
Multipartite Modular Multiplication

Pascal Giorgi, Laurent Imbert, Thomas Izard

The authors are with the Laboratoire d’Informatique, de Robotique et

de Microélectronique de Montpellier (LIRMM), Université Montpellier 2, France.

September 1, 2011

Abstract

Current processors typically embeds many cores running at high speed. We may then ask ourselves
whether software parallelism is practical for low level arithmetic operations. In this paper we gener-
alize the bipartite modular multiplication method of Kaihara and Takagi. We present a multipartite
multiplication. We carefully analyze its asymptotic complexity and measure its practical efficiency and
scalability for nowadays multi-core architectures. We present several experimental results which illustrate
the efficiency of our method and which bring a positive answer to the above question for a wide range of
operand’s sizes.

1 Introduction
Multiplication is certainly one of the most studied basic arithmetic operations [1] and our ability to compute
a product as fast as possible, especially when the size of the operands grows, is critical for very many appli-
cations [2]. In this paper, we are interested in modular multiplication, i.e., the computation of AB mod P ,
where A,B are two integers less than P . Several algorithms have been proposed to perform this operation
efficiently. See [3, chapter 2] for a recent, excellent survey. So-called interleaved methods perform the mul-
tiplication and the modular reduction in a digit-by-digit fashion. Interleaved algorithms are both highly
regular and memory efficient. For these reasons, they are generally the preferred choice for hardware im-
plementation. On the other hand, performing the multiplication digit-by-digit makes it impossible to use
fast, sub-quadratic multiplication algorithms such as Karatsuba [4] Toom-Cook [5, 6] and the FFT-based
methods [7]. When dealing with very large operands, and when memory is not a major issue, modular
multiplication is generally performed using a first integer multiplication followed by a modular reduction.

Modular reduction algorithms generally fall into two distinct families depending on whether the reduction
is performed from the most significant bits as in Barrett algorithm [8] or from the least significant ones as in
Montgomery method [9]. In [10], Kaihara and Takagi proposed a bipartite modular multiplication algorithm
which mixes the two options, where the upper and lower parts are reduced independently using different
strategies. This algorithm is particularly well suited to parallel implementation and significant speedups can
be obtained.

In this paper we further generalize the bipartite algorithm of Kaihara and Takagi. In Section 2, we
first define two algorithms which perform a partial Montgomery reduction and a partial Barrett reduction.
We prove their correctness and give their complexity. These algorithms are then used as building blocks
for our multipartite multiplication presented and carefully analyzed in Section 3. In Section 4, we present
some optimization strategies in the context of parallel implementation. Finally, we present timings and
comparisons in Section 5.

1

2 Background
In the sequel, we consider multiple precision integers in radix β. Given 0 < P < βn and C > P , a modular
reduction algorithm is a method for computing R = C mod P , i.e. the remainder of the euclidean division
of C by P , such that

R = C −
⌊
C

P

⌋
P. (1)

Note that in practice, C is often the result of an integer multiplication between operands of size n (in
radix β). In Sections 2.3 and 3 we consider algorithms for modular multiplication which compute AB mod P .

In general, performing the exact division to evaluate the quotient bC/P c in (1) is very expensive and
should be avoided. Several approaches have been proposed to bypass this operation by only computing an
approximation of the quotient. As a result, the remainder might not be fully reduced (i.e. less than P) and
a few number of final reduction steps (subtractions) may be needed. However, in many cases it is sufficient
to work with partial results that are not fully reduced. The most widely used modular reduction algorithms
are due to Barrett [8] and Montgomery [9]. Given an input integer C > P , both algorithms consist of
adding or subtracting a suitable multiple of P from C to get a value which belongs to the same class of
congruence as C modulo P and has fewer significant digits. By computing R = C − QP , where Q is an
approximation of the quotient bC/P c, Barrett’s algorithm reduces the input C from the most significant
digits. Clearly, the result is congruent to C modulo P . The number of significant digits of R < C depends
on the quality of the approximation of the quotient. Symmetrically, Montgomery’s algorithm performs this
reduction from the least significant digits by adding to C a suitable multiple of P such that the m least
significant digits of the result are all zeros. Therefore, a division by βm (which reduces to simple shifts to
the right) gives a value that is not exactly congruent to C modulo P , but rather to Cβ−m mod P . (This
extra factor β−m introduced by Montgomery’s reduction algorithm is easy to deal with in the context of a
modular exponentiation, and to remove when necessary.) The bipartite modular multiplication algorithm
proposed by Kaihara and Takagi in [10] simply aims at reducing the input C from both sides at the same
time, in parallel. Its implementation requires a reduction algorithm from the most significant digits, together
with a reduction algorithm such as Montgomery which operates from the least significant digits. In the next
paragraphs, we present the algorithms of Montgomery, Barrett and the bipartite algorithm and we express
their complexity in terms of the number of integer multiplications. Following [3] we use M(m,n) to denote
the time to perform an integer multiplication with operands of size m and n respectively and we simply note
M(n) when both operands have the same size.

2.1 Montgomery Reduction Algorithm
Montgomery’s idea [9] was to trade a costly division for only two integer multiplications plus some right
shifts. Given 0 < P < βn and 0 ≤ C < P 2, the algorithm computes the smallest integer Q such that C+QP
is a multiple of βn. Hence (C + QP)/βn is an integer less than 2P and congruent to Cβ−n modulo P . If
(P, β) = 1, the value Q is easily obtained as Q = µC mod βn, where µ = −P−1 mod βn is a precomputed
value1. A detailed description is given in [3]. We note that the products to compute µC and QP can
be performed using a low short product and a high short product respectively. However, if one want to
benefit from sub-quadratic multiplication algorithms, full products must be computed. Therefore the cost
of Montgomery modular reduction is 2M(n). This is equivalent to 6M(n/2) with Karatsuba multiplication.

In the following, we will need a generalization of Montgomery reduction algorithm which only performs
a partial reduction by computing a remainder R ≡ Cβ−t (mod P) for some t ≤ n such that 0 ≤ R < βm−t.
This partial reduction algorithm is described in Algorithm 1. (The original Montgomery modular reduction
algorithm can be found in [3].)

Theorem 1. Algorithm PMR is correct.
1Because of this rather expensive precomputation, Montgomery algorithm is interesting when several reduction modulo P

need to be computed.

2

Algorithm 1: PMR (Partial Montgomery Reduction)
Input: 0 < P < βn with (P, β) = 1, 0 ≤ C < P 2, C < βm, t ≤ n and µ = −P−1 mod βt

(precomputed)
Output: R ≡ Cβ−t (mod P) with 0 ≤ R < βm−t

1 Q← µC mod βt

2 R← (C +QP) /βt

3 if R ≥ βm−t then R← R− P
4 return R

Proof. We first prove that R ≡ Cβ−t (mod P). Since Q = µC = −P−1C mod βt we have C + QP ≡ 0
(mod βt). Therefore, the division by βt in step 2 is exact and the result R is congruent to Cβ−t modulo P .
Now, since 0 ≤ C < βm and 0 ≤ Q < βt, we have that 0 ≤ C +QP < βm + βtP . Dividing by βt in step 2
gives 0 ≤ R < βm−t +P . Therefore, at most one subtraction is required in step 3 to get 0 ≤ R < βm−t.

Complexity of PMR

Step 1 of PMR corresponds to the multiplication of the t least significant digits of C with the t least
significant digits of the precomputed constant µ. This step costs either M (m, t) when m < t or M (t)
otherwise. Step 2 involves a multiplication between P and Q, of size n and t respectively of cost M (n, t).
As a result:

PMR(t, n,m) =

{
M (m, t) +M (n, t) if m < t

M (t) +M (n, t) otherwise
(2)

2.2 Barrett Reduction Algorithm
Barrett algorithm [8] is an interesting alternative to Montgomery reduction since it shares the same fun-
damental property: it performs the modular reduction without division. The idea is to precompute an
approximation of the inverse of P in order to obtain an approximation of the quotient with just one multi-
plication. More precisely, Barrett’s algorithm computes an approximation Q of the quotient bC/P c as

Q =

⌊⌊
C

βn

⌋
ν/βn

⌋
, (3)

where ν =
⌊
β2n/P

⌋
is precomputed. The remainder is then obtained by computing C−QP , possibly followed

by at most three subtractions if one wants the remainder to be fully reduced. The detailed description and
proof of correctness can be found in [3]. (See also [11] for a slightly different version.) Assuming full products,
the complexity of Barrett reduction is 2M(n).

As for Montgomery algorithm, we will need a generalization of the Barrett reduction algorithm which
only computes a partially reduced remainder, i.e. an integer R ≡ C (mod P) such that 0 ≤ R < βm−t with
t ≤ m− n. The idea behind this generalization is to zero-out only the first t leading digits of C. To achieve
this, one only needs to compute the first t leading digits of Q as:

Q =


⌊

C
βm−t

⌋ ⌊
βn+t

P

⌋
βt

βm−n−t (4)

Note that the constant ν is then set to ν = bβn+t/P c. Following the original Barrett reduction we
compute R = C −QP , possibly followed by a few subtractions in order to guarantee the desired bound on
the remainder. The detailed description of this partial modular reduction is given in Algorithm 2.

3

Algorithm 2: PBR (Partial Barrett Reduction)
Input: βn−1 < P < βn, 0 ≤ C < P 2, C < βm, t ≤ m− n and ν = bβn+t/P c (precomputed)
Output: R ≡ C (mod P) with 0 ≤ R < βm−t

1 Q← bC1ν/β
tcβm−n−t where C = C1β

m−t + C0 with 0 ≤ C0 < βm−t

2 R← C −QP
3 while R ≥ βm−t do R← R− βm−n−tP
4 return R

Theorem 2. Algorithm PBR is correct and step 3 is performed at most twice.

Proof. Since all operations are just adding multiples of P to C, it is clear that R ≡ C (mod P). Therefore,
we only need to prove that 0 ≤ R < βm−t. Since ν < βn+t/P , writing C as C = C1β

m−t + C0 with
0 ≤ C0 < βm−t gives

Q ≤ C1ν

βt
βm−n−t ≤ C1β

m−t

P
≤ C

P

which implies R = C −QP ≥ 0.
Now, given the definition of ν and Q, we have ν > βn+t/P − 1 and Q > (C1ν/β

t − 1)βm−n−t. Thus we
also have νP > βn+t − P and βtQ > C1νβ

m−n−t − βm−n, yielding

βtQP > C1νβ
m−n−tP − βm−nP > βt(C − C0)− P (βm−n + C1β

m−n−t)

Since we have C0 < βm−t and C1 < βt we get

βtQP > βtC − βtβm−t − βt(2βm−n−tP)

which gives the following upper bound on R:

R = C −QP < βm−t + 2βm−n−tP (5)

Finally, since P < βn we have βm−n−tP < βm−t. Hence, if R ≥ βm−t then R − βm−n−tP ≥ 0. According
to (5) we see that at most two subtractions are required in step 3 to guarantee that 0 ≤ R < βm−t.

Complexity of PBR

Since βn−1 < P < βn we have βt < βn+t/P < βt+1 and thus βt ≤ ν < βt+1. Hence, step 1 is a multiplication
between C1 of size t and ν of size t + 1 of asymptotic cost M (t). However, if C1 has only s < t significant
digits in the left-most position, i.e, C1 = C ′1β

m−s + C0 with 0 ≤ C0 < βm−t, the cost of step 1 can be
reduced to M (s, t). (We shall encounter this situation in Section 3). Step 2 is a multiplication between P
and Q, more exactly with the t+ 1 leading digits of Q (the other ones being all zeros). If one assumes that
multiplying by powers of β is free, the cost of step 2 is M (n, t). Hence the complexity:

PBR(t, n, s)

{
M (s, t) +M (n, t) if s < t

M (t) +M (n, t) otherwise
(6)

4

2.3 Bipartite Modular Multiplication
The bipartite modular multiplication proposed in [10] by Kaihara and Takagi aims at computing AB mod P
for 0 ≤ A,B < P < βn. Their idea consists of splitting one operand in two parts and to perform the resulting
computations in parallel using two independent processes. Although any splitting does work, we illustrate
the bipartite algorithm in the case where one operand, say B, of size n, is split in two parts of equal size
n/2, i.e. B = B1β

n/2 + B0. We have AB mod P = (AB1β
n/2 mod P + AB0 mod P) mod P . In that form

the sizes of the operands to be reduced are very unbalanced: 5n/2 for AB1β
n/2 versus 3n/2 for AB0, and

then the computation of AB1β
n/2 mod P would take much longer to complete than AB0 mod P . Instead,

Kaihara and Takagi use a Montgomery-like representation to compute

ABβ−n/2 mod P =
(
AB1 mod P +AB0β

−n/2 mod P
)
mod P (7)

Now, it is easy to see that (7) can be computed with one call to PBR for AB1 mod P and one call to
PMR for AB0β

−n/2 mod P , and that these two computations are independent. (Note that in the original
bipartite algorithm, AB1 mod P is computed using a classical interleaved reduction algorithm.) Both PBR
and PMR reduce operands from size 3n/2 to size n. The complexity of the bipartite modular multiplication
is easily deduced. The two partial products AB0 and AB1 cost M(n, n/2) each. Adding the costs of PMR
and PBR with t = n/2 from (2) and (6) respectively yields a total cost of 2M (n/2) + 4M (n, n/2).

3 Multipartite Modular Multiplication
In this section we introduce a generalization of the bipartite modular multiplication, which allows to divide
the computation into an arbitrary number of independent operations, with operands of smaller sizes, therefore
minimizing the overall complexity. Let 0 ≤ A,B < P < βn. All the algorithms described in the next sections
compute ABβ−n/2 mod P .

3.1 Introduction
Let us start with a basic extension of the bipartite algorithm. Instead of splitting only one operand in two
parts (of equal size), a straightforward extension is to split both operands in two parts each. The so-called
quadripartite multiplication algorithm then consists of computing

ABβ−n/2 mod P = (A1β
n/2 +A0)(B1β

n/2 +B0)β
−n/2 mod P

= (A1B1β
n/2 +A1B0 +A0B1 +A0B0β

−n/2) mod P

This quadripartite multiplication requires four independent products of complexity M(n/2) each, plus
two modular reductions:

• from (2), the low product A0B0β
−n/2 mod P is computed using PMR with t = n/2, at a cost of

M(n/2) +M(n, n/2).

• From (6), the high product A1B1β
n/2 of size 3n/2 is reduced modulo P using PBR with t = n/2, at

a cost of M(n/2) +M(n, n/2).

• The middle products A0B1 and A1B0, which costs M(n/2) each, need not be reduced modulo P .
Indeed, since A < P = P1β

n/2 + P0, we have A1β
n/2 ≤ P1β

n/2 < P , since P is odd. With B0 < βn/2,
we get A1B0 < A1β

n/2 < P . Clearly, the same reasoning yields A0B1 < P .

We remark that computing the two middle products takes 2M(n/2), which is less than the time required
to compute the high or the low products with reduction. The quadripartite multiplication can then be
computed on a parallel architecture in 2M(n/2) +M(n, n/2) multiplications using three arithmetic units.
The four partial products, each of size n, are added together to get the final result less than 4P . (Note that

5

the addition of the two middle products and the potential subtraction if their sum is greater than P can be
completed before the end of the other two processes. Hence, in the same time, one gets a result that is less
than 3P .)

3.2 Generalization
Let us now consider a full generalization of the above algorithm, where the operands are divided into k parts
each. We have A =

∑k−1
i=0 Aiβ

ni/k and B =
∑k−1
i=0 Biβ

ni/k. Hence the modular product shifted to the right
by n/2 digits rewrites:

ABβ−n/2 mod P =

k−1∑
i=0

k−1∑
j=0

AiBjβ
di,j mod P

 mod P, (8)

with di,j = n(i+ j)/k − n/2. (Note that 3n/2− 2n/k ≤ di,j ≤ −n/2).
As in the quadripartite version, some partial products AiBjβdi,j will have to be reduced modulo P using

either PMR or PBR depending on their weight, whereas some others will not require any reduction. More
exactly, if di,j < 0, the products AiBj are reduced with PMR yielding AiBjβ

di,j mod P . Similarly, if
di,j > n−2n/k, the terms AiBjβdi,j mod P are computed with PBR. And for 0 ≤ di,j ≤ n−2n/k, we have
AiBjβ

di,j < βn and no further reduction is necessary after the multiplication AiBj . In Figure 1, we illustrate
the case where both operands are divided in k = 5 parts. The final result ABβ−n/2 is then obtained by
adding modulo P all these reduced partial products together, which can also be done in parallel.

3.3 Complexity analysis
In order to analyze the complexity of the multipartite multiplication algorithm, we need to know how many
calls to PMR (resp. PBR) are required as a function of k, as well as the exact number of significant digits
of the operands to be reduced.

Lemma 1. If the operands of the multipartite modular multiplication are both decomposed in k > 0 blocks,
the number of calls to PMR is equal to k(k + 2)/8 if k is even and (k + 1)(k + 3)/8 if k is odd.

Proof. As explained above, PMR is used when di,j < 0, which is equivalent to 0 ≤ i+ j < k/2. Since i+ j is
an integer, this is equivalent to 0 ≤ i+j ≤ dk/2e−1. Now, for every value i+j, there are exactly i+j+1 partial
products AiBj . Therefore, the number of calls to PMR is equal to 1+2+ · · ·+ dk/2e = dk/2e(dk/2e+1)/2.
Replacing dk/2e by k/2 when k is even and (k + 1)/2 when k is odd concludes the proof.

Lemma 2. If the operands of the multipartite modular multiplication are both decomposed in k > 0 blocks,
the number of calls to PBR is equal to k(k + 2)/8 if k is even and (k + 1)(k + 3)/8 if k is odd.

Proof. As explained above, PBR is used whenever di,j > n− 2n/k, which is equivalent to i+ j > 3k/2− 2.
Since i + j is an integer, this is equivalent to b3k/2c − 1 ≤ i + j ≤ 2k − 2. Note that there are exactly
2k−2− (i+ j)+1 partial products for every value i+ j. Therefore the number of partial products AiBj that
need to be reduced with PBR is also equal to 1+2+ · · ·+dk/2e = dk/2e(dk/2e+1)/2. In fact, the algorithm
is perfectly symmetrical: if AiBj is reduced with PMR, then for all i′, j′ such that i′ + j′ = 2k − i− j, the
partial product Ai′Bj′ is reduced with PBR.

Corollary 1. The number of partial products that do not need to be reduced is (3k2− 2k)/4 if k is even and
(3k2 − 4k − 3)/4 is k is odd.

6

β−n/2β0βnβ3n/2

A0

B0

A1

B1

A2

B2

A3

B3

A4

B4

A0B0

A0B1

A0B2

A0B3

A0B4

A1B0

A1B1

A1B2

A1B3

A1B4

A2B0

A2B1

A2B2

A2B3

A2B4

A3B0

A3B1

A3B2

A3B3

A3B4

A4B0

A4B1

A4B2

A4B3

A4B4

Figure 1: Multipartite multiplication with k = 5: the partial product A0B0, A0B1, A1B0, A0B2, A1B1 and
A2B0 are all reduced modulo P using PMR with t equals respectively to : n/2, 3n/10, 3n/10, n/10, n/10,
n/10 (note that since A0B0 has only m = 2n/k < n/2 digits, the cost of this PMR is reduced as stated
in (2)). Symmetrically, A4B4, A3B4, A4B3, A2B4, A3B3 and A4B2 are reduced with PBR with t equals
respectively to : n/2, 3n/10, 3n/10, n/10, n/10, n/10 (as explained in (6), the cost for A4B4 is reduced
since A4B4 has only s = 2n/k < n/2 significant digits. All the other middle products need not be reduced.

7

Proof. Simply note that the number of such partial products is equal to k2 minus the number of partial
products that have to be reduced using either PMR or PBR.

Theorem 3. The total cost of the multipartite modular multiplication is less than

k2M
(n
k

)
+ 2

d k
2 e−1∑
i+j=0

(
M(ti,j) +M(n, ti,j)

)
, where ti,j =

n

2
− n(i+ j)

k
(9)

Proof. First, notice that the term k2M(n/k) corresponds to the k2 products AiBj with operands of size n/k.
All the other multiplications come from the calls to PMR and PBR, with operands’ sizes depending on
i+ j. Let us first analyze the complexity resulting from the calls to PMR. As seen in the proof of Lemma 1,
for 0 ≤ i + j ≤ dk/2e − 1, our algorithm performs a partial Montgomery reduction. More specifically, it
partially reduces modulo P the value AiBjβdi,j , of size mi,j = n(i+ j + 2)/k, in order to obtain AiBjβ−ti,j
as explained in Algorithm 1. Hence, we have ti,j = −di,j = n/2− n(i+ j)/k. Therefore, following (2), each
call to PMR costs PMR(ti,j , n,mi,j), which is at most M(ti,j) +M(n, ti,j).

Symmetrically, for b3k/2c − 1 ≤ i + j ≤ 2k − 2, our algorithm performs a partial Barrett reduction
(see proof of Lemma 2). More specifically, it partially reduces modulo P the operand AiBjβ

di,j , of size
n(i+ j +2)/k digits among which only the si,j = 2n/k are non-zero, in order to get a value less than β3n/2.
Hence, following (6), each call to PBR costs PBR(n(i+ j + 2)/k − 3n/2, n, 2n/k). The total cost resulting
from all the calls to PBR is then less than

=

2k−2∑
i+j=b 3k

2 c−1
M

(
n(i+ j + 2)

k
− 3n

2

)
+M

(
n,
n(i+ j + 2)

k
− 3n

2

)

=

0∑
2k−2−b 3k

2 c+1

M

(
n(2k − i− j)

k
− 3n

2

)
+M

(
n,
n(2k − i− j)

k
− 3n

2

)

=

d k
2 e−1∑
i+j=0

M

(
n

2
− n(i+ j)

k

)
+M

(
n,
n

2
− n(i+ j)

k

)

=

d k
2 e−1∑
i+j=0

M (ti,j) +M(n, ti,j)

which concludes the proof. (The exact complexity taking into account the cases m < t in PMR and s < t
in PBR is given in Section A.)

3.4 Reduction of the number of PMR and PBR
Intuitively, the multipartite multiplication exhibits k2 partial products among which only a certain number
need to be reduced modulo P by using either PMR or PBR. However, one may remark that some of these
computations are redundant. Indeed, for each AiBj that need to be reduced modulo P , aQ-value is computed
to zero-out a part of the partial product (the least significant bit for PMR and the most significant bits for
PBR). Note that some of these AiBj have the same weight and the corresponding Q-value are computed to
zero-out exactly the same part. Therefore one may prefer to add all these partial products to perform only
one reduction modulo P . This situation is illustrated in Figure 2 where the number of PMR and PBR is
reduced from 6 to 4 when the operands are split into k = 3 chunks each.

8

β−n/2β0βnβ3n/2

A0

B0

A1

B1

A2

B2

A0B0

A0B1

A0B2

A1B0

A1B1

A1B2

A2B0

A2B1

A2B2

β−n/2β0βnβ3n/2

A0

B0

A1

B1

A2

B2

AoB0A2B2

A0B1 +A1B0A2B1 +A1B2

A0B2

A1B1

A2B0

Figure 2: Reducing the number of call to PMR and PBR in the multipartite algorithm (with k = 3) by
adding some of the partial products of identical weight

The idea illustrated in Figure 2 is to sum up every partial product AiBj with the same weight that have
to be reduced with either PMR or PBR. Using this trick, it is easy to see that the number of call to PMR
and PBR is reduced. The following lemma gives the precise number of PMR and PBR that have to be
performed.

Lemma 3. Assuming all partial products with the same weight involved in either PMR or PBR are added
together, the number of call to PMR is dk/2e and the number of call to PBR is dk/2e.

Proof. The number of call to PMR corresponds exactly to the number of integers i ≥ 0 such that β0 >
βi(n/k)−n/2 ≥ β−n/2 which is equivalent to k/2 > i ≥ 0. It is of course immediate that the number of PMR
is equal to dk/2e. Symmetrically, the number of call to PBR correspond exactly to the number of integers
i ≥ 0 such that β3n/2−2n/k ≥ βi(n/k)−n/2 > βn−2n/k which is equivalent to 2k− 2 ≥ i > 3k/2− 2. It is again
immediate that the number of PBR is equal to dk/2e.

The main advantage of reducing the number of PMR and PBR is that it allows to trade some of the
multiplications for some additions. Following Lemma 3, one can reduce the complexity of the multipartite
algorithm to a total cost of less than

k2M
(n
k

)
+ 2

d k
2 e−1∑
`=0

(M(t`) +M(n, t`)) , where t` =
n

2
− n`

k
(10)

The above cost is immediate from the proof of Theorem 3. It suffices to remark that the PMR (respec-
tively PBR) for all partial product AiBj for a given ` = i+ j are replaced by only one PMR (respectively
PBR) using the operand

∑
i+j=`AiBj .

4 Analysis of Parallel Algorithms
Integer multiplication can be achieved in parallel in time O(log n) using O(n log n log log n) processors. This
result comes from the parallelization of the Schönhage-Strassen Algorithm [7]. It is clear that this result also

9

holds for integer modular multiplication whether one uses Montgomery or Barrett modular multiplication
algorithms. Nevertheless, this theoretical result assumes that a large number of processor is available which
is not the reality of nowadays computers having between 2 and 12 processors per chip. Hence, a natural
question arises: what complexity can we get with a fixed number of processors? In the following we discuss
this question by embedding parallelism into the algorithms presented in the previous sections. We discuss
two models. One will only consider a coarse grain parallelism, meaning that we only authorize parallelism
at the modular arithmetic level. The second will authorize parallelism at every levels and especially at the
integer arithmetic one. Readers shall keep in mind that our discussion consider algorithms with sub-quadratic
complexity.

4.1 Parallelism at the modular arithmetic level
We consider parallelism only at the level of modular multiplication without using any parallelism for the
underlying integer arithmetic. In this model, one of the benefits of the bipartite algorithm [10] has been to
bring intrinsic parallelism within modular multiplication algorithm. Indeed, before [10], all sub-quadratic
modular multiplication algorithms suffer from a sequential dependency of the integer multiplications. Barrett
or Montgomery algorithms require three sequential calls to integer multiplication, and no parallelism can be
achieved at the modular arithmetic level. The bipartite algorithm described in section 2.3 allows to split this
sequentiality and exhibits a natural 2-ways parallelism since the calls to PMR and PBR can be performed
in parallel. If we assume that two processors are available, the cost of the bipartite algorithm is:

M
(n
2

)
+ 2M

(
n,
n

2

)
(11)

Even if the bipartite algorithm introduces some parallelism, each call to PMR and PBR has a se-
quential dependency with regards to integer multiplications. As we will in Section 5, this requires thread
synchronization which impacts on practical performances.

Our multipartite algorithm described in Section 3.2 generalizes the bipartite algorithm as it induces a
natural k2-way parallelism where k is the number of chunks of each operand. The following theorem gives
the parallel complexity obtained with the multipartite algorithm.

Theorem 4. Assuming k2 processors are available with k > 3, the cost of the multipartite modular multi-
plication is

M
(n
k

)
+M

(
2n

k
,
n

2

)
+M

(
n,
n

2

)
(12)

Proof. Since k2 processors are available, all the partial products and partial reductions (when necessary) are
computed in parallel, the highest cost is reached for i+ j = 0 (or i+ j = 2k−2), i.e. when the cost of PMR
(resp. PBR) is equal to M(m, ti,j) +M(n, ti,j), with m = 2n/k.

Corollary 2. Assuming k2 processors are available with k = 2 or k = 3, the cost of the multipartite modular
multiplication is

M
(n
k

)
+M

(n
2

)
+M

(
n,
n

2

)
(13)

Proof. The proof is similar to the one of Theorem 4. It is sufficient to remark that the cost of PMR (resp.
PBR) is equal to M(ti,j) +M(n, ti,j), since ti,j < m = 2n/k.

The following lemma give the complexity estimate of the multipartite algorithm when the number of
processor is not a square.

10

Lemma 4. Assuming k1× k2 processors are available. Let n/k1 + n/k2 < n/2, the cost of the multipartite
modular multiplication is

M
(n
k1
,
n

k2

)
+M

(n
k1

+
n

k2
,
n

2

)
+M

(
n,
n

2

)
. (14)

When n/k1 + n/k2 >= n/2, the cost of the multipartite modular multiplication becomes

M
(n
k1
,
n

k2

)
+M

(n
2

)
+M

(
n,
n

2

)
. (15)

Proof. The proof is similar to the one of Theorem 4. It is sufficient to remark that one has to split each
operand in k1 and k2 chunks respectively.

One can reduce the number of processors needed to achieve the same complexity by only computing a sub-
quadratic number of AiBj mod P using the Karatsuba [4] or Toom-Cook [5] methods. This has recently been
one of the motivations of [12] which uses Karatsuba multiplication to improve hardware implementation of
the bipartite algorithm. Another way to decrease the number of processors with our multipartite algorithm
is to use the version given in Section 3.4. In particular, it is easy to see that this approach only needs
3k2/4 + k/2 processors (instead of k2) to achieve the complexity of Theorem 4.

4.2 Parallelism at the integer arithmetic level
We now consider a more realistic model where parallelism is introduced both at the higher (aka modular
arithmetic) and the underlying integer arithmetic levels. In order to still achieve a reduction to integer
multiplication, our parallelization is based on a quadratic approach. One can achieve a time complexity of
M
(
n
k1 ,

n
k2

)
for integer multiplication using k1×k2 processors. Note that one can achieve the same complexity

with less processors by using Karatsuba or Toom-cook but at a price of a more complex parallelization. One
can also think of using Karatsuba or Toom-Cook to decrease the parallel complexity for a fixed number of
processors. However, to the best of our knowledge, such a result does not exist and it seems to be a hard
task. In the following, our complexity estimates assume the availability of k1× k2 processors. According to
our model, the parallel complexity of Barrett and Montgomery modular multiplication is then:

3M
(n
k1
,
n

k2

)
.

Applying the same parallelization scheme to the bipartite modular multiplication gives a parallel complexity
of

2M
(n

2k1
,
n

2k2

)
+ 4M

(n
k1
,
n

2k2

)
However, one can decide to use the intrinsic parallelism of the bipartite algorithm when the number of
processors is even. Therefore, the parallel complexity becomes

M
(n
k1
,
n

2k2

)
+ 2M

(n
k1
,
n

k2

)
For the multipartite algorithm, Lemma 4 gives the complexity estimate. However, this complexity only

takes into account parallelism at the modular arithmetic level. In particular, one can modify the method
to decrease the parallel complexity by introducing parallel integer arithmetic. Indeed, one can remark
that the parallel cost given in Lemma 4 has a dominant term of M

(
n, n2

)
which corresponds to the cost

of computing QP within the reduction of A0B0 (resp. Ak−1Bk−1). Each other calls to PMR or PMR
perform a computation of QP but with smaller Q-values. Therefore, it is preferable to sum-up every Q-value
computed in each PMR and PBR, and then to compute only one product QP using a parallel integer
multiplication. Assuming that k1 × k2 processors are available, the term M

(
n, n2

)
in Lemma 4 becomes

M
(
n
k1 ,

n
k2

)
. The following lemma holds.

11

Lemma 5. Assuming k1× k2 processors are available. Let n/k1 + n/k2 < n/2, the cost of the multipartite
modular multiplication is

2M
(n
k1
,
n

k2

)
+M

(n
k1

+
n

k2
,
n

2

)
. (16)

When n/k1 + n/k2 >= n/2, the cost of the multipartite modular multiplication becomes

2M
(n
k1
,
n

k2

)
+M

(n
2

)
. (17)

Proof. The proof is similar to the one of Theorem 4. It is sufficient to remark that the sum of the Q-values
computed in each PMR and PBR is less than βn.

Even if this lemma takes into account parallelism at every arithmetic level, it gives a pessimistic estimate
of the parallel complexity since one can balance parallel computation to minimize critical path. Indeed, each
parallel task has to compute one product AiBj , and if needed its corresponding Q to reduce the product
modulo P . The tasks which do not calculate a Q-value are thus cheaper and may be gather in a single task
without increasing the parallel cost. Furthermore, splitting the operands in k1 and k2 chunks each may not
be the better approach to optimize load balancing. In the next section, we discuss this issue and we provide
an approach to optimize the balancing of the tasks.

4.3 A parallel approach for multipartite modular multiplication
As seen in Lemma 5, one can fully exploit the intrinsic parallelism of the multipartite algorithm, but this
approach leads to very unbalanced computations. The splitting of the operands has a great impact on task
unbalancing (the smaller the chunks the more unbalanced will the tasks be). It is therefore crucial to choose
a good splitting and a good balancing strategy to minimize the parallel cost of the multipartite method.

The next theorem shows that the unbalancing is really important and one can drastically reduce the
number of processors needed by the multipartite method and then improve its complexity.

Theorem 5. Let us consider that M(n1 + n2, n) = M(n1, n) +M(n2, n). Assume k1 × k2 processors are
available and let k = 1

2k1 × k2 be the number of chunks of each operand with k > 3. The cost of the
multipartite modular multiplication is

M

(
2n

k1k2

)
+M

(
4n

k1k2
,
n

2

)
+M

(n
k1
,
n

k2

)
. (18)

When k = 2 or k = 3 the cost becomes

M

(
2n

k1k2

)
+M

(n
2

)
+M

(n
k1
,
n

k2

)
. (19)

Proof. The cost given in Lemma 5 corresponds to the cost of the computation of A0B0 and its corresponding
Q-value, followed by a parallel computation of QP where Q corresponds to the summation of all the Q-values
computed by each PMR and PBR. The proof of Theorem 5 relies on the fact that when k > 3, during the
computation of A0B0 and its corresponding Q-value, one can also compute:

1. k + 1 partial products AiBj ,

2.
∑
`=i+j AiBj and its corresponding Q-values for 0 < ` ≤ dk/2e.

12

The computation of A0B0 and its corresponding Q-value has a cost of M
(
n
k

)
+ M

(
2n
k ,

n
2

)
which is

equivalent to (k + 1)M
(
n
k

)
according to the assumption on M(n). Therefore point 1) is correct.

For a given ` such that 0 < ` ≤ dk/2e, the cost of the calculation of
∑
`=i+j AiBj and its corresponding

Q-value is less than

`M
(n
k

)
+M

(
n

2
− `n

k
,
2n

k

)
which is equivalent to (k − `)M

(
n
k

)
. Since this value is bounded by kM

(
n
k

)
, point 2) is also correct.

The complexity of Theorem 5 is thus achieved by assigning one processor per PMR and PBR, which
correspond to 2dk/2e processors using Lemma 3. We recall that in these PMR and PBR the computations
of QP are delayed at the end to only one large QP computation performed in parallel.

Therefore, it remains k2−1/2(dk/2e)(dk/2e+1) partial products AiBj to compute during the same time
(see Corollary 1). It is easy to see that k − 2 processors are sufficient to handle these computations in the
given time since ∀k > 1, we have (k+ 1)(k− 2) > k2 − 2dk/2e > k2 − 1/2(dk/2e)(dk/2e+ 1). Thus, one can
handle the calculations of all k2 products AiBj and every PMR and PBR (without QP computations) in
a cost of M

(
n
k

)
+M

(
2n
k ,

n
2

)
using 2dk/2e+ k − 2 ≤ 2k processors. Replacing k with 1

2k1× k2 and adding
the cost of a computation of the large QP on k1× k2 processors concludes the proof for k > 3.

When k = 2 the number of AiBj is exactly 4. The computation of A0B0 and its corresponding Q-value
costs exactly 2M(n/2). The cost is identical with A1B1 and its corresponding Q. These two calculations
can be done on 2 processors. The remaining A0B1 and A1B0 can be computed during the same time on
another processor. Therefore, three processors are sufficient which conclude the proof for k = 2.

Finally, when k = 3 the number of AiBj is exactly 9. The computation of A0B0 and its corresponding
Q-value costs exactly M(n/3) +M(n/2). The cost is identical with A1B1 and its corresponding Q-value.
The computation of A1B0 + A0B1 and its corresponding Q-value costs exactly 2M(n/3) +M(n/6), which
is equivalent to M(n/3) +M(n/2) under our assumption on M(n). The cost is identical with A1B2 +A2B1

and its corresponding Q-value. The remaining A0B2, A1B1, A2B0 can be handle in exactly 2M(n/3) on 2
processors. Using six processors the cost is then M(n/3) +M(n/2) plus the calculation of the large QP on
six processors which costs M(n/2, n/3).

Theorem 5 gives a generic strategy to optimize the load balancing of the parallel tasks involved in the
multipartite modular multiplication. However, this strategy is not optimal since the tasks computing the
Q-values in each PMR and PBR are still unbalanced and one can try to fill-up these gaps by some of the
partial product AiBj to further reduce the number of processors. Moreover, Theorem 5 uses an assumption
on M(n) which does not reflect the reality of the integer multiplication implementation which may use
quasi-linear algorithm and trade-offs to switch between different sub-quadratic methods. It is therefore quite
complicated to theoretically improve the complexity of the multipartite method since too many parameters
have to be considered, especially the method switching for integer multiplication implementations.

4.4 Summary of the parallel complexity of modular multiplication
The following table summarizes the parallel complexity of modular multiplication with different algorithms
on a given number of processor reflecting nowadays architectures. One can see that the bipartite method
is always offering the better theoretical complexity. Our multipartite algorithm has a greater complexity
estimate but offers more balanced integer multiplication dependency which may have an impact in practice.
Furthermore, as we will see in Section 5.3, in some special cases, we can tweak the multipartite implemen-
tation to get more balanced tasks, then achieving better complexity and practical performance.

Time complexity is a good estimate to compare parallel algorithms. However task dependencies have a
great impact on practical performances. In particular, our multipartite algorithm does not have any depen-
dencies to compute every parts of the quotient Q while Montgomery, Barrett and the bipartite algorithm
have to wait until the full product AB is computed before this task can be started. In practice, this requires
synchronization barriers which penalize performances as will be seen in the next section.

13

Table 1: Parallel complexity of modular multiplication algorithms according to the number of processors

#processors Barret/Montgomery Bipartite Multipartite (Theorem 5)

2 3M(n, n/2) 2M(n, n/2) +M(n/2) -
4 3M(n/2) 2M(n/2) +M(n/2, n/4) 3M(n/2)
6 3M(n/2, n/3) 2M(n/2, n/3) +M(n/2, n/6) M(n/2, n/3) +M(n/3) +M(n/2)
8 3M(n/2, n/4) 2M(n/2, n/4) +M(n/4) 3M(n/4) +M(n/2)
12 3M(n/3, n/4) 2M(n/3, n/4) +M(n/4, n/6) M(n/3, n/4) +M(n/6) +M(n/2, n/3)

5 Parallel Implementation
In order to evaluate the performance of our parallel modular multiplication algorithm, we developed a
C++ library for performing integer arithmetic operations on shared memory, MIMD architecture. Our
library provides functions for multiple precision integer and modular arithmetic operations, including in
particular the bipartite and multipartite algorithms. We based our implementation on GMP, the GNU
Multiple Precision arithmetic library [13] and the OpenMP API, a framework to design parallel codes on
shared-memory architectures. In the following, we present our implementation and experimental results. All
the tests are made using random data. We performed our benchmark on one node of the HPC@LR centre2,
composed of two Intel Xeon processors X5650 Westmere, having six cores each running at 2.66GHz with a
L3-Cache of 12MB. Our implementation is based on GNU MP v. 5.0.2 and OpenMP and the Intel C++
compiler version 10.

5.1 Software Implementation Using OpenMP
Multi-threading is generally best adapted to computational intensive applications since dealing with software
parallelism induces a cost that is only amortized when the overall amount of computation is important. This
extra cost comes from thread launching (clone(), fork()), thread synchronization (wait()) and memories
operations (placement, transfers and cache misses).

The first general rule of thumb to reduce this parallelism overhead is to run no more threads than
the number of cores available of the architecture. Indeed, the latency arising from the parallel operations
increases proportionately with the number of running threads. Thus, launching more thread than the
number of processors increases the cost without any benefit in term of computational efficiency, except when
multi-threading support is available on the targeted architecture. The latency caused by the launching of
the threads can be easily amortized by computing full-parallel operations, i.e. the threads are started and
stopped only once. Finally, the cost of memory operations can be reduced by paying particular attention
to data alignment and placement, and by minimizing the number of allocations and frees. The architecture
at the HPC@LR centre that we have been using for our benchmarks embeds two processors per node.
Each processor has a 12MB L3-cache that was large enough to store all the data (operands and results of
our arithmetic operations), but the communication between the two processors had to be minimized. We
managed to reduce this overhead by grouping threads together as much as possible on one processor (by
carefully setting the GOMP_CPU_AFINITY environment variable).

Our implementation is generic in both the number of threads and the operands’ sizes. This model can
be used for a wide class of applications requiring multiple precision computations in finite structures, in
particular for asymmetric cryptosystems. Given this genericity, we define the number and size of memory
blocks required for each part of the computation and we allocate them only once. This also allows us to
precompute several constants which only depends of the size of operands and the number of threads.

2More info at www.hpc-lr.univ-montp2.fr

14

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

Quadratic Multiplication
GMP
4 Cores
6 Cores
8 Cores
12 Cores

Figure 3: Performance comparison of parallel integer multiplication implementations based on GMP
quadratic sequential multiplication

5.2 Parallel Integer Multiplication
As seen before, all modular multiplication algorithms heavily depends on integer multiplication, i.e multi-
plication in Z. We implemented a parallel integer multiplication based on a quadratic scheme where the
splitting of the operands depends on the number of processors: if k1 × k2 processors are available, the
operands are cut in k1 and k2 parts respectively. The number of processors can be reduced by using a
sub-quadratic parallelization scheme such as Karatsuba and Toom-Cook, but this has not been implemented
yet. Each thread computes a product AiBj , which is itself a sequential multiple precision multiplication.
These computations are followed by the additions of all those partial products ; these additions are performed
sequentially by one thread after a synchronization barrier. Note that one may use a parallel reduction tree
to perform those additions, but in our case, the operands and number of chunks are too small to benefit
from this optimization: the performances are degenerated by the synchronization barriers required by the
addition tree.

Figure 3 shows the practical speedups obtained for the parallel integer multiplication when a quadratic
sequential multiplication (mpn_mul_basecase) is used for each of the k1× k2 partial products AiBj . As ex-
pected, when the size of the operands increases, the overhead introduced by the parallelism (thread launching
and synchronization) is totally amortized and the practical speedups match the theoretical complexity (n
threads lead to a speedup of n). However, forcing quadratic sequential integer multiplication for the AiBj is
clearly not giving the best performances, and sub-quadratic algorithms should be used for large operands.
The GMP library offers five integer multiplications (basecase, Karatsuba, Toom-3, Toom-4, FFT) which are
called whenever the inputs’ sizes exceed some pre-defined thresholds based on the architecture. We illustrate
this fact on Figure 3 by adding a curve which correspond to GMP multiplication (mpn_mul). In order to get
the best sequential integer multiplication, our parallel implementation is based on GMP mpn_mul function
instead of a quadratic multiplication. The speedups are shown in Figure 4.

On Figure 4, we remark that for small operand, the parallelism overhead is still present, and that the
use of optimized sequential algorithms reduces the overall speedups (n threads does not lead to a speedup of
n anymore, but rather to n/2). However, we also remark that parallelism is still worth it for a wide range
of operand’s sizes. We also note that the speedups of our parallel implementations decreases for inputs of
size greater than 217 bits, which corresponds to the MUL_FFT_THRESHOLD set by GMP (after tuning) for our
architecture.

15

 0

 1

 2

 3

 4

 5

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

GMP
4 Cores
6 Cores
8 Cores
12 Cores

Figure 4: Performance comparison of parallel integer multiplication implementations based on GMP opti-
mized (sub-quadratic, quasi-linear) multiplication

5.3 Parallel Modular Multiplication
In order to provide parallel implementations of Barrett, Montgomery and the bipartite algorithms, we use the
parallel integer multiplication code described in the previous section. Note that for the bipartite method,
we parallelize at the modular arithmetic level since the number of processors is always even. For the
multipartite algorithm we optimized task scheduling based on the assumption that a quadratic sequential
integer multiplication is used for the AiBj . This assumption is reasonable for a wide range of inputs, for
example for operands of cryptographic size ranging from say 210 to 214 bits.

We noticed that Theorem 5 overestimates the number of processors for a given k. Indeed, some partial
products AiBj can be scheduled on the same processors as some of the PBR and PMR, without increasing
the parallel cost. In this case one can choose a larger value for k to reduce the complexity without needing any
extra processors. The following example illustrates this optimization. We then summarizes the complexities
and the performances from our benchmarks.

Example
If 4 processors are available, Theorem 5 tells us that one can achieve a complexity of 3M(n/2) for the
multipartite algorithm with k = 2. In fact, choosing k = 4 reduces the complexity. For k = 4 the different
tasks are given in Table 2. The optimal scheduling on 4 processors (based on our assumption on M(n)) is
summarized in Table 3. This optimization leads to a parallel cost of 3M(n/4)+2M(n/2) instead of 3M(n/2)
for k = 2.

In Table 3, we also remark that tasks T1 and T2 need to be completed before tasks T14 and T15 are
started (the same holds for tasks T16 and T17 with tasks T3 and T4). On this example, the complexity
of the multipartite (2M(n/2) + 3M(n/4)) is close, although greater than that of the bipartite algorithm
(equivalent to 2M(n/2)+2M(n/4)). However, the multipartite algorithm only requires one synchronization
barrier instead of two for the bipartite multiplication.

Similarly, with 6 processors, choosing k = 4 allows to reduce the parallel cost. The optimal scheduling is
given in Table 4, where tasks T1, . . . , T13 are identical to those of Table 2 and tasks T14 to T19 correspond to
(Q0+2n/4Q1)P0, (Q0+2n/4Q1)P1, (Q0+2n/4Q1)P2, (Q2+2n/4Q3)P0, (Q2+2n/4Q3)P1, and (Q2+2n/4Q3)P2

respectively, where P = P0+2n/3P1+22n/3P2. In this case, the parallel cost of the multipartite multiplication
reduces to M(n/4) +M(n/2) +M(n/2, n/3) which is better than the estimate given by Theorem 5.

16

Table 2: Description of the tasks of the multipartite multiplication for k = 4, where µ = −P−1 mod
2n/2, µ0 = µ mod 2n/4, ν = 23n/2/P, andν1 = ν/2n/4;P = P0 + 2n/2P1

Tasks Operations Cost

T0 Q0 = (A0B0)µ mod 2n/2 M(n/4) +M(n/2)
T1 Q1 = (A0B1 +A1B0)µ0 mod 2n/4 2M(n/4) +M(n/4)
T2, . . . , T11 AiBj for i+ j = 2, . . . , 4 M(n/4)

T12 Q2 =
(A3B2 +A2B3)

2n/4
ν1 2M(n/4) +M(n/4)

T13 Q3 = (A3B3)ν M(n/4) +M(n/2)

T14 (Q0 + 2n/4Q1)P0 M(n/2)
T15 (Q0 + 2n/4Q1)P1 M(n/2)
T16 (Q2 + 2n/4Q3)P0 M(n/2)
T17 (Q2 + 2n/4Q3)P1 M(n/2)

Table 3: Optimal scheduling of the 18 tasks involved in the multipartite multiplication when using 4 proces-
sors with k = 4

Processor Tasks Cost

P0 T0, T2, T3, T14 3M(n/4) + 2M(n/2)
P1 T1, T4, T5, T6, T15 6M(n/4) +M(n/2)
P2 T12, T7, T8, T9, T16 6M(n/4) +M(n/2)
P3 T13, T10, T11, T17 3M(n/4) + 2M(n/2)

Table 4: Optimal scheduling of the 20 tasks involved in the multipartite multiplication when using 6 proces-
sors with k = 4

Processor Tasks Cost

P0 T0, T14 M(n/4) +M(n/2) +M(n/2, n/3)
P1 T1, T2, T15 4M(n/4) +M(n/2, n/3)
P2 T3, T4, T5, T6, T16 4M(n/4) +M(n/2, n/3)
P3 T7, T8, T9, T10, T17 4M(n/4) +M(n/2, n/3)
P4 T12, T11, T18 4M(n/4) +M(n/2, n/3)
P5 T13, T19 M(n/4) +M(n/2) +M(n/2, n/3)

17

Table 5: Best costs for the multipartite multiplication on 4, 6, 8, and 12 cores with the corresponding k-values

#processors k Parallel Cost

4 4 3M(n/4) + 2M(n/2)
6 4 M(n/4) +M(n/2) +M(n/2, n/3)
8 8 13M(n/8)
12 6 M(n/6) +M(n/2, n/3) +M(n/3, n/4)

Note that the cost given in Table 4 may be further reduced. For example, with 6 processors, choosing k = 6
together with an optimized tasks scheduling leads to a parallel cost of 3M(n/6) + 2M(n/2, n/3). However,
this estimate is only better than that for k = 4 if one assumes an underlying quadratic multiplication. More
generally, the minimal complexity for the multipartite multiplication depends both on the choice of k and
the underlying integer multiplication algorithms. According to these two parameters, it is possible to find an
optimal scheduling for any given number of processors, although this optimization strategy seems difficult
to automatize.

Benchmarks
We ran a lot of experiments (see Section B) in order to measure the performance of version of the multipartite
algorithm we implemented. In Table 5, we give the parallel costs of versions of our multipartite multiplication
that happen to be the fastest in practice.

We give all the timings from our benchmarks for various k-values and various number of cores in ap-
pendix B. Note that we use the term “cores” instead of “processors” as it reflects the current architectures
where a single processor embeds multiple cores. Figure 5 illustrates the performances of all the existing par-
allel methods for integer modular multiplication against the sequential GMP modular multiplication. One
can see that for small size integers (i.e. less than 2048 bits) the cost of the parallelism (thread launching and
synchronization) dominates the total cost since the most efficient method is the sequential GMP modular
multiplication. For larger integers (i.e. between 2048 and 16384 bits) the most efficient method is always the
multipartite multiplication. This can be explained by the fact that, for such sizes, the cost of the parallelism
still represent an important part of the total cost, and the few number of synchronizations in the multipartite
multiplication pays in our favour. When integers are getting larger, the bipartite method tends to be the
best alternative. This comes from the fact that its theoretical complexity is better than that of all the other
methods. Note however that in the case of 6 cores, the performance of our multipartite multiplication is
very close to that the bipartite method for large integers, while it is not the case for 4, 8 and 12 cores.
Remember that our optimization of the multipartite method is based on the assumption that the underlying
integer multiplication has quadratic complexity. Therefore, for very large integers, this assumption may
not give the best results and the efficiency of our multipartite multiplication may be further improved by
defining an optimization strategy based on integer multiplication with sub-quadratic or quasi-linear time.
The above observation for 6 cores (k = 4) comes from the fact that optimization strategy remains valid when
FFT multiplication is used. Finally, our benchmarks show that neither Barrett or Montgomery is a good
alternative for software parallelism.

5.4 Parallel Modular Exponentiation
A typical case where fast modular multiplication is critical is for modular exponentiation, an operation
of utmost importance for cryptographic algorithms such as RSA [14] or the Diffie-Hellmann-Merkle key
exchange [15]. In order to evaluate the performance of our multipartite multiplication in this context,
we implemented the classical binary left-to-right exponentiation (also known as square-and-multiply) which
computes ge mod P with g, e < P < 2n. It is well known that this algorithm requires on average 1.5 log2 (e) =
3n/2 modular multiplications. In fact, it requires n squares plus n/2 multiplications but for simplification

18

 0

 1

 2

 3

 4

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

4 Cores

GMP
Barrett

Montgomery
Bipartite

Multipartite k=4
 0

 1

 2

 3

 4

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

6 Cores

GMP
Barrett

Montgomery
Bipartite

Multipartite k=4

 0

 1

 2

 3

 4

 5

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

8 Cores

GMP
Barrett

Montgomery
Bipartite

Multipartite k=8
 0

 1

 2

 3

 4

 5

 6

 7

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

12 Cores

GMP
Barrett

Montgomery
Bipartite

Multipartite k=6

Figure 5: Performance comparison of Montgomery, Barrett, the bipartite and the multipartite modular
multiplications

19

 0

 1

 2

 3

 4

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

4 Cores

GMP
Barrett

Montgomery
Bipartite

Multipartite k=4
 0

 1

 2

 3

 4

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

6 Cores

GMP
Barrett

Montgomery
Bipartite

Multipartite k=4

 0

 1

 2

 3

 4

 5

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

8 Cores

GMP
Barrett

Montgomery
Bipartite

Multipartite k=8
 0

 1

 2

 3

 4

 5

 6

 7

10 11 12 13 14 15 16 17 18

S
pe

ed
up

Size (2k bits)

12 Cores

GMP
Barrett

Montgomery
Bipartite

Multipartite k=6

Figure 6: Performance comparison of a binary left-to-right modular exponentiation based on our parallel
implementations of Montgomery, Barrett, the bipartite and multipartite modular multiplications

purpose our proof-of-concept implementation does not differentiate multiplications from squarings. Note
that a multipartite squaring can be easily derived from the multipartite multiplication.

The chosen exponentiation algorithm is generic, meaning that we only had to change the modular multi-
plication in order to compare the exponentiations based on the four parallel algorithms presented in previous
sections. Our exponentiation only requires one launching of tasks, followed by fully parallel computations.

Theoretically, the time to compute one exponentiation is simply the time to compute 3n/2 modular
multiplications. Figure 6 presents the performances of the different parallel exponentiations against a se-
quential version of the binary algorithm based on GMP sequential modular multiplication (mpz_mul followed
by mpz_tdiv_r). Our timings, shown in Figure 6, confirm our assumption since the shape of the curves
obtained for our naive modular exponentiation are similar to those shown in Figure 5 for modular multi-
plication only. In particular, the performance hierarchy is preserved and the fastest exponentiations are
obtained with the fastest modular multiplications. The speedups are only inferior than those observed for
our parallel multiplication benchmarks because mpz_mul is optimized for squarings whereas our multipartite
implementation is not. For integers of sizes ranging from 211 to 213 bits (and up to 215 bits on six cores),
the multipartite multiplication leads to the fastest modular exponentiation.

20

6 Conclusion
We proposed a multipartite modular multiplication, which generalizes the bipartite algorithm, together with
several software implementations dedicated to nowadays multi-core processors. We ran extensive benchmarks
to measure its efficiency for a wide range of inputs, and we provided fair comparisons with other parallel
implementations of Barrett, Montgomery and the bipartite algorithms. The best results were obtained thanks
to optimal, hand-made task scheduling. Generalizing this optimizations to larger parameters (# cores, k-
values) will be necessary for futures architectures with more than 12 cores, but this seems to be a difficult
problem. Several problems remain to be studied. Our parallelization is based on a quadratic scheme (we
perform k2 partial products). A natural question is to analyze the performances of parallel implementations
based on sub-quadratic methods such as Karatsuba and Toom-Cook. Going one step further, we shall also
consider a parallel FFT algorithm in order to get a parallel cost close to M(n)/k on k cores. Considering
modular reduction only instead of modular multiplication should also be considered as it would give us
way more freedom regarding operand splitting and parallelization levels. Finally, an optimized multipartite
squaring would be necessary for fast parallel modular exponentiation.

References
[1] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading,

MA: Addison-Wesley, 1997.

[2] D. J. Bernstein, Algorithmic Number Theory. MSRI Publications, 2008, vol. 44, ch. Fast multiplication
and its applications, pp. 325–384.

[3] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic. Cambridge University Press, 2010.

[4] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on automata,” Soviet Physics—
Doklady, vol. 7, no. 7, pp. 595–596, Jan. 1963.

[5] A. L. Toom, “The complexity of a scheme of functional element realizing the multiplication of integers,”
Soviet Mathematics, vol. 3, pp. 714–716, 1963.

[6] D. Zuras, “More on squaring and multiplying larges integers,” IEEE Transactions on Computers, vol. 43,
no. 8, pp. 899–908, Aug. 1994.

[7] A. Schönage and V. Strassen, “Schnelle multiplikation großer zahlen,” Computing, vol. 7, pp. 281–292,
1971.

[8] P. Barrett, “Implementing the Rivest Shamir and Adleman public key encryption algorithm on a stan-
dard digital signal processor,” in Advances in Cryptology, CRYPTO’86, ser. Lecture Notes in Computer
Science, vol. 263. Springer, 1986, pp. 311–326.

[9] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of Computation, vol. 44,
no. 170, pp. 519–521, Apr. 1985.

[10] M. E. Kaihara and N. Takagi, “Bipartire modular multiplication method,” IEEE Transactions on Com-
puters, vol. 57, no. 2, pp. 157–164, 2008.

[11] A. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography. CRC Press,
1997.

[12] K. Sakiyama, M. Knezevic, J. Fan, B. Preneel, and I. Verbauwhede, “Tripartite modular multiplication,”
Integration, the VLSI Journal, 2011, in Press, Corrected Proof. DOI: 10.1016/j.vlsi.2011.03.008.

[13] T. Granlund, “GMP, the GNU multiple precision arithmetic library,” http://www.swox.com/gmp/.

21

[14] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public key
cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.

[15] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on Information
Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976.

22

A Exact complexity of the multipartite multiplication algorithm

k2M
(n
k

)
+ 2

d k
2 e−1∑

i+j=d k
2 e−2

[
M

(
n

2
− n(i+ j)

k

)
+M

(
n,
n

2
− n(i+ j)

k

)]

+ 2

d k
2 e−3∑
i+j=0

[
M

(
2n

k
,
n

2
− n(i+ j)

k

)
+M

(
n,
n

2
− n(i+ j)

k

)]
(20)

B Summary of times for parallel modular multiplication algorithms
All the times below are given in µs and correspond to effective time of the parallel computation. We use the
notation Multi(k = ...) for the multipartite method using a splitting of the operands in k parts each.

Using 4 cores

n GMP seq. Barrett Montgomery Bipartite Multi(k = 2) Multi(k = 4)

1024 1.32 3.81 3.73 3.93 3.98 2.75
1536 2.53 4.88 4.34 4.08 4.24 3.05
2048 4.13 5.41 4.94 4.69 5.30 3.68
3072 8.18 7.20 6.54 6.27 6.72 5.06
4096 13.06 9.35 9.60 7.94 8.45 7.07
6144 26.03 13.81 13.05 12.13 12.71 11.40
8192 41.10 19.75 19.09 17.12 18.48 17.38

12288 79.76 34.10 33.09 29.60 32.33 31.04
16384 125.18 50.56 49.77 44.65 48.48 48.16
24576 233.07 90.27 89.26 78.71 86.97 88.96
32768 359.53 135.67 133.76 117.85 130.18 136.06
49152 655.69 233.09 230.74 205.72 227.51 246.68
65536 1003.86 340.52 338.67 300.43 331.88 370.01
98304 1817.74 588.45 584.13 531.34 574.89 641.33

131072 2716.14 875.00 866.76 787.79 858.99 948.19
196608 4581.89 1555.62 1546.41 1407.11 1526.28 1659.20
262144 6618.79 2566.33 2560.42 2249.76 2577.75 2623.53
393216 10799.80 4232.37 4219.57 3862.36 4206.71 4467.79

23

Using 6 cores

n GMP seq. Barrett Montgomery Bipartite Multi(k = 3) Multi(k = 4) Multi(k = 6)

1024 1.32 5.19 4.66 4.97 3.30 3.32 3.18
1536 2.53 5.62 5.10 4.99 3.47 3.47 3.56
2048 4.13 6.83 5.71 5.47 4.07 3.83 3.88
3072 8.18 7.23 6.70 6.60 5.41 5.13 5.08
4096 13.06 9.22 8.72 8.06 6.73 6.56 6.63
6144 26.03 12.95 12.18 11.01 10.30 9.72 9.97
8192 41.10 18.10 17.30 15.36 15.51 14.48 14.72

12288 79.76 27.68 26.82 24.87 25.67 24.13 23.97
16384 125.18 42.78 41.94 38.34 39.20 36.22 36.76
24576 233.07 76.36 75.23 66.70 71.18 65.54 65.68
32768 359.53 111.52 109.90 99.33 106.32 100.44 99.69
49152 655.69 197.15 194.37 175.37 187.10 180.94 181.77
65536 1003.86 297.63 295.86 264.57 279.40 275.28 276.70
98304 1817.74 536.16 530.73 475.84 489.26 483.43 484.92

131072 2716.14 807.29 799.77 718.91 724.63 714.73 717.79
196608 4581.89 1398.94 1389.03 1255.69 1278.64 1246.51 1245.19
262144 6618.79 2061.01 2058.30 1850.16 2035.18 1893.40 1899.32
393216 10799.80 3484.32 3469.22 3223.20 3458.84 3216.16 3225.69

Using 8 cores

n GMP seq. Barrett Montgomery Bipartite Multi(k = 3) Multi(k = 4) Multi(k = 6) Multi(k = 8)

1024 1.32 8.50 7.62 10.12 5.59 5.70 6.02 5.85
1536 2.53 8.89 7.99 9.98 5.62 5.91 5.91 6.03
2048 4.13 9.73 8.59 10.33 6.13 6.73 6.46 6.44
3072 8.18 11.56 10.51 11.05 8.58 8.51 7.66 7.57
4096 13.06 13.44 13.01 12.25 10.09 9.71 9.02 8.87
6144 26.03 17.50 16.39 15.45 13.74 14.01 12.40 12.18
8192 41.10 21.11 20.18 18.90 18.52 17.65 16.05 16.06

12288 79.76 31.55 30.59 26.61 28.60 27.00 25.61 25.43
16384 125.18 42.75 42.36 36.58 41.19 38.35 38.79 37.80
24576 233.07 67.58 66.51 57.24 70.55 65.10 65.15 64.53
32768 359.53 102.44 100.75 86.06 104.83 96.05 100.80 100.58
49152 655.69 171.38 169.25 144.35 183.83 164.64 182.86 185.81
65536 1003.86 253.21 251.70 211.83 268.12 242.37 274.87 283.59
98304 1817.74 446.09 440.95 374.75 460.60 422.79 494.61 513.51

131072 2716.14 671.78 664.03 557.22 689.52 627.47 736.69 782.83
196608 4581.89 1173.37 1164.80 978.31 1208.48 1102.52 1276.74 1374.90
262144 6618.79 1723.76 1719.97 1434.54 1934.46 1783.66 1866.49 2013.57
393216 10799.80 3076.97 3064.03 2566.30 3342.68 2999.20 3335.80 3512.09

24

Using 12 cores

n GMP seq. Barrett Montgomery Bipartite Multi(k = 4) Multi(k = 6) Multi(k = 8)

1024 1.32 10.64 9.78 12.05 6.67 6.89 6.87
1536 2.53 11.23 10.22 12.35 7.12 6.44 6.96
2048 4.13 11.65 10.41 12.35 7.61 6.96 7.45
3072 8.18 13.86 11.84 12.77 8.54 7.72 7.86
4096 13.06 14.87 13.86 13.65 9.80 8.89 9.33
6144 26.03 20.65 19.46 15.83 13.03 12.30 12.30
8192 41.10 23.74 22.63 18.37 16.73 15.25 14.82

12288 79.76 30.74 29.22 24.14 24.61 21.93 22.05
16384 125.18 40.58 39.24 30.78 32.64 31.12 31.87
24576 233.07 61.39 59.90 46.78 53.67 52.19 51.64
32768 359.53 83.90 82.33 65.35 77.90 74.39 76.54
49152 655.69 136.45 134.15 109.84 134.65 127.44 140.09
65536 1003.86 197.99 197.27 159.23 202.74 190.74 209.76
98304 1817.74 346.44 345.43 282.92 352.99 341.65 373.94

131072 2716.14 520.58 512.33 423.20 518.82 508.47 566.53
196608 4581.89 903.31 895.97 753.73 894.20 892.68 992.61
262144 6618.79 1322.64 1319.41 1105.60 1327.70 1302.28 1458.21
393216 10799.80 2250.66 2240.18 1910.39 2313.70 2274.18 2487.44

25

