
HAL Id: lirmm-00618151
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00618151v1

Submitted on 31 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontological Conjunctive Query Answering over
Semi-Structured KBs

Bruno Paiva Lima da Silva, Jean-François Baget, Madalina Croitoru

To cite this version:
Bruno Paiva Lima da Silva, Jean-François Baget, Madalina Croitoru. Ontological Conjunctive Query
Answering over Semi-Structured KBs. GDM’11: The 2nd International Workshop on Graph Data
Management: Techniques and Applications, 2011, Hanovre, Germany. pp.118-123. �lirmm-00618151�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00618151v1
https://hal.archives-ouvertes.fr

Ontological Conjunctive Query Answering over

Semi-Structured KBs

Bruno Paiva Lima da Silva #, Jean Francois Baget #, Madalina Croitoru #

#EPI GraphIK

LIRMM (CNRS - Université Montpellier II)

INRIA Sophia Antipolis

161 Rue Ada, F-34392 Montpellier Cedex 5, France
{bplsilva,baget,croitoru}@lirmm.fr

Abstract— In the context of ontological conjunctive query
answering different paradigms for representation and their
subsequent manipulation by dedicated reasoning systems have
been successfully studied in the past. However, new challenges,
problems and issues have appeared in the context of knowledge
representation in AI that involve the logical manipulation of
increasingly large information sets (see for example the Semantic
Web). In this paper we explain these challenges by the means of
an example and try to further identify the difficulties ahead of
our goal.

I. INTRODUCTION

The purpose of this paper is to present our current research

question: “How to store large knowledge bases in order to be

able to scale up ontological conjunctive query answering?”

Let us further describe the context of this research ques-

tion. Knowledge Representation and Reasoning (KRR) studies

computational models for building explicit representations of

knowledge processed by reasoning engines. Systems based

upon such computational models are called knowledge-based

systems (KBS). Their fundamental components are a knowl-

edge base (KB) containing different kinds of knowledge

and a reasoning engine which performs the inferences. First

Order Logic (FOL) is the reference logic in KRR and most

formalisms in this area can be translated into fragments

(i.e., particular subsets) of FOL. A large part of research

in this domain can be seen as studying trade-off between

the expressivity of languages and the complexity of (sound

and complete) reasoning in these languages. The fundamental

problem in KRR formal languages is deduction (or conse-

quence, entailment) checking: “can a given piece of knowledge

be deduced from other pieces of knowledge (for instance the

KB)?” Another important problem is consistency checking:

“is a set of knowledge pieces (for instance the KB itself)

consistent, i.e., is it sure that nothing absurd can be deduced

from it?” Here we are interested in the ontological conjunctive

query answering problem. In its decision form, it asks if the

KB contains an answer to the query, and is equivalent to

deduction in the special case of boolean queries (i.e., queries

with a yes/no answer). Queries must be at least as expressive as

conjunctive queries in databases (eg. a conjunction of positive

atoms in logical form); and the knowledge base is split into

a factual component (that can be seen as a database or as a

conjunction of positive atoms) and an ontological component,

that is often expressed by formulas of a specific subset of FOL.

Nevertheless, in this context, different paradigms for rep-

resentation and their subsequent manipulation by dedicated

reasoning systems have been successfully studied in the past.

However, new challenges, problems and issues have appeared

in the context of knowledge representation in AI that involve

the logical manipulation of increasingly large knowledge sets

(see for example the Semantic Web). Improvements in storage

capacity and performance also affect the nature of KRR

systems. Their focus has now shifted towards representational

power and execution performance. Therefore, research into

KRR must move towards investigating structures for represen-

tation optimally manipulated to perform large scale reasoning,

given very new and different constraints to those existing

only few years ago. While a plethora of systems dedicated to

non relational structures (such as NoSQL1, which means “Not

Only SQL”) for information storing and querying have lately

received much attention, we are interested in the representation

and reasoning with knowledge. Our querying mechanisms

are more expressive than typical queries done in the above

mentioned systems. On the other hand, a discussion solely on

expressivity / reasoning and how it relates to other NoSQL

systems might turn abstract very fast, with the storage issues

hidden away. This is why we chose to present this paper

solely by the means of a running example where we identify

informally the problems we are facing.

Our research interests2 follow the computational and logic-

oriented approach of KRR: the different kinds of knowledge

have a logical semantics and the reasoning corresponds to

inferences in this logic, at least for the kernels of studied lan-

guages. The fundamental decision problem we want to address

is (boolean) ontological conjunctive query answering, which

can be expressed as a deduction problem: “is a (boolean)

conjunctive query deducible from a KB?” The afore mentioned

KB queries are supposed to be at least as expressive as the

basic queries in databases, i.e., conjunctive queries, which can

be seen as existentially closed conjunctions of atoms.

A knowledge base is composed of a set of facts, and a set

1http://nosql-database.org/
2http://www.lirmm.fr/graphik/index.html

of rules (ontological knowledge). In this paper rules will be

expressed using ∀∃-rules, which have the same logical form

as TGDs in databases, and which forms the core of Datalog±

family of languages. ∀∃-rules form an abstraction particularly

well-suited to the representation of ontological knowledge

since they generalize several specific knowledge representation

languages adapted to query answering: RDFS [1] (the basic

semantic web language), constraints in F-logic-Lite [2], [3]

(a powerful subset of F-logic, a formalism for object-oriented

deductive databases), as well as the core of new families of

description logics tailored for conjunctive query answering [4],

[5], [6], [7].

II. EXAMPLE

In this paper, we deliberately chose to present our work

informally, by the means of an example. Through this

example, we highlight some issues and the limits of current

methods used in KRR. For the theoretical foundation of

the formalisms detailed below please see: [8] for relational

databases and Datalog evaluation techniques, [9] for our graph

based representation and [10] for Datalog±, that corresponds

to the graph based rules as discussed in [11].

Let us consider a knowledge base representing the compa-

nies people work in and their practised sport. The knowledge

base is composed of the following facts:

• (1) “There is a person, named Bob, working for some

Organisation (u). This person plays for some football

team (p) which has “RueAda,Montpellier” as address.

There is another person, named Tom, working for

another Organisation (v), which is part of u, and

who plays for some rugby team (q), which also has

”RueAda,Montpellier” as address.”

The knowledge base is also composed of the following

rules:

• (2) “If x works for y, and y is part of z, then x also

works for z”

• (3) “If x and z work for y, then x and z are co-workers”

• (4) “If x and z share the same address y, then there is a

club t, which contains x and z and has y as address.”

• (5) “If x plays in y, which is contained in z, then x is a

member of z.”

• (6) “If x and z are members of y, then they are in the

same club.”

Being given the above mentioned facts and rules we want

to be able to answer the two following queries:

• (7) “Is there a person which works in an organisation and

plays in a football team?”

• (8) “Are there two persons who are co-workers and share

the same sports club?”

Please note that query (7) can be answered directly on the

facts in (1) i.e. without the application of any of the rules (2) –

(6). However, query (8) can only be answered by applying the

rules (2) – (6). Also, please note that rules (2), (3), (5) and (6)

intuitively only add relations between existing entities, while

rule (4) generates a new entity (club) that is added to the

knowledge base3.

The next section (Section II-A) shows the logical transla-

tion of the knowledge base. Then in Section II-B we show

the equivalent representation using relational databases. Sec-

tions II-C and II-D explain how query answering takes place

(without and with rule application). In Section III we then

illustrate how the knowledge base can be expressed using

a graph based formalism and how query answering (without

rules) is equivalent to a labelled graph homomorphism.

A. First Order Logic translation

In order to lay the logical foundations for the different

models used later in this paper please find below the First

Order Logic translation of the facts in the knowledge base

mentioned in Section II.

• (1) ∃x, y, u, v, p, q (is-a(x, “Person”)
∧ name(x, “Bob”) ∧ works-for(x, u)
∧ is-a(u, “Organisation”)
∧ is-a(y, “Person′′) ∧ name(y, “Tom”)
∧ works-for(y, v) ∧ is-a(v, “Organisation”)
∧ part-of(v, u)
∧ is-a(p, “FootballT eam”) ∧ plays-in(x, p)
∧ is-a(q, “RugbyTeam”) ∧ plays-in(y, q)
∧ address(p, “RueAda,Montpellier”)
∧ address(q, “RueAda,Montpellier”))

The rule set containing ∀∃-rules:

• (2) ∀x, y, z works-for(x, y) ∧ part-of(y, z) → works-

for(x, z)
• (3) ∀x, y, z works-for(x, y) ∧ works-for(z, y) → co-

worker(x, z)
• (4) ∀x, y, z ∧ address(x, y) ∧ address(z, y) → ∃t

is-a(t, “Club”) ∧ contains(t, x) ∧ contains(t, z) ∧
address(t, y)

• (5) ∀x, y, z plays-in(x, y) ∧ contains(z, y) →
member(x, z)

• (6) ∀x, y, z ∧ member(x, y) ∧ member(z, y) →
same-club(x, z)

And queries:

• (7) ∃x, y, z works-for(x, y) ∧ is-

a(y, “Organisation”) ∧ plays-in(x, z) ∧ is-

a(z, “FootballT eam”)

3One has to be careful with rules adding new constants or variables to
the knowledge base since some of them could be fired forever (for example
“Every person has another person as its parent”.) For more information please
see [12].

• (8) ∃x, y co-worker(x, y) ∧ same-club(y, x)

B. Equivalence with a Relational Database

This section shows an encoding of the example formulas

using a relational database containing the facts in the

knowledge base introduced in Section II. For every n-ary

predicate P in our facts, we create a new table P with n

columns. Variables in the knowledge base are then frozen and

replaced by fresh constants, since there are no variables in a

relational database. After that, for every atom in the facts, a

row is added to the table corresponding to the name of the

predicate.

Figures 1 to 4 represent the relational database for facts (1).

name

1 2
< x > “Bob”
< y > “Tom”

works-for

1 2
< x > < u >

< y > < v >

Fig. 1. name and works-for relations

is-a

1 2
< x > “Person”
< u > “Organisation”
< y > “Person”
< v > “Organisation”
< p > “FootballT eam”
< q > “RugbyTeam”

Fig. 2. is-a relation

part-of

1 2
< v > < u >

plays-in

1 2
< x > < p >

< y > < q >

Fig. 3. part-of and plays-in relations

address

1 2
< p > “RueAda,Montpellier”
< q > “RueAda,Montpellier”

Fig. 4. address relation

C. Rule Application

Rule application allows to enrich the KB with new facts de-

duced from existing ones. In Datalog±, a rule is an expression

of form ∀x1, ..., xk C → C ′ where x1 to xk are the variables

present in the conjunction of atoms C and C ′. C is called the

head of the rule, while C ′ is the tail.

In Datalog±, the chase algorithm consists in enriching the

the database (directly, or just a local copy) with inferred

information. It queries the head of the rule in the database

using a SELECT -FROM -WHERE call, and if there is

a positive answer to the query, a specification of the tail of

the rule is then inserted to the base with an INSERT call.

In the case of our example, rule (2) will fire since (1) <v>

is part-of <u> and (2) <y> works-for <v>. Therefore, the

new row <y>,<u> will be added to the table works-for.

Similarly, the rules (3), (5) and (6) will add new rows in

corresponding tables. Please note though that the expressivity

of the rules we are interested in is that of ∀∃-rules as explained

in the introduction. This means that we want to be able to add

not only new rows but also new relations between pieces of

information, which in this case would correspond to adding

new tables or changing the relational schema of the database.

This cannot be dealt with by Datalog itself. We point out that

TGDs can add rows that use newly generated constants, which

why the chase may not halt (the deduction problem is indeed

undecidable). However, decidable subclasses of the problem

have been studied (eg. [3], [11], [12]).

D. Querying a Knowledge Base

The SQL translation of the queries in the example is as

follows:

• (7) SELECT ∗ FROM works-for,plays-in,is-a

isa1,is-a isa2 WHERE works-for.2 = isa1.1 AND

isa1.2 = “Organisation” AND plays-in.2 = isa2.1
AND isa2.2 = “FootballT eam”

• (8) SELECT ∗ FROM co-worker,same-club

WHERE co-worker.1 = same-club.2 AND co-

worker.2 = same-club.1

No rules need to be applied to answer the first query,

however, 4 tables (the same table twice), need to be joined.

More importantly, the second query can only be answered

after the addition of new pieces of knowledge to the base.

Consistency becomes a problem in this case since it is initially

maintained by the fact that the data stored is supposed to be

organized into normalized tables, in which independent sets of

data are related by a key and in which redundancy is avoided.

While this model seems appopriate when dealing with sets of

structured data, the semi-structured nature of our data makes

the relational model difficult to fit into. We can distinguish

two different methods for rule application over a KB: forward-

chaining and backwards-chaining.

The forward-chaining method fires all rules looking for new

pieces of information to be added to the base until an answer to

the query is found. The large amount of joins when performing

a request in the KB becomes quickly very costly, and things get

even more difficult when new information has to be introduced

to the base, since indexes and the database schema have to

be updated several times. On the other hand, the backwards-

chaining method does not add any new information to the KB,

but has a major drawback as it can possibly create a huge

number of queries.

Scaling is also one of the real problems of those

approaches since joins usually create new temporary tables in

main memory. One should not forget our initial intentions to

answer conjunctive queries when the knowledge base itself

cannot be held any more in main memory.

So far we have presented the relational approach and its

drawbacks when scaling up. These drawbacks led us to look

into graph appropriate storage for solving our problem. Let

us further detail the graph model and highlight our specific

needs for the conjunctive query answering problem.

III. GRAPH-BASED REPRESENTATION

In this section we represent the knowledge base using the

graph based formalism detailed in [9]. In this representation,

constants and variables are vertices in our (hyper)graph, while

(hyper)edges between those vertices represent the atoms in our

KB4.

x “Bob”
name

name(x, “Bob”)

Fig. 5. A fact in the knowledge base and its graph representation on the
right.

Figure 5 shows the transformation of the facts of the KB

in a graph, and Figure 6 represents the graph containing the

facts in the KB for the given example.

“Person”

x y

u v

“Organisation”

“Bob” “Tom”

p q

“Football T eam” “Rugby Team”

“RueAda - Montpellier”

is-a is-a

name name

is-a is-a

works-for works-for

is-a is-a

plays-in plays-in

part-of

address address

Fig. 6. Graph containing the facts (1) from Section II.

4If the predicate in the knowledge base is n-ary, we represent it as a
hyperedge. In our example, we have only binary predicates, thus simple edges.

A. Querying

In a graph-based KB, queries are represented as graphs.

Figures 7 and 8 show the graphs of both queries from

Section II.

x

y z

“Organisation” “FootballT eam”

works-for plays-in

is-a is-a

Fig. 7. Graph representing the query (7) from Section II.

x y

co-worker

same-club

Fig. 8. Graph representing the query (8) from Section II.

B. Homomorphism

Queries in a graph-based KB are answered by computing a

labelled graph homomorphism from the graph representing the

query Q to F , the graph of facts. The fundamental theorem

says that a logical formula Q can be deduced from another

formula F iff there is a labelled graph homomorphism from

the graph representing Q to the graph representing F .

Basically, a labelled graph homomorphism is a mapping,

say π, from the vertices of the graph Q (the query), to those

of the graph F (the facts) that preserves both the constants

labelling the nodes and the hyperedges and their type. More

formally:

• if x is a vertex of Q labelled by a constant c, then the

label of π(x) is also c;

• if there is a hyperedge labelled p between vertices

(x1, ..., xq) in Q, then there must also be a hyperedge

labelled p between vertices (π(x1), ..., π(xq)) in F .

Since the labelled graph homomorphism problem is

NP-Complete, a backtracking algorithm is used to enumerate

all the possible matchings that answer the query.

Let us now detail the execution of a backtracking algorithm

for homomorphism finding. We consider a recursive algorithm

that, at every loop, extends the current matching algorithm.

We name the algorithm Extend(). The algorithm takes as

parameters the set of already matched nodes couples, and the

graphs representing query and facts.

Extend(MatchedNodes,Query,Facts) returns true if the num-

ber of couples in the matched nodes set is equal to the number

of nodes in the query graph. If not, it selects a node n that has

not yet been matched, and returns a list of relevant possible

node matchings i of the node n according to MatchedNodes,

Query and Facts. Then, for each of the possible matchings,

the algorithm is recursively called with the couple (n,i) added

to the matched nodes set.

Let us consider the first query that can be answered without

rule application (detailed in the next section). To find a ho-

momorphism from this query to the facts graph, the algorithm

starts matching all the constant vertices from the query graph

to the facts one. As we have seen on Figure 7, the constants in

the query, “Organisation” and “FootballTeam”, are also present

in the facts, and are added to the matched nodes set. After that,

the algorithm will try to match the remaining variable nodes of

the query graph. Node x has two outgoing relations to another

variable: works-for and plays-in. Possible matchings for x

then are nodes x and y from the graph of facts. When node x

in query is matched with y in facts, y will then be then paired

to v since it is an Organisation, and then z will not have

any matching possibility since it there is no node in the facts

connected to y via plays-in relation and to “FootballT eam”
via is-a relation. This branch will then be left and other

branches will be explored in order to find a positive answer.

On the other side, when x is paired with x, y will then be

paired to u, and z to p, which is a Football Team. True is

then returned by the algorithm, meaning that there is in fact

an homomorphism from Q to F , and the matched nodes set

{(x,x),(y,u),(z,p)} is the answer of our query.

There are thus two elementary operations needed in order to

calculate a homomorphism from the query graph to the facts:

• Matching a vertex from the query graph with another in

the facts graph 5

• Accessing the neighborhood of both matched vertices

to check whether their edges and adjacent vertices are

compatible or not.

While matching vertices from two different graphs into a

pair can be easily done in constant time, efficient access to the

neighbourhood of a vertex is primordial in order to have some

real advantage over traditional relational database systems.

For instance, for a n-ary predicate p of arity 4, the

complexity of searching for the presence of an atom

p(x,< c1 >, y,< c2 >) in a KB using a relational database

is O(mp), mp being the size of the table p. Using a

graph-based KB instead, this complexity can be improved to

O(d<c1>), with d being the size of the neighbourhood of a

given vertex, in this case < c1 >, if there are optimized data

structures and algorithms to quickly access the neighbourhood

of a vertex. This improvement is due to the fact that the

encoding of semi-structured data into a graph does generate

a graph with a very small density, in which good efficiency

5We do not make the assumption that the facts graph is connected.

is obtained when accessing the neighbourhood of a vertex.

However, there is still no efficient method for doing it when

the graph-based KB is stored in secondary memory.

It is however impossible to have an answer for the second

query without enriching the KB with new facts (or rewriting

the query). Let us detail in the next section how rule applica-

tion takes place.

C. Rule application in a graph-based KB

The forward-chaining method for rule application in a

graph-based KB that will be described more precisely in this

part of the paper mimics exactly the chase method mentioned

in Section II-C.

x y z

x z

works-for part-of

works-for

IF

THEN

Fig. 9. Graph representing the Rule (2) from Section II.

In a graph-based KB, rules are represented using two pieces

of graph: head (hypothesis) and tail (conclusion). Figure 9 and

10 show the graph representation of the Rules (2) and (4) from

the example in Section II.

x y z

x y z

t “Club”

address address

contains

address

contains

is-a

IF

THEN

Fig. 10. Graph representing the Rule (4) from Section II.

Rule application works in two steps: first, the head of the

rule needs to be deducted from the facts (using homomor-

phism). Then, if there is a homomorphism, the conclusion gets

added to the graph respecting links between vertices in head

and tail parts of the rule. The method we use to enrich the

graph-based KB is called forward-chaining, which consists in

applying all rules of the rule set until there is no more new

information to be added to the KB. Note that while rule (2)

only adds edges to the facts graph rule (4) can also introduce

new variables to the KB. This is the reason why, apart from

the efficient operations mentioned above, we need a flexible

data structure that also allows quickly adding edges and nodes

to the graph. Figure 11 shows the facts graph after applying

rule (4). Once the graph saturated with all the rules, the second

query can be answered in the same way as described before.

“Person”

x y

u v

“Organisation”

“Bob” “Tom”

p q“Football “Rugby
Team” Team”

“RueAda - Montpellier”

t

“Club”

is-a is-a

name name

is-a is-a

works-for works-for

is-a is-a

plays-in plays-in

part-of

address address

member member

contains contains

address

is-a

co-worker

same-club

Fig. 11. Graph after rule (4) application. Please note that the old graph
vertices and edges are colored in grey. Old edges are also now dotted. The
newly introduced vertices and edges are in black.

IV. CONCLUSION

Knowledge Representation and Reasoning (KRR) studies

computational models for building explicit representations of

knowledge processed by reasoning engines. Given the need

for increasingly large knowledge, research into KRR must

move now towards investigating structures for representation,

optimally manipulated to perform large scale reasoning.

In this work, we have compared two different approaches

for the ontological conjunctive query answering. We have first

introduced the method for performing reasoning over a KB

using a relational database with a set rules. This method has

already proved that it works very well when dealing with large

sets of structured data, stored whether in main or in secondary

memory. Then we have presented another approach for solving

our problem using a graph-based KB with graph rules. As

we have showed before, this approach ensures an unicity

between the KB and the query languages and has theoretically

better results than the first method when reasoning over semi-

structured data.

Nevertheless, our graph based approach for representation6

and reasoning7 only works well when the facts hold in main

memory. This is why we are now interested in finding adequate

6http://www.lirmm.fr/cogui/
7http://cogitant.sourceforge.net/

storage solutions suitable for our graphs reasoning manipu-

lations. More precisely, as shown in the previous sections,

the reasoning mechanism we use on graphs is labelled graph

homomorphism. When detailing our backtracking algorithm

we identified two important qualities of the desired graph

based storage: a good indexing on nodes (that facilitates the

identification of potential candidates for matching) and an

efficient structure of access to the neighbors of a given node,

and, for these neighbors, its subsequent neighbors. Moreover,

rule application will mean that our structure also needs to be

flexible for the insertion of new nodes and edges.

After having set the operations we need in order to perform

reasoning over graphs, our future work will consist in eval-

uating current solutions to the ontological conjunctive query

problem (such as AllegroGraph8, Neo4J9 or HyperGraphDB10)

and testing their large scale efficiency. In parallel, we will also

investigate different graph paradigms for storage that allow

efficient manipulation for the operations previously described.

REFERENCES

[1] P. Hayes, Ed., RDF Semantics, ser. W3C Recommendation. W3C,
2004, http://www.w3.org/TR/rdf-mt/.

[2] A. Calı̀ and M. Kifer, “Containment of conjunctive object meta-queries,”
in Proceedings of the Thirty-Second International Conference on Very

Large Data Bases (VLDB 2006), Seoul, Korea, 2006, pp. 942–952.
[3] A. Calı̀, G. Gottlob, and M. Kifer, “Taming the infinite chase: Query

answering under expressive relational constraints,” in Proceedings of

the Eleventh International Conference on the Principles of Knowledge

Representation and Reasoning (KR 2008), Sydney, Australia, 2008, pp.
70–80.

[4] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“Tractable reasoning and efficient query answering in description logics:
The DL-Lite family,” J. Autom. Reasoning, vol. 39, no. 3, pp. 385–429,
2007.

[5] C. Lutz, D. Toman, and F. Wolter, “Conjunctive query answering in the
description logic el using a relational database system,” in Proceedings of

the Twenty-First International Joint Conference on Artificial Intelligence

(IJCAI 2009), Pasadena, California, USA,, 2009, pp. 2070–2075.
[6] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat, “DL-SR: a lite

DL with expressive rules: Preliminary results,” in Proceedings of the

Twenty-First International Workshop on Description Logics (DL2008),

Dresden, Germany, 2008.
[7] A. Calı̀, G. Gottlob, and T. Lukasiewicz, “A general datalog-based

framework for tractable query answering over ontologies,” in Proceed-

ings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems (PODS 2009), Providence, Rhode

Island, USA, 2009, pp. 77–86.
[8] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.

Addison-Wesley, 1995.
[9] M. Chein and M.-L. Mugnier, Graph-based Knowledge Representation

and Reasoning—Computational Foundations of Conceptual Graphs, ser.
Advanced Information and Knowledge Processing. Springer, 2009.

[10] A. Calı̀, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris,
“Datalog+/-: A family of logical knowledge representation and query
languages for new applications,” in LICS. IEEE Computer Society,
2010, pp. 228–242.

[11] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat, “Extending
decidable cases for rules with existential variables,” in Proceedings of

the Twenty-First International Joint Conference on Artificial Intelligence

(IJCAI 2009), Pasadena, California, USA,, 2009, pp. 677–682.
[12] J.-F. Baget, M. Leclère, and M.-L. Mugnier, “Walking the decidability

line for rules with existential variables,” in Proceedings of the Twelfth

International Conference on Principles of Knowledge Representation

and Reasoning, Toronto, Canada. AAAI Press, 2010.

8http://www.franz.com/agraph/allegrograph/
9http://neo4j.org/
10http://www.kobrix.com/hgdb.jsp

