the parameters, when fixed, are as follows:

—the minimum support threshold is set to 30%,

—the number of blocks is set to 250,000,

—the number of analysis dimensions is set to 5, and

—the height and the degree of the hierarchies are respectively set to 5 and 3.5, which
results in about 1,250 distinct domain values per analysis dimension.

Fig. 8 describes the behavior ofM3SPin terms of runtime and memory usage according to
the size of the dataset, expressed in number of blocks, considering that each block contains
10 tuples.

Fig. 8(a) and Fig. 8(b) show how the runtime ofM3SPbehaves according to the size
of the dataset. In Fig. 8(a), the number of analysis dimensions ranges from 3 to 10 and in
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Fig. 8(b), the support threshold ranges from 90% down to 20%.It can be seen from these
two figures that the runtime roughly increases proportionally to the size of the dataset, but
still keeps with acceptable values. Indeed, the runtime does not exceed 600 seconds in the
worst cases,i.e.,when the dataset contains 500,000 blocks (that is 5,000,000 tuples), and
when 10 analysis dimensions or a minimum support threshold of 20% are considered.

On the other hand, Fig. 8(c) describes the memory usage ofM3SPaccording the size of
the dataset for two different values of the minimum support threshold (50% and 20%). It
can be seen that memory usage roughly increases proportionally to the size of the dataset,
but is independent from the minimum support threshold value.
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Fig. 8. Experiments for the size of the dataset

Fig. 9 describes the behavior ofM3SPin terms of runtime, memory usage and number
of maf-sequences according to the minimum support threshold.
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Fig. 9(a) and Fig. 9(b) show how the runtime ofM3SPbehaves according to the mini-
mum support threshold for different numbers of analysis dimensions (i.e.,respectively 2, 5
and 10 dimensions for Fig. 9(a), and 15 and 20 dimensions for Fig. 9(b)). Obviously, the
runtime increases whenminsupdecreases and when the number of analysis dimensions
increases. However, we observe that, for up to 10 analysis dimensions, the runtime does
not exceed 25 seconds, even when the minimum support threshold value is below 20%. On
the other hand, for 20 analysis dimensions, the runtime increases very fastly for minimum
support values below 50%, but still, remains less than 600 seconds.

Fig. 9(c) shows how the numbers of frequent atomic sequencesand maf-sequences
behave with respect to the minimum support threshold. The number of maf-sequences
obviously increases exponentially when the minimum support threshold decreases, but we
notice that the reduction of the number of frequent atomic sequences, compared to the
number of maf-sequences, is about 50%. This shows that considering maf-sequences is an
important issue of our approach, regarding efficiency.

Fig. 9(d) shows how the memory usage ofM3SP behaves according to the support
threshold. We point out thatM3SP is robust according to this parameter. Indeed, even if
the memory usage ofM3SPincreases when the support threshold decreases, the slope has
low values and does not significantly increase, even when theminimum support threshold
value is below 20%.

Fig. 10 describes the behavior ofM3SPaccording to the number of analysis dimensions.
Fig. 10(a) shows the behavior of the runtime ofM3SPaccording to the number of analysis
dimensions. Although increasing significantly, the runtime is still less that 1,000 seconds
for up to 10 analysis dimensions and a low minimum support threshold value (20%). As
shown in Fig. 10(b), this increase mainly comes from the factthat the number of atomic
sequences increases significantly with the number of analysis dimensions.

Fig. 10(c) describes the memory usage ofM3SPaccording to the number of analysis
dimensions. It should be noticed that memory usage does not increase significantly when
the value of the minimum support threshold decreases. On theother hand, we observe
that the slopes of the two plots are decreasing when the number of analysis dimensions
increases, which shows that, even for large numbers of analysis dimensions (more than
15), the memory usage should still be acceptable (i.e.,about 1,500 Mb).

To study the behavior ofM3SPaccording to the “topology” of the hierarchies, we carried
out experiments on 10 datasets with the same parameter default values as given at the
beginning of the current subsection, but with different values for the degree and the height
of the hierarchies associated to analysis dimensions.

Fig. 11 describes the behavior ofM3SPaccording to the degree of the hierarchies. Fig.
11(a) shows the runtime ofM3SP when the degree of hierarchies changes. Obviously,
decreasing the value of the minimum support threshold implies that runtime increases sig-
nificantly. However, it should be noticed that increasing the degree of the hierarchies does
not significantly affect the performance.

Fig. 11(b) shows that, although the number of frequent atomic sequences increases with
the degree of hierarchies, the number of maf-sequences decreases. This again shows that
considering maf-sequences is an important feature of our approach regarding efficiency.

Moreover, as shown in Fig. 11(c), the memory usage is still acceptable (i.e., close to
1,000 Mb) according to the degree of the hierarchies, and again, is almost independent
from the minimum support threshold value.
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Fig. 9. Experiments for the minimum support threshold

Fig. 12 describes the behavior ofM3SPaccording to the average height of the hierarchies
associated to the analysis dimensions.

Fig. 12(a) shows the runtime over the average height of the hierarchies. We note that,
although increasing significantly, the runtime is less than1,000 seconds for hierarchies
of height at most 7, even when considering a low minimum support threshold value (i.e.,
30%). However, the slope of the plot increases significantlywhen the minimum support
threshold is lower than 50%, because, in this case,M3SPgoes deeper in the search space.
As an example, the search space for 5 analysis dimensions andan average depth of 10 is
modelled as a lattice with 50 levels.

As shown in Fig. 12(b), the number of frequent atomic sequences increases when the
average depth decreases, but we stress that such is not the case when considering maf-
sequences. This again shows that considering maf-sequences is an important issue of our
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approach regarding efficiency.
Regarding memory usage, we note from Fig. 12(c) that, on the one hand, it is quite

stable when the average height of hierarchies increases, and on the other hand, it does not
significantly depend on the minimum support threshold value.

6.3 Experiments on Real Datasets

We also carried out experiments on real data from the Marketing Department of EDF (Elec-
tricité de France), in the context of a research collaboration between EDF Research and
Development and LIRMM laboratory, aiming at studying OLAP Mining for discovering
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non typical temporal evolutions in data cubes1.
The two considered datasets, referred to as EDF1 and EDF2, describe the marketing

activity, based on a very large customer database (about 30.106 customers). The dataset
EDF1 (Fig. 13(a) and Fig. 13(b)) contains 8 blocks and 6 analysis dimensions, and the
dataset EDF2 (Fig. 13(c) and Fig. 13(d)) contains 85 blocks and 5 analysis dimensions. In
both cases, the average height of the hierarchies is about 2.

Fig. 13(a) and Fig. 13(c) describe the behavior of the runtime of M3SPaccording to
the minimum support threshold for the two datasets. We note that runtimes in the case of
the dataset EDF1 are of the same order as those in the case of synthetic data. However, in
the case of the dataset EDF2, the runtime exceeds 1,500 seconds for low support values,

1The authors would like to thank Françoise Guisnel, Sabine Goutier and Marie-Luce Picard from EDF R&D for
providing real data to assess our approach.
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Fig. 12. Experiments for the average height of the hierarchies

which is twice as much as in the worst case of synthetic datasets. This is due to the fact
that the number of maf-sequences is very important in this case.

Fig. 13(b) and Fig. 13(d) describe the behavior of the numbers of frequent atomic and
maf-sequences according to the minimum support threshold for the two datasets. Interest-
ingly enough, it can be seen in both cases that the number of maf-sequences is much lower
than that of frequent atomic ones. The ratio is about 10%, which is much lower than that
observed in the case of synthetic data. This clearly confirmsthe interest of mining maf-
sequences first, as this incures a drastic reduction of the number of candidate sequences in
the subsequent steps of the computation.

Moreover, these experiments show that, usingM3SP, relevant rules involving several
levels of hierarchies could be found. As an example, we have considered one reference
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dimension decribing the type of heating system of customersplaces along with the fol-
lowing three analysis dimensions, the description of whichis simplified for confidentiality
reasons:

(1) the type of contract for which a two-level hierarchy is defined (contract type general-
ized into contract category).

(2) the location for which a three-level hierarchy is defined(namely, town generalized into
district and district generalized into area), and

(3) the type of place where the customers stay (e.g., appartment, individual house,...).

In this setting, forminsup= 50%, the following multi-dimensional sequence was found to
be frequent:

〈{(Opt1,PACA,Appt),(Opt1,Bordeaux,House)}, {(Opt2,North,Appt)}〉

meaning that, for at least half of the types of heating systems,

(1) customers living in thePACAdistrict and staying in an appartment subscribed a con-
tract of categoryOpt1 at the same time as customers living in the townBordeauxand
staying in an invidual house, also subscribed a contract of categoryOpt1, and then

(2) customers living in theNortharea and staying in an appartment subscribed a contract
of categoryOpt2.

The users showed interest in this frequent pattern, since itrevealed an unexpected subscrip-
tion sequence concerning customers staying in locations ofthe south of France and those
staying in the north area of France.

On the other hand, it should be clear that such a pattern, involving several analysis
dimensions with non trivial hierarchies, could not have been discovered using standard
approaches that cannot deal with multi-dimensional and multi-level sequences.

6.4 Discussion

The experiments on both synthetic and real datasets reported in this section show that our
approach allows toefficientlymine frequent multi-dimensional and multi-level sequences
from huge datasets. Compared to the preliminary version of this work in [Plantevit et al.
2006], the algorithms have been significantly improved. Themajor improvements are the
following:

—In Step 1, maf-sequences are mined according to a BUC-basedstrategy, instead of an
Apriori-like strategy, as done in [Plantevit et al. 2006].

—The transformation of the underlying database presented at the end of Section 5 allows
for a better memory usage than handling the dataset itself, as done in [Plantevit et al.
2006].

—In Step 2, based on the transformation mentioned above, anystandard algorithm for
mining frequent sequences can be used. Having compared the efficiencies of these al-
gorithms, SPADE has shown the best performance. Thus, this algorithm was chosen,
instead of PSP, as done in [Plantevit et al. 2006].

We note that our approach may lead to the study of the relationship between the moving
up and down in the hierarchies and the tuning of the minimum support threshold. To
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see this, given a multi-dimensional itema = (d1, . . . ,dm) let level(a) = ∑i=m
i=1 l i where, for

i = 1, . . . ,m, l i is the level ofdi in the hierarchyHi .
Then, given a minimum support thresholdminsup, the average level of all levels of the

frequent maf-sequences can provide information on how the value ofminsuprelates to the
average level of the items occurring in frequent sequences.

One could even think of a pre-processing phase to compute maf-sequences for some
given values ofminsup. In this way, one could not only get efficiently the frequent
multi-dimensional sequences given a minimum support threshold (as the output of the pre-
processing phase could be used to optimize the computation), but also, get the appropriate
minimum support threshold value, given a desired average level of detail in the frequent
multi-dimensional sequences to be computed.

Although this issue has not been investigated in the presentwork, it can be considered
as a valuable extension of our approach.

7. CONCLUSION

In this paper, we have proposed a novel approach for mining multi-dimensional and multi-
level sequential patterns, according to which, contrary tothe work from [Pinto et al. 2001;
de Amo et al. 2004; Yu and Chen 2005], several analysis dimensions at several detailed
levels can be taken into account.

We have provided formal definitions and properties from which algorithms have been
designed and implemented. Experiments on synthetic and real datasets have been reported
and show the interest and the scalability of our approach.

This work offers several research perspectives. First, as mentioned above, the study of
the relationship between the moving up and down in the hierarchies and the tuning of the
minimum support threshold can be an interesting extension of the present work.

On the other hand, the efficiency of the extraction could be enhanced by considering
condensed representations of the mined knowledge, based onthe notions of closed, free,
or non-derivable patterns [Mannila and Toivonen 1996; Pasquier et al. 1999a; 1999b;
Pei et al. 2000; Burdick et al. 2001; Zaki and Hsiao 2002; Calders and Goethals 2002;
Boulicaut et al. 2003; Zaki 2004; Bonchi and Lucchese 2006; Calders et al. 2006].

Finally, we are aware that considering maf-sequences to generate the frequent sequences
prevents us from extracting all most specific sequences. This is so because such sequences
may contain items that do not occur in maf-sequences, and thus, cannot be mined by our
approach. Coping with this issue is another interesting extension of the present work that
we plan to investigate in the near future.
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