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1 INRIA, France
2 University Montpellier 2, France

3 LIRMM, France

Abstract. We consider existential rules (also called Tuple-Generating Depen-

dencies or Datalog+/- rules). These rules are particularly well-suited to the timely

ontological query answering problem, which consists of querying data while tak-

ing terminological knowledge into account. Since this problem is not decidable

in general, various conditions ensuring decidability have been proposed in the

literature. In this paper, we focus on conditions that restrict the way rules may

interact to ensure that the forward chaining mechanism is finite. After a review of

existing proposals, we propose a generalization of the notion of rule dependency,

namely k-dependency, that allows to enlarge halting cases. It can also be used to

compile the rule base, which leads to improve query answering algorithms.

1 Introduction

First-order Horn rules (without function symbols except constants) have long been used

in artificial intelligence, as well as in databases under name Datalog. In this paper, we

consider an extension of these rules that have the ability of generating new unknown

individuals (an ability called value invention in databases [AHV95]). More precisely,

these extended rules are of the form Body → Head, where Body and Head are con-

junctions of atoms, and variables occurring only in the Head are existentially quanti-

fied. E.g., ∀x(Human(x) → ∃y(Parent(y, x)∧Human(y))). Hence their name ∀∃-rules

in [BLMS09,BLM10] or existential rules [BMRT11,KR11]. Existential rules are known

in databases as Tuple-Generating Dependencies (TGDs) [BV84]. TGDs have been ex-

tensively used as a high-level generalization of different kinds of constraints, e.g. for

data exchange [FKMP05]. They also correspond to rules in conceptual graphs, a graph-

based knowledge representation formalism [Sow84,CM09].

Recently, there has been renewed interest for these rules in the context of ontological

query answering, a timely problem both in knowledge representation and in databases.

This problem is also known as ontology-based data access. Ontological query answer-

ing consists in querying data while taking the semantics of domain knowledge into

account. More precisely, let us consider a knowledge base (KB) composed of a ter-

minological part (expressing domain knowledge) and an assertional part (called here

the facts). Queries are supposed to be at least as expressive as conjunctive queries in

databases, which can be seen as existentially closed conjunctions of atoms. The query

problem consists in computing the set of answers to a query on a given KB. A funda-

mental decision problem is thus (Boolean) conjunctive query answering, which can be

expressed as an entailment problem: is a (Boolean) conjunctive query entailed by a KB?

In this paper, we will focus on this latter problem, denoted by ENTAILMENT.
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In knowledge representation, and in the Semantic Web, terminological knowledge

is often represented with description logics (DL). However, DLs traditionally focused

on reasoning about the terminology itself (for instance, checking its consistency) and

querying tasks were restricted to ground atom entailment. Conjunctive query answering

with DLs that were considered as basic ten years ago appears to be extremely com-

plex (e.g., for the classical DL ALCI, it is 2ExpTime-complete, and still NP-complete

in the size of the data). Thus, families of lightweight DLs dedicated to conjunctive

query answering on large amounts of data have been designed recently, namely DL-

Lite [CGL+07], EL [BBL05,LTW09], and their generalization to Horn-logics (see e.g.

[KRH07]). These DLs are the basis of the tractable profiles of OWL 2. Interestingly,

existential rules generalize the core of these new DLs [CGL09,BLM10,BMRT11].

Alternatively, querying large amounts of data is the fundamental task of databases.

Therefore, the challenge in this domain is now to access data while taking terminologi-

cal knowledge into account. Deductive databases, and first of all the Datalog language,

allow for integrating some terminological knowledge. However, in Datalog rules, vari-

ables are range-restricted, i.e., all variables in the rule head necessarily occur in the rule

body, which does not allow for value invention. This feature has been recognized as

mandatory in an open-world perspective, where it cannot be assumed that all individu-

als are known in advance. This motivated the recent extension of Datalog to TGDs (i.e.,

existential rules) which gave rise to the Datalog +/- family [CGK08,CGL09,CGL+10].

Existential rules thus provide some particularly interesting features in the context

of the Web. On the one hand, they cover the core of lightweight DLs dedicated to

query answering, while being more powerful and flexible. In particular, they have no

restricted predicate arity (while DLs allow for unary and binary predicates only). On

the other hand, they cover Datalog, while allowing for value invention.

The ability to generate existential variables, along with complex conjunctions of

atoms, makes entailment with these rules undecidable [BV81,CLM81]. Since the birth

of TGDs, and recently within the Datalog+/- and existential rule frameworks, various

conditions of decidability have been exhibited. Stated in an abstract way, decidabil-

ity can be based on the finiteness of classical mechanisms, namely forward chaining

[BM02] (called the chase in databases [JK84]) or backward chaining [BLMS09]. In

[CGK08], it is shown that entailment is still decidable when the generated facts have

a tree-like structure (when seen as graphs), even if the forward chaining does not halt.

Two kinds of “concrete” criteria ensuring that one of the above abstract conditions is

satisfied can be found in the literature. The first kind of criteria achieves decidability

by restricting the syntax of rules or rule sets (cf. [BLMS11] for a synthetic presentation

of these classes of rules, and [CGP10,KR11] for very recent new classes). The second

kind of criteria restricts the way rules can interact. In this paper, we will focus on this

latter kind of techniques. More precisely, we consider a directed graph, called the graph

of rule dependencies (GRD), which encodes dependencies between rules: its nodes are

the rules and an arc from a rule Ri to a rule Rj means that Rj depends on Ri, i.e., there

exist facts such that applying Ri on these facts leads to trigger a new application of Rj .

A circuit (i.e., a directed cycle) in this graph may indicate a potentially infinite sequence

of rule applications. Hence, decidability results are obtained by imposing conditions on

circuits of this graph (see [BLMS11] for details): if it has no circuit, or more generally
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if the rules in all its strongly connected components have the property of ensuring finite

forward chaining (resp. backward chaining), then the forward chaining (resp. backward

chaining) is finite; more complex conditions allow to combine several abstract criteria.

However, a weakness of this graph is that it does not take sequences of rule applica-

tions into account. Indeed, let us consider a forward chaining mechanism that proceeds

in a breadth-first manner, i.e., at each step it performs in parallel all possible rule appli-

cations on the current facts, which produces new facts. Rule dependencies focus on a

single step of this mechanism and are not able to take several successive steps into ac-

count. Indeed, it may be the case that Rj depends on Ri, i.e., an application of Ri adds

knowledge that can be used to trigger a new application of Rj , but that this dependency

holds only for a bounded number of forward chaining steps; after that, no application of

Ri can contribute to trigger Rj (note that this property has to hold for all possible initial

facts). In other words, there may be circuits in the graph of rule dependencies that do

not correspond to an infinite sequence of rule applications.

The aim of this paper is to introduce more “farsighted” dependencies. We generalize

rule dependencies to k-dependencies, that consider k steps of rule applications; rule

dependency is the particular case where k = 1. Intuitively, Rj k-depends on Ri if there

exists a fact such that applying Ri after k − 1 steps of forward chaining may trigger a

new application of Rj . Note that this notion is independent of any facts. We show that

k-dependency can be effectively computed and that the problem of determining if a rule

k-depends on another is NP-complete (the same complexity as for rule dependency).

Paper organization. Sect. 2 provides basic definitions and results on forward chain-

ing and rule dependencies. Sect. 3 defines k-dependency and shows that it overcomes

some weaknesses of rule dependencies. Sect. 4 is devoted to the computation of k-

dependencies. Due to space requirements, we could not include all definitions needed

to fully check proofs; they can be found in [BLMS11]; besides, the reader is referred to

[BMT11] for a self-contained version of this paper. Sect. 5 outlines further work.

2 Background

2.1 Preliminaries

As usual, an atom is of the form p(t1, . . . , tk) where p is a predicate with arity k, and

the ti are terms, i.e., variables or constants. A conjunct C[x] is a finite conjunction of

atoms, where x is the set of variables occurring in C. A fact is the existential closure of a

conjunct. We thus generalize the usual notion of a fact as a ground atom by keeping into

account the existential variables generated by rule applications; with this generalization,

a finite set of facts is equivalent to a fact, hence we identify both notions. Furthermore,

a (Boolean) conjunctive query (CQ) has the same form as a fact, thus we also identify

these notions. W.l.o.g. we see conjuncts, facts and CQ as sets of atoms. Given an atom

or a set of atoms A, we denote by vars(A) and terms(A) its set of variables and of

terms, respectively. Given conjuncts F and Q, a homomorphism π from Q to F is a

substitution of vars(Q) by terms(F ) such that π(Q) ⊆ F (we say that Q maps to F by

π). Logical consequence is denoted by |=. It is well-known that, given two facts F and

Q, it holds that F |= Q iff there is a homomorphism from Q to F .4

4 We consider here standard logical entailment, i.e., with arbitrary (finite or infinite) models.
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Definition 1 (∀∃-Rule). A ∀∃-rule (or existential rule, or simply rule when not am-

biguous) is a formula R = ∀x∀y(B[x,y] → ∃zH[y, z]) where B = body(R) and

H = head(R) are conjuncts, resp. called the body and the head of R. The frontier of

R, noted fr(R), is the set of variables vars(B) ∩ vars(H) = y.

We represent rules as pairs of the form body(R) → head(R) of sets of atoms, with

implicit quantifiers; a and b denote constants, and x, y, z denote variables.

Definition 2 (Application of a Rule). A rule R is applicable to a fact F if there is a

homomorphism π from body(R) to F ; the result of the application of R on F w.r.t. π

is a fact α(F,R, π) = F ∪ πsafe(head(R)) where πsafe is a substitution of head(R),
which replaces each x ∈ fr(R) with π(x) and the other variables with fresh variables.

Example 1. Let R = p(x) → r(x, y) be a rule and F = {p(a), p(b)} be a fact. The

homomorphisms from body(R) to F are π1 = {(x, a)} and π2 = {(x, b)}. The first

application produces the atom r(a, y1), where y1 is fresh. Then, F ′ = α(F,R, π1) =
{p(a), p(b), r(a, y1)}. By applying R to F or F ′ w.r.t. π2, one produces r(a, y2).

Definition 3 (Derivation). Let F be a fact, and R be a set of rules. An R-derivation of

F is a finite sequence (F0 = F ), . . . , Fk s.t. for all 0 ≤ i < k, Fi+1 = α(Fi, Ri, πi),
where Ri ∈ R and πi is a homomorphism from body(Ri) to Fi.

Theorem 1 (Forward Chaining). Let F and Q be two facts, and R be a set of rules.

Then F,R |= Q iff there exists an R-derivation (F0 = F ), . . . , Fk such that Fk |= Q.

It follows that a breadth-first forward chaining algorithm, which at each step checks

if Q can be mapped to the current fact, and if not performs all possible rule applications

on the current fact to produce a new fact, yields a positive answer in finite time when

F,R |= Q. See Alg. 1 (FC) for a generic implementation. The input G is assumed to

encode an optimization structure based on rule dependencies and can be ignored for

now. Let F0 be the initial fact F . Each step consists of producing a fact Fi from Fi−1.

First, all new homomorphisms from each rule body to Fi−1 are computed (the call

to ruleApplicationsToCheck(F,R, G) builds the set toDo). By new homomorphism to

Fi−1, we mean a homomorphism that has not been already computed at a previous step,

i.e., that uses at least an atom added at rank i − 1 (i ≥ 2). Second, the fact Fi is pro-

duced by performing the rule applications using these homomorphisms, provided that

they are considered as useful, which can be encoded in the changesSomething(F,R, π)
predicate. In its simplest form, this predicate always returns true; in this case, FC cor-

responds to the so-called oblivious chase in databases. A stronger halting criterion –in

the sense that it may allow to stop sooner and in more cases– is that the predicate re-

turns false if the application of R w.r.t. π is locally redundant, i.e., π is extensible to a

homomorphism from the head of R to Fi−1; in this case, FC corresponds to so-called

restricted chase in databases. An even stronger criterion is that the predicate returns

false if α(F,R, π) is equivalent to F . We call finite expansion set (fes) a set of rules for

which FC halts on any fact F with the last criterion (see [BM02] for further details).

In this paper, the criterion chosen does not matter: in the following results, when FC is

shown to be finite, this holds for any of these criteria.

Notations. Fk is called the R-saturation of F at rank k and is denoted by αk(F,R). An

atom has order k if it belongs to F k \ F k−1 (i.e., it has been created at rank k).
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Algorithm 1: FC: Generic Forward Chaining Algorithm

Data:R, F and Q; optionally, a structure G encoding dependencies inR
Result: TRUE if F,R |= Q, FALSE (or infinite calculus) otherwise

for (rank = 1; ;rank++) do

if Q maps to F then
return TRUE;

toDo← ruleApplicationsToCheck(F,R, G);
hasChanged← FALSE;

for (R, π) ∈ toDo do

if changesSomething(F,R, π) then
F ← α(F,R, π);
G← updateOptimizationStructure(G,R, π);
hasChanged← TRUE;

if not hasChanged then
return FALSE;

2.2 Dependencies

Several conditions ensuring safe interactions between rules have been defined in the

literature. They can be grouped in two families, which rely on two different graphs.

The first family of conditions relies on a graph encoding variable sharing between

positions in predicates. This graph, called (position) dependency graph, was introduced

for TGDs.5 Its nodes represent positions in predicates ((p,i) represents position i in

predicate p). Then, for each rule R and each variable x in body(R) occurring in position

(p, i), the following arcs with origin (p, i) are created: if x ∈ fr(R), there is an arc

from (p, i) to each position of x in head(R); furthermore, for each existential variable

y in head(R) (i.e., y ∈ vars(head(R)) \ fr(R)) occurring in position (q, j), there is

a special arc from (p, i) to (q, j). A set of rules is said to be weakly acyclic (wa) if its

position dependency graph has no circuit passing through a special arc. Intuitively, such

a circuit means that the introduction of an existential variable in a given position may

lead to create another existential variable in the same position, hence an infinite number

of existential variables. The weak-acyclicity property is a sufficient condition (but of

course not necessary) for FC to be finite [FKMP03,DT03]. Recently, weak-acyclicity

has been independently generalized in various ways, namely safety [MSL09], super-

weak-acyclicity [Mar09], and joint-acyclicity [KR11].

Example 2. Let R1 = {R1, R2}, with: R1 = p(x) → r(x, y), r(y, z), r(z, x) and

R2 = r(x, y), r(y, x) → p(x). In the position dependency graph, among other arcs,

there is a special arc from (p, 1) to (r, 2), which intuitively translates the fact that an

application of R1, which requires to find a value in position (p, 1), leads to create an

existential variable (y or z) in position (r, 2). In turn, there is an arc from (r, 2) to (p, 1),
which translates the fact that an application of R2 leads to propagate the value found

for variable x in position (r, 2) to position (p, 1). Hence, R1 is not wa.

5 We use here the terminology of [FKMP03], developed in [FKMP05].
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The second family of conditions relies on another graph, called the graph of rule de-

pendencies (GRD), which encodes possible interactions between the rules themselves:

the nodes represent the rules and there is an arc from Ri to Rj if an application of the

rule Ri may lead to a new application of the rule Rj ; more precisely, there exists a fact

F such that the application of Ri on F , leading to F ′, may enable a homomorphism

from body(Rj) to F ′ that is not a homomorphism to F ; we say that Rj depends on Ri.

This abstract condition can be effectively computed with a unification operation: Rj de-

pends on Ri iff there is a piece-unifier between body(Rj) and head(Ri) (piece-unifier

being a generalization of the usual notion of atom unifier, that takes the complex struc-

ture of rule heads into account, hence processes whole subsets of atoms together, see

[BLMS09,BLMS11] for details). The GRD notion has been first introduced for concep-

tual graph rules in [Bag04], then adapted to existential rules in [BLMS09]; the notion of

a piece-unifier defined in [BLMS09] is itself adapted from a similar notion defined for

backward chaining of conceptual graph rules [SM96]. A notion equivalent to the GRD,

called the chase graph, is independently defined for TGDs in [DNR08].

It is easily checked that if GRD(R) is acyclic (i.e., has no circuit), then FC(R) is

finite; moreover, if all strongly connected components of GRD(R) have finite FC (f.i.

the corresponding subsets of rules are fes) , then FC(R) is finite [Bag04,BLMS09] (see

this latter paper for similar results on backward chaining and decidable combinations

of forward and backward chaining). [DNR08] prove that when all strongly connected

components of the GRD are weakly-acyclic (the chase graph is said stratified), then FC

is finite, which can be seen as a special case of the previous result.

Example 2. (continued) R1 is not wa, however FC(R1) is finite, which can be detected

via rule dependencies. Indeed, let us see head(R1) and body(R2) as graphs, with vari-

ables as the nodes, and atoms as arcs from their first argument to their second argument;

then, head(R1) is a circuit of length three and body(R2) is a circuit of length two. In

this example, any piece-unifier of body(R2) with head(R1) is necessarily a homomor-

phism from body(R2) to head(R1). Since a circuit of length two cannot be mapped by

homomorphism to a circuit of length three, R2 does not depend on R1. Obviously, no

rule depends on itself. Thus, GRD(R1) is acyclic ((R2, R1) is the only edge).

Example 3. Let R2 = {R}, with R = p(x), r(x, y) → p(y). R2 is wa (there is no

special arc) but R depends on itself, thus GRD(R2) is cyclic.

Weak-acyclicity and GRD-acyclicity are incomparable notions, as can be checked

on examples 2 and 3. This incomparability still holds for generalizations of weak-

acyclicity. Intuitively, rule dependency allows to capture exactly the conditions for rule

applicability but only for one step of FC, while position dependency is not as accurate

but studies the propagation of variable creations along a whole derivation sequence.

Let us point out that the GRD not only yields sufficient conditions for decidability

but can also be used to improve forward chaining (and similarly backward chaining).

Indeed, if a subset of rules Rc ⊆ R has been applied at step i − 1, then the only

rules that have to be checked for applicability at step i are the successors of Rc in the

GRD. This can be implemented by the functions ruleApplicationsToCheck(F,R, G)
and updateOptimizationStructure(G,R, π) in Alg. 1: initially, all rules in the GRD are
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flagged for applicability. Then, in ruleApplicationsToCheck, we only test for applicabil-

ity rules that depend on flagged ones, and unflag all rules at the end of the call. Finally,

each call to updateOptimizationStructure(G,R, π) flags the rule R, which has been

usefully applied. Other optimizations can be considered. For example, by integrating F

and Q in the GRD (respectively as the rules ∅ → F and Q → win()), we can restrict

rules to those that appear in a path from F to Q. We call FC+ the obtained algorithm. 6

Since deciding whether FC halts (whatever the chosen halting condition is) is not

decidable [DNR08,BLM10], dependency conditions can only try to better approximate

the set of halting instances. Following example 4 shows a case where FC halts while

none of previous notions of acyclicity allows one to detect it.

Example 4. Let R = p(x), r(x, y) → r(y, z). {R} is not wa (nor acyclic with the above

mentioned generalizations of wa) and GRD({R}) has a loop. However, the number of

steps of FC({R}) is bounded by 2, since R does not create any atom with predicate

p. E.g., with F = {p(a), r(a, b), p(b)}, the first step adds r(b, z1) and the second step

adds r(z1, z2); after that, R is not applicable anymore.

3 From rule dependencies to rule k-dependencies

As seen in example 4, rule dependency does not consider “how long” a dependency

exists. Indeed, R triggers itself, but it can do so only once. We thus introduce the no-

tion of k-dependency which allows one to deal with such phenomenon. Intuitively, k-

dependency checks if two rules are dependent, after having restrained the set of facts

on which this dependence could appear to facts that can be obtained with k steps of FC.

3.1 Definition of k-dependency and link with the usual dependency

Definition 4 (k-dependency). Let R be a set of rules, k ≥ 1 and Ri, Rj ∈ R. We say

that Rj = (Bj , Hj) is dependent at order k on Ri among R (notation: Rj k-depends

on Ri) if there exists a fact F and a homomorphism π from Bj to αk(F,R) such that

there exists an atom a of Bj that is mapped to an atom of order k generated by Ri.

When R is clear from the context, we will only write that Rj is k-dependent on Ri.

The k-dependency relationships are compiled in the graph of rule dependencies at

order k, in a similar way as for the dependency relationships.

Definition 5 (GRDk(R)). Let R be a set of rules. The graph of rule dependencies at

order k of R has as nodes the elements of R, and possesses an arc from Ri to Rj iff Rj

is dependent at order k on Ri. It is denoted by GRDk(R).

We first prove that k-dependency is a refinement of the usual dependency, by show-

ing that there are less rules k-dependent than dependent.

6 Furthermore, as shown in [BS06], the GRD can be used not only to reduce the number of rule

applicability checks, but also the computation time of these checks: if R is a rule applied at

step k according to some homomorphism π, and µ1, . . . , µp are the piece-unifiers proving that

R′ depends on R, then, at step k + 1, we only have to check for each partial homomorphism

π ◦µi from the body B′ of R′ if it can be extended to a homomorphism from B′ to αk(F,R).
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Property 1. Let R be a set of rules. The following holds for any 1 ≤ k ≤ k′:

GRDk′(R) ⊆ GRDk(R) ⊆ GRD1(R) = GRD(R)

Proof. We first show that if Rj k′-depends on Ri, then it k-depends on Ri for any k ≤ k′. By

definition of k′-dependency, there exists a fact F and a homomorphism π from Bj to αk′(F,R)
such that there exists an atom a of Bj that is mapped to an atom of order k generated by Ri. Then,

a is an atom of order k′ when the initial fact is αk′
−k(F,R), thus, Rj k-depends on Ri. We now

show that GRD1(R) = GRD(R). If Rj depends (usual notion) on Ri, then there is a fact F

and a homomorphism from Bi to F such that a new application of Rj exists in α(F,Ri, π).
This new homomorphism necessarily uses an atom newly created, thus is still new if we perform

all possible rule applications from R to F at the first step. Thus, Rj 1-depends on Ri. If Rj

1-depends on Ri, then let F be a fact to which Bj maps in a new way using a created by an

application π of Ri. Let F ′ = α(F,R) \ a. Ri is applicable on F ′ by π, and Bj can be mapped

to α(F ′, Ri, π) in a way that was not possible on F ′, thus Rj depends on Ri.

We can use the k-GRD to optimize the FC algorithm, in a similar way as with the

GRD. Suppose our optimization structure G contains some k-GRDs. Then, at rank k of

the algorithm, we can use the q-GRD in G such that q ≤ k and q is maximal for this

property. We then use that q-GRD exactly as we used the GRD in FC+.

3.2 Decidability properties related to the structure of GRDk(R)

We now focus on decidability properties related to GRDk(R), which are generalizations

of properties of GRD(R).

Property 2. Let R be a set of rules. If there exists k such that GRDk(R) is acyclic, then

R is a finite expansion set.

Proof. Let F be a fact and R be a set of rules having an acyclic GRDk. Let Fk = αk(F,R).
LetR1 be the set of rules that can be applied in a new way to Fk. The rules that could be applied

in a new way to F k+l are those that can be reached with a path of length l from a rule of R1 in

GRDk(R). Since GRDk(R) is acyclic, there exists m such that m is the length of the longest

path in GRDk(R). We then have Fk+m = Fk+m+1, thusR is a fes.

This yields a strictly more general criterion than the acyclicity of GRD(R) to deter-

mine if a given set of rules is a fes. Indeed, the set {R} in example 4 has an acyclic

GRD2 but not an acyclic GRD. However, this criterion does not generalize weak-

acyclicity, as can be checked on example 3, where GRDk(R2) has a loop for any k.

In order to subsume this class (and any other (monotonic) fes criteria), we generalize a

property that holds for the GRD as follows:

Property 3 (Decomposition into s.c.c). Let R be a set of rules. If there exists k such

that all strongly connected components of GRDk(R) are finite expansion sets, then R
is a finite expansion set.

In particular, if each s.c.c. of GRDk(R) is a set of weakly-acyclic rules, then R is fes.

Proof. We adapt the proof of [BLMS11], Theorem 17. The only difference is that instead of

starting to use GRDk from F , we use it from αk(F,R).
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3.3 Dependency and syntactic transformation

We finally present a nice feature of k-dependency related to syntactic transformations.

First, note that in Datalog, the head of a rule is a single atom. Such a restriction of rule

head cardinality can be done without loss of generality when rules have no existential

variables; indeed, in this case, a rule can be decomposed into an equivalent set of rules

by splitting its head into single atoms. In the case of existential rules, such an equivalent

rewriting can still be done, at the cost of introducing some auxiliary atoms (see the

transformation below), which are used to memorize multi-occurrences of an existential

variable in a rule head.

Definition 6 (Atomic head transformation). Let R = (B,H = {h1, . . . , hk}) be a

rule. We define Ta(R) = {R0, R1, . . . , Rk}, where:

– R0 = (B, {pR(x)}), where x is the set of variables appearing in H and pR a fresh

predicate,

– for any 1 ≤ i ≤ k, Ri = ({pR(x)}, {hi}).

For a rule set R, we define Ta(R) = ∪R∈RTa(R).

Example 5. Let R1 be the set of rules in Example 2. Ta(R1) contains the following

rules (note that R2 could be kept unchanged since its head is already atomic):

– R0
1 = p(x) → pR1

(x, y, z)
– R1

1 = pR1
(x, y, z) → r(x, y)

– R2
1 = pR1

(x, y, z) → r(y, z)
– R3

1 = pR1
(x, y, z) → r(z, x)

– R0
2 = r(x, y), r(y, x) → pR2

(x)
– R1

2 = pR2
(x) → p(x)

R1 R2 R0
1

R1
1

R2
1

R3
1

R0
2 R1

2

Fig. 1. The GRD ofR1 (left) and of Ta(R1) (right)

However, as illustrated in Figure 1, even if both rule sets are equivalent from a se-

mantic point of view, they do not behave similarly with respect to the graph of rule

dependencies: indeed, the GRD of the initial rule set has no circuit while the GRD

of the new rule set possesses one. This is due to the arcs (Ri
1, R

0
2) for i = 1 . . . 3,

while there is no arc (R1, R2). In other words, the rule dependency notion is not resis-

tant to the atomic-head transformation. This trouble is solved with the k-dependency

notion, thanks to its ability to see beyond a single FC step. Indeed, the structure of

GRD2k(Ta(R)) is similar to GRDk(R), in a sense specified by the following property:
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Property 4 (Structural similarity). Let R be a set of rules, and Ta(R) be obtained as

above. Let Ri and Rj be two rules of R. There exists m such that R0
j 2k-depends on

Rm
i iff Rj k-depends on Ri.

Proof. See Lemmas 3 and 4 in Appendix.

This structural similarity of GRDk(R) and GRD2k(Ta(R)) yields the following

corollary:

Corollary 1. Let R be a set of rules. GRDk(R) is acyclic iff GRD2k(Ta(R)) is acyclic.

More generally, the reduced graph of GRDk(R) –according to its s.c.c.– is isomor-

phic to the reduced graph of GRD2k(Ta(R)).

4 Computation of k-dependencies

While forward chaining uses rules to enrich facts and produce a fact to which the query

maps, backward chaining proceeds in the “reverse” manner: it uses the rules to rewrite

the query in different ways and produce a query that maps to the facts. The key oper-

ation in a backward chaining mechanism is the unification operation between part of

a current goal (a fact in our framework) and a rule head. This mechanism is typically

used in logic programming, with rules having a single atom in the head, which is uni-

fied with an atom of the current goal. Since the head of an existential rule has a more

complex structure, the associated unification operation is also more complex. We rely

on the notion of a piece, which stems from a graph view of rules and was introduced

in [SM96] for conceptual graph rules. We recall here the definitions of a rewriting and

a rewriting sequence, which are necessary to understand this section (since the formal

definition of a piece-unifier is only needed to fully check proofs, we refer the reader to

[BLMS11] or [BMT11] for it). Then, we generalize these notions to effectively compute

k-dependencies, and study the complexity of the associated decision problem.

4.1 Rewriting and rewriting sequences

As seen in Section 2, the forward chaining α operator enriches facts by drawing conclu-

sions from a rule application, which is determined by a given homomorphism. Indeed,

if F is a fact, R = (B,H) is a rule, and π is a homomorphism from B to F , then

α(F,R, π) = F ∪ Hπ , where Hπ is a specialization of H determined by π. On the

other hand, backward chaining relies upon the β operator that uses a piece-unifier to

rewrite the goal. Indeed, if Q is a fact (goal), R = (B,H) is a rule, and µ is a unifier of

Q with R, then β(Q,R, µ) = Qµ ∪ Bµ where Qµ is a specialization of a subset of Q

determined by the unifier, and Bµ is a specialization of the body of R (also determined

by µ). Note that more than one atom of Q can be suppressed in Qµ (in fact, subsets

of atoms corresponding to pieces are erased), and we can restrict our work to the case

when at least one atom is erased (using atom-erasing unifiers).

The following lemmas, rephrased from [BLMS11] (Lemmas 7 and 8) using the

above notations, state the precise relationships between the β and α operators.
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Lemma 1. Let Q′ = β(Q,R, µ). Then there exists a homomorphism πµ from the body

of R to Q′ such that Q maps to α(Q′, R, πµ).

Lemma 2. Let F ′ = α(F,R, π) 6= F . Then there exists a piece-unifier µπ of F ′ with

R such that β(F ′, R, µπ) maps to F .

Rewriting Sequence These two lemmas are then used to prove the correspondence

between the forward chaining algorithm (using a sequence of rule applications) and the

backward chaining algorithm (that relies upon a sequence of rewritings).

Definition 7 (Rewriting sequence). Let Q and Q′ be two facts, and R be a set of rules.

We say that Q′ is an R-rewriting of Q if there is a finite sequence (called the rewriting

sequence) Q = Q0, Q1, . . . , Qk = Q′ such that for all 1 ≤ i ≤ k, there is a rule

R ∈ R and a unifier µ of Qi−1 with R such that Qi = β(Qi−1, R, µ).

Theorem 2. [BLMS11] Let F and Q be two facts, and R be a set of rules. There is

an R-rewriting of Q that maps to F iff there is an R-derivation sequence from F to

F ′such that Q maps to F ′.

Unifiers and dependencies The unifiers used to define fact rewritings are also used to

compute dependencies, as stated by the following theorem.

Theorem 3. [BLMS11] A fact Q depends on a rule R if and only if there exists an

atom-erasing unifier of Q with R, i.e., a unifier µ such that Q 6⊆ β(Q,R, µ).

4.2 Rewriting depth and k-dependency

In section 3, we have defined k-dependency with respect to a particular order of rule-

applications in forward chaining, using a “saturation” mechanism. Wanting now to gen-

eralize Theorem 3 to be able to compute k-dependencies, we will have to consider par-

ticular rewritings that correspond to that particular order in forward chaining. In the

following definitions, we prepare that by examining how atoms appear and disappear in

a rewriting sequence.

Definition 8 (Atom Erasure and Creation). Let S = Q0, . . . , Qk be an R-rewriting

sequence from Q0 to Qk. We say that Qi erases an atom a in S when a ∈ Qi−1 but

a 6∈ Qi (note that Q0 erases no atom). We say that Qi creates an atom a in S when

a ∈ Qi but a 6∈ Qi−1 (note that Q0 creates all its atoms). We say that Qi requires Qj

(with j < i) when Qi erases an atom created by Qj .

We first generalize the notion of atom-erasing unifiers used to characterize depen-

dencies.

Definition 9 (Atom-erasing sequence). Let S = Q0, . . . , Qk be an R-rewriting se-

quence from Q0 to Qk. We say that S is atom-erasing when, ∀1 ≤ i ≤ k, Qi erases at

least one atom that is not created again by some Qj with j ≥ i.
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Note that a sequence Q0, Q1 is atom-erasing if and only if the unifier used to obtain

Q1 from Q0 is atom-erasing in the sense of [BLMS11]. The notion of atom-erasing

sequence is indeed a generalization of atom-erasing unifiers.

Property 5. If there exists an R-rewriting sequence S from Q to Q′ such that Q′ maps

to F , then there exists an atom-erasing R-rewriting sequence S ′ from Q to Q′′ such

that Q′′ maps to F .

Proof. See that if S is not atom-erasing, then there exists Qi that either erases no atom, or such

that all atoms erased by Qi appear again in the rewriting sequence. This rewriting only adds

information to what has been proven, and is thus useless.

As a consequence, when considering rewriting sequences, we can restrict our search

to atom-erasing ones. The depth of a rewriting will be used to establish a correspon-

dence between rewritings and the saturation rank in forward chaining.

Definition 10 (Depth of a fact). Let S = Q0, . . . , Qk be an R-rewriting sequence

from Q0 to Qk. The depth of a fact in S is recursively defined as follows:

– if no fact of S is required by Qi, then depth(Qi) = 0;

– otherwise, depth(Qi) = maxQj required by Qi
{depth(Qj)}

The maximal depth of Qi is the maximal depth of all Qj , for i ≤ j ≤ k.

Theorem 4. Let S = Q0, . . . , Qk be an atom erasing R-rewriting sequence from Q0

to Qq , with q ≥ 1. If Qi has depth 0 in S , then there is a homomorphism from Qi to

Qq . Otherwise, if Qi has maximal depth k, then there is a homomorphism from Qi to

αk(Qq,R) that is not a homomorphism from Qi to αk−1(Qq,R).

Proof. We prove that theorem by induction of the depth of the rewriting. If Qi has depth 0 in S,

it means that no Qj of S (for j > i) requires any atom of Qi, thus in particular Qq = Qi ∪X

and there is a homomorphism from Qi to Qq . Suppose now that the property is true at rank n.

We prove that the property remains true at rank (maximal depth) n + 1. Suppose that Qi has

maximal depth n+1. We consider Qj with the greatest j ≥ i with Qj having depth n+1. Then

there exists a Qp that requires Qj and has depth n (and also maximum depth n, having chosen

j as the greatest). According to our induction hypothesis, there is a homomorphism from Qp to

Fn = αn(Qq,R) that is not a homomorphism from Qp to αn−1(Qq,R).
It remains now to check (i) that there is a homomorphism from Qi to the fact α1(F

n,R) =
αn+1(Qq,R), and (ii) this homomorphism is not a homomorphism from Qi to Fn.

(i) We know (soundness and completeness) that there is a homomorphism from Qi to a

finite saturation of Qq . If it is not in αn+1(Qq,R), it means that the first homomorphism is at

least in α2(F
n,R). Then for any rule application sequence from Fn to α2(F

n,R), there is

one rule that uses for application an atom that appears in α1(F
n,R). This is true in particular

for the rule application sequence that corresponds (see proof of Theorem 2 in [BLMS11]) to the

rewriting sequence from Qi to Qp. It would mean (Lemma 2), that the depth of Qi is at least 2 +

depth(Qp), which is absurd. Thus Qi necessarily maps to αn+1(Qq,R).
(ii) See now that there is an atom of Qj that is erased in Qp. Thus in the rule application

sequence that corresponds to our rewriting sequence, the body of the rule used to obtain a map

of Qj uses an atom created by the rule used to obtain Qp. The rule application sequence used to

obtain the mapping of Qi thus relies upon the saturation at rank n+ 1.
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The latter theorem can thus be used to characterize k-dependencies.

Corollary 2. Let R be a set of rules, and R1, R2 be two rules of R. Then R2 k-depends

on R1 if and only if there exists an atom erasing R-rewriting sequence S from Q0 = B2

to Qq such that Q1 = β(Q0, R1, µ) and Q1 has depth (and thus maximal depth) k − 1
in S .

4.3 Complexity of k-dependencies

For any k, we define the decision problem called k-DEPENDENCY.

k-DEPENDENCY

Input: a set of rules R and two rules R1, R2 ∈ R
Output: yes if R1 k-depends on R2 among R, no otherwise.

Property 6. For any k, the decision problem k-DEPENDENCY is NP-complete.

Proof. NP-hardness follows from a straightforward reduction from 1-DEPENDENCY. Let R be

a set of rules, k ∈ N, and Ri, Rj ∈ R. From Corollary 2, Rj depends on Ri iff there exists

an atom-erasing rewriting sequence such that Qi is of depth k − 1. As a certificate, we provide

this rewriting sequence (and all the necessary information to check it is a correct rewriting). If

m denotes the maximum size (in number of atoms) of a rule body, the length of a rewriting

sequence of depth k − 1 is at most mk. The certificate provides then a polynomial number of

facts of size polynomial in Q, and a polynomial number of unifiers. Given a rewriting sequence

S : Q0, Q1, . . . , Qr (including the relevant unifiers), one can check in polynomial time if it is

atom-erasing and if Q1 has maximal depth k − 1. Then k-DEPENDENCY belongs to NP .

5 Conclusion

In this paper, we have proposed a generalization of the notion of dependency for ex-

istential rules, namely k-dependency, which allows to extend decidable cases for the

ontological query answering problem. This notion can be used to compile the rule

base, which allows for optimizing online query answering algorithms. We have also

shown that this notion resists to the decomposition of rules into rules with atomic head,

whereas it was not the case for the simple rule dependency notion. Further work in-

cludes the following two directions. First, we are interested in efficient algorithms to

decide k-dependency. Second, it is worth to note that the acyclicity of the graph of rule

dependencies and of the graph of position dependencies are incomparable criteria, it

would be very interesting to define a notion that subsumes both of them. Property 3 al-

lows to build such a class, but doing it in an integrated fashion should give more insight

on interactions between rules.
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Appendix: Proof of Property 4

Lemma 3. Let R be a set of rules, P = {pR1
, . . . , pRk

} be the set of fresh predicates

occurring in Ta(R). Let Q be a fact without atom of predicate belonging to P . For any

Q′ without atom of predicate belonging to P it holds that Q′ is an R-rewriting of Q

with Q is of depth k iff Q′ is a Ta(R)-rewriting of Q with Q of depth 2k.

Proof. (sketch) We explain how to build the Ta(R)-rewriting sequence given the R-rewriting

sequence, and conversely. Let S : Q = Q0, . . . , Qq = Q′ be an R-rewriting sequence of Q

such that Q′ has no atom on P and Q is of depth k. We change each rewriting step (say with

rule R) by a rewriting sequence of ”depth 2” in the following way. We first use the created rules

of body pR(x), then erase all the created atoms by unifying with the R0 rule. We thus get a

Ta(R) rewriting sequence, for which Q is of depth 2k. In the other direction, let S ′ : Q =
Q′

0, . . . , Qq′ = Q′′we partition set of facts along the following lines: we put in different sets the

facts erasing an atom on P . For a set containing a fact erasing an atom on P , we add the fact that

created that atom. These sets of facts correspond to a rewriting step with the rules from R. We

thus build anR-rewriting sequence, by having facts that erase the atoms erased by the Ri (i 6= 0)
rules, and create the atoms created by the R0 rules.

Lemma 4. Let R be a set of rules, P = {pR1
, . . . , pRk

} be the set of fresh predicates

occurring in Ta(R). Let Q be a fact without atom of predicate belonging to P . If there

is an atom-erasing sequence rewriting from Q to Q′ of depth 2k, then there is one such

that Q′ does not have any atom of predicate belonging to P .

Proof. Let Q without any atom with predicate belonging to P . Let S = Q = Q0, . . . , Qq = Q′

a Ta(R) rewriting sequence such that Q′ is of depth 2k. Let assume that a is an atom of predicate

p ∈ P in Q′. Let assume p has been created by Qi (Qi is necessarily unique since S is atom-

erasing). Qi creating only p, and p being not used by any other fact, Qi is not required by any

other fact of the rewriting sequence, and we can remove this rewriting step, yielding a fact having

strictly less atoms of predicate in P . By induction, we show that there is Q′ having no such atom.


