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Abstract

This is a DRAFT version.

1 Introduction
In a universe of discourse (or world), names are privileged accesses to information concerning entities in
this universe of discourse. A name is generally a simple expression, e.g., for a person it can consist of
a list of first names and family name(s), which is not necessarily sufficient to identify a person. Names,
in outside world, are usually ambiguous references and additional information are needed in order to
correctly identify a world entity.

The Unique Name Assumption (UNA) does not concern names in the usual meaning but identifiers
within a computer system, and a name is simply an attribute of an identifier. UNA states that two different
identifiers correspond to two different world entities. UNA is a fundamental property assumed in classical
databases and also usually assumed in knowledge representation (e.g., in Description Logics [] or in Con-
ceptual Graphs []). Assuming UNA implies that the designer of a base has to assign identifiers to elements
of the world, in a way he has to solve identification problems before constructing its system.

UNA cannot be assumed in some situations, for instance for linking or merging databases indepen-
dently built, and various identification problems have been considered in computer science since a long
time (1959):

• Entity resolution, Reference reconciliation: which records represent the same entity, identifying
multiple refs to the same object and distinguishing them from mentions of different objects

• de-duplication: duplicate data (object) is deleted (Classical problem: creation of mailing lists)

• merging records judged to represent the same world entity

• record linkage, linking records through refs to same world entities

• object identification is used as a generic term to single out, to distinguish, to recognize individual
entities (objects) of the world in a computer system.

Most solutions of object identification problems, which are important for many kinds of databases
(especially data warehouses) and also for (part of) the web, are based on classification techniques. In
this approach, an entity is described by a list of attributes; attribute values are simple data types (e.g.,
strings or numbers) and approximate similarity measures are assigned for each kind of attributes vector;
a similarity measure is built for lists of attributes (often it is a weighted combination of the attribute
similarities); finally, a decision procedure allows to state when two lists of attributes represent the same
entity. Recently, logical approaches have been developed (e.g., Fatiha Saı̈s, Nathalie Pernelle and M.-C.
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Rousset consider data sources conforming to the same RDFS schema [SPR07, SPR09]), our work also
follows a logical approach.

A knowledge base (KB) is composed of logical constructs representing knowledge about a world.
We assume that such a world can be modeled by using notions of (nave) set theory, e.g. elements, sets,
relations, functions, and thus that knowledge about this set theoretical model are expressed by (a variant
or a fragment) of first order logic. In this paper we are interested by identification problems concerning
individual entities in world. These individual entities are represented by elements in the model and these
elements are represented by special symbols called surrogates in the knowledge base. Surrogates should
be in one-to-one correspondence with the set of world entities. Our aim is to define a KB faithful, or
unambiguous, with respect to the identification of world entities and to propose mechanisms allowing a
user to design, build, maintain such a KB, and also to repair an ambiguous KB. In this paper we consider
individual entities, nevertheless similar identification problems occur for other notions such as classes of
entities or relationships between entities.

We focus on digital libraries, which are specific knowledge bases, for several reasons. First, all the
previous mentioned problems are important in the context of digital libraries. Some problems are induced
by the evolution of digital libraries (e.g., adding notices to a base, merging bibliographic bases, main-
tenance of the different bases), other problems concern the quality of the notice bases (e.g., consistency
inside and between bases, relevance of the subject). Secondly, a digital library is composed of several
bases of notices: bibliographic notices and authority notices. A bibliographic notice gathers metadata
concerning a document, an authority notice gathers metadata concerning an authority. An authority can be
an author, a collectivity or a subject. International work is done to standardize these metadata (FRBR, ?)
similar to light weight ontologies. Relationships between bibliographic notices and authority notices are
represented by attributes in notices (e.g., authorOf, editorOf, ?). Thus, a digital library can be seen as a
knowledge base having a graph structure. The problems expressed in our logical framework can be solved
using graph techniques (rules, constraints, exact and approximate retrieval procedures cf. [CM09, ?, ?]?).
Digital libraries allow to assess graph methods on large graphs (several dozen of millions of nodes) and to
compare them to classification methods.

2 Logical Framework
In this section we present a first order logical framework aiming at representing object identification prob-
lems.

2.1 The language L
The KR language (L) used is a variant of FOL and more precisely a variant of the language L introduced
by Levesque and Lakemeyer [LL00]. Terms are used for representing entities in the application domain.
We assume that there are no functional symbols in the KR language.

Definition 1 (Symbols and Vocabulary) The set of symbols is composed of a set of logical symbols and
a set of non logical symbols also called vocabulary. The set of logical symbols consists of the following
distinct sets:

• X a countably infinite set of variables,

• S a countably infinite set of surrogates, which is partitioned into an infinite set of literal surrogates
and an infinite set of individual surrogates, S = L+ E,

• the equality symbol =,

• the connectives ∃,∀,∧,→,↔ and the brackets ( and )
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The vocabulary or set of non-logical symbols consists of two distinct sets:

• C the (ordinary) constants (i.e., function symbols of arity 0).

• P the predicate symbols (of any arity > 0)

Definition 2 (Terms) A term is either a variable or a surrogate or a constant.

Literals surrogates (literal in short whenever there is no ambiguity) are used for representing entities
such as integers, strings, dates and so on, e.g., int 3 represents the integer 3 and string abc repre-
sents the string “abc′′. We assume that there is a consensus about the meaning of a literal, i.e., a literal does
not need a definition, its meaning is directly given by its syntax. This is not the case for individual surro-
gates (individual in short whenever there is no ambiguity). An individual has no meaning by itself, it is
simply a symbol; individuals are noted by strings beginning by #, e.g., #12. The fundamental property of
individuals is that they represent the elements of the universe of discourse. Thus, we only know that #12
and #25 represent different entities in the universe of discourse and if one wants to express what distin-
guish #12 from #25 one has to represent knowledge concerning the individuals #12 and #25. A constant
corresponds to an alias for an individual, e.g., abc or Charles De Gaulle or Le General can be aliases
for #121443 which is the individual representing in the system the French well-known personality. Con-
stant are noted by strings disjoint from surrogates and variables. Please note that the Charles De Gaulle
constant is a non-logical symbol different from the literal surrogate String Charles De Gaulle
which might represent the name of the person represented into the system by the individual surrogate
#121443.

Definition 3 (Formulas) An atom is either p(t1, ..., tk), where p is a predicate and ti is a term, or t = t′

(equality atom), where t and t′ are terms. Formulas in L are defined from atoms and connectives in the
same way as in classical FOL. We mainly use specific formulas defined as follows:

• A conjunct is a conjunction of atoms. A conjunct can be identified as a set of atoms.

• An ∃∧formula is the existential closure of a conjunct without equality atoms.

• An ∃∧ =formula is the existential closure of a conjunct.

• A range restricted rule (rr-rule) is a formula ∀X(H → A) where H is a conjunct without equality
atoms, A is an atom and var(A) ⊆ var(H) ⊆ X . Two kinds of rr-rules are distinguished: P -rule
where A is an atom built from a predicate in P and =rule where A is an equality atom.

• An individual definition for an individual e ∈ E, is a formula ∀X(H ↔ (x = e)) where H is a
conjunct without equality atoms, x ∈ X .

In the examples, the conjuncts, ∃∧formula and ∃∧ =formula will be represented by their set of atoms.
A knowledge base (KB) is composed of three sets of formula. More precisely,

Definition 4 (Knowledge Base) A knowledge base over L is a 3-tuple K = (F ,R, C) composed of three
finite sets:

• a set of ∃∧ =formulas F , representing facts,

• a set of rr-rulesR without constants and individuals, representing knowledge which can be applied
to facts,

• a set of ∃∧formulas C without constants and individuals, representing negative constraints that
facts should fulfill.

Note that, using conjunction, F can be assumed to be a single ∃∧ =formula.
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Notations The set of variables, literals, individuals, surrogates, constants, terms, atoms in a formula A
are, respectively, denoted var(A), lit(A), ind(A), surr(A), const(A), term(A) and atom(A). These
notations are also used for a set of formulas or for a knowledge base.

Definition 5 (A∗) For any set of terms T , T ∗ is the set of all equality between terms in T , (i.e., T ∗ = {t =
t′ | t ∈ T, t′ ∈ T}.

LetA be an ∃∧ =formula. LetC1, C2, . . . , Cn be the equivalence classes of term(A) (wrt the equality),
and for any term t ∈ term(A), let C(t) be the equivalence class of t.

A∗ = {p(t′1, ..., t′k) | p(t1, ..., tk) ∈ atom(A),∀i = 1, . . . , k, t′i ∈ C(ti)} ∪ {C∗i | i = 1, . . . , n}

Definition 6 (Normal form of a formula) For any equivalence class of terms T , norm(T ) is the subset
of T defined as follows:

• If T only contains variables, then let x be a variable in T , norm(T ) = {x} (one keeps one variable).

• If T contains (at least) a variable and (at least) a constant or surrogate, then norm(T ) = T \ X
(all variables are removed).

• If T only contains constants or surrogates norm(T ) = T .

Let A be an ∃∧ =formula. Let C1, C2, . . . , Cn be the equivalence classes of term(A) (wrt the equal-
ity), and for any term t ∈ term(A), let C(t) be the equivalence class of t. The normal form of A,
noted norm(A) is defined by: norm(A) = {p(t′1, ..., t′k) | p(t1, ..., tk) ∈ atom(A), ∀i = 1, . . . , k, t′i ∈
norm(C(ti))} \ {t = t | t ∈ term(A)}.

Note that there is no equality atoms containing variables nor valid atoms (t = t) in norm(A). Thus, if
A is a set of valid atoms, norm(A) is the empty set of atoms. Furthermore, A ⊆ A∗, norm(A) ⊆ A∗ and
if A doesn’t contain any equality atoms, then A = A∗ = norm(A). norm(A) is a canonical form of A up
to a variable renaming.

Comment The last point should be clarified: letA andB be two ∃∧ =formula, if norm(A) = norm(B)
then A ≡ B but the converse is not true!

Example Let A = {p(x), q(y), q(w), p(z), q(c2), r(s3, s1), x = s1, c1 = x, y = z, s2 = c2} be a
fact (where w, x, y, z are variables, c1, c2 are constants and s1, s2, s3 are surrogates), then A∗ = A ∪
{p(s1), p(c1), q(z), p(y), q(s2), r(s3, c1), r(s3, x), s1 = s1, c1 = c1, x = x, s1 = x, x = c1, c1 = s1, s1 =
c1, y = y, z = z, z = y, s2 = s2, c2 = c2, c2 = s2, s3 = s3, w = w} and norm(A) = {p(s1), p(c1), q(y),
q(w), p(y), q(s2), q(c2), r(s3, s1), r(s3, c1), c1 = s1, s1 = c1, c2 = s2, s2 = c2}

2.2 Interpretation and Model of a KB
The interpretation domain is the set of surrogates S = L+ E.

Definition 7 (Interpretation) An interpretation of L is a mapping I from S + C + P to S∗ such that:

• for all surrogate s in S: I(s) = s,

• I(=) is the equality on S,

• for all constant c in C: I(c) ∈ E,

• for all k-ary predicate p in P : I(p) ⊆ Sk.
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Two interpretations may only differ by the interpretation of non logical symbols, i.e., elements in the
vocabulary. Thus, one can speak of the interpretation of a language or of a vocabulary.

Definition 8 Let us consider a finite vocabulary V = (C,P ) (i.e., C and P are finite). An interpretation
I is finite if for any p in P , I(p) is finite.

The semantics of the logical connectives are defined in the same way as in classical FOL. Thus, it is
straightforward to define a model of a formula A as well as the logical consequence noted |= or the logical
equivalence ≡.

Property 1 Let A be an ∃∧ =formula then A∗ ≡ A and norm(A) ≡ A.

Definition 9 (Model of a knowledge base) An interpretation I is a model of a knowledge base K =
(F ,R, C) if

• I is a model of (F ,R),

• I is not a model of any C in C.

2.3 Grounded and Well-grounded KBs
A (satisfiable) KB is grounded if the interpretation of a constant is the same individual in all models of
the knowledge base and this means that (in a grounded knowledge base) the constants are aliases of the
individual surrogates.

Definition 10 (Grounded knowledge base) A satisfiable knowledge base K = (F ,R, C) is grounded if:
for each constant c in const(K), there is an individual surrogate e in ind(K) such that for any model I of
K I(c) = e.

As said in section 2.1, the two types of surrogates (i.e., literals and individuals) are semantically dif-
ferent. A literal directly refers to an element in the domain, while an individual surrogate means nothing.
An identification formula give meaning to an individual, such a formula is a definition of an individual.

Definition 11 (Well-grounded) An individual surrogate e is well-grounded wrt a base K if there is an
identification formula Ide = ∀X(NSC(x) ↔ (x = e)) such that K |= Ide. A grounded knowledge base
K is well-grounded if each individual surrogate e in K is well-grounded.

Comment e is well-grounded means that any model of K is a model of NSC(e), and that in any model
of NSC(x) the only possible value of x is e. Indeed, ∀X(NSCe(x) ↔ (x = e)) ≡ NSCe(e) ∧
∀X(NSCe(x)→ (x = e)).

In such a situation, K is said to be well-grounded with respect to the set IDK = {Ide| e ∈ ind(K)} of
identification formulas associated with the individual surrogates of K.

2.4 Checking problems
In this framework, one can define several checking problems.

Problem 1 Let K be a knowledge base, check if K is satisfiable.

Problem 2 Let K be a satisfiable knowledge base, check if K is grounded.
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Problem 3 Let K be a grounded knowledge base and a set of identification formulas Id, check if K is
well-grounded with respect to Id.

Problem 4 Let K be a grounded knowledge base, check if K is well-grounded (and give an Id).

2.5 Reasoning with Homomorphism
In this section, the notions dealing with homomorphism introduced in [BLMS11] for classical FOL are
adapted to the previous framework.

2.5.1 Homomorphism

Definition 12 (substitution) Given a set of variables X and a set of terms T , a substitution σ of X by T
is a mapping from X to T . Given a conjunct C, σ(C) denotes the conjunct obtained from C by replacing
each occurrence of x ∈ X ∩ var(C) by σ(x). If a fact A is the existential closure of a conjunct C, then
σ(A) is the existential closure of σ(C).

Definition 13 (homomorphism) A homomorphism from a fact A to a (possibly infinite) fact B is a sub-
stitution σ of var(A) by term(B) such that σ(A) ⊆ B.

Note that there is a homomorphism from a fact A to its equivalent forms A∗ and norm(A).

Theorem 1 Let A and B be two facts. B |= A if and only if there is a homomorphism from norm(A) to
norm(B).

2.5.2 Rule application

Remember that a rule hypothesis H (the same remark holds for the constraints) doesn’t contain any equal-
ity atoms. Thus, we have H = H∗ = norm(H).

Definition 14 (Application of a rr-rule) Let F be a fact and R = (H,A) be a rr-rule. R is said applica-
ble to F if there is a homomorphism, say π, from H to norm(F ). In that case, the application of R to F
according to π produces a fact α(F,R, π) = F ∪ π(C). α(F,R, π) is said to be an immediate derivation
from F . This rule application is said to be redundant if α(F,R, π) ≡ F .

To check whether α(F,R, σ) ≡ F , one can check that norm(α(F,R, σ)) maps to norm(F ).

Definition 15 (Derivation) Let F be a fact andR be a set of rr-rules. A fact F ′ is called anR-derivation
of F if there is a finite sequence (called the derivation sequence) F = F0, F1, . . . , Fk = F ′ such that for
all 1 ≤ i ≤ k, there is a rule R = (H,C) ∈ R and a homomorphism π from H to norm(Fi−1) with
Fi = α(Fi−1, R, π), i.e., Fi is an immediate derivation from Fi−1.

Definition 16 (Closure wrtR) LetR be a set of rr-rules, a factF is said closed wrtR iff any application
of a rule inR to F leads to a fact F ′ equivalent to F . Given a fact F and a set of rulesR, a closure of F
wrtR is a closed fact (wrt toR) that is aR− derivation of F .

Property 2 Let F be a fact and R be a set of rr-rules: (i) there always exists a closure of F wrt R, (ii)
all closures of F wrt R are logically equivalent, and (iii) the normal form of all closures of F wrt R are
identical.

Definition 17 (R(F)) Let F be a fact and R be a set of rules, R(F) denotes the normal form of any
closure of F wrt toR.

Theorem 2 (Saturation) Let F and F ′ be two facts and R be a set of rr-rules. Then F,R |= F ′ if and
only if there is a homomorphism from norm(F ′) toR(F )

6



2.5.3 Satisfiability, Grounded and well-grounded properties

Property 3 A knowledge base K = (F ,R, C) is satisfiable iff:

(i) there is at most one surrogate in any equivalence class ofR(F) and

(ii) for any C in C there is no homomorphism from C toR(F).

Definition 18 (Identity property) A knowledge base K = (F ,R, C) has the identity property if each
equivalence classe of terms inR(F) that contains a constant also contains an individual surrogate.

Property 4 A satisfiable knowledge base is grounded if and only if it fulfills the identity property.

Proof: Let K = (F ,R, C) be a satisfiable knowledge base.
(⇐) Let I be any model of K. For any constant c in const(K), we note ec the single individual surrogate
belonging to the equivalence class of c. Thus, I(c) = I(ec) = ec, the interpretation of c is the same for
any I .
(⇒) Proof by contradiction. Let K be a satisfiable and grounded knowledge base. Let us assume that
a constant c belongs to an equivalence class which does not contain an individual surrogate. Since K is
grounded there is an individual surrogate e which is the interpretation of c in any model I of K. Let I be
a model of K, a model I ′ with I ′(c) 6= I(c) can be built as follows:

• choose e′ in E − ind(K) different from e;

• for each constant c′ equivalent to c, I ′(c′) = e′, and for all other constant c”, I ′(c”) = I(c”);

• for all p in P , I ′(p) is the union of I(p) and the set of tuples obtained by substituting e′ to e in I(p).

I ′ is a model of K and since I ′(c) 6= I(c), K is not grounded. �

Property 5 An individual surrogate e is well-grounded wrt a grounded knowledge base K = (F ,R, C)
iff there is an ∃∧formula F ′ having a variable x such that:

• there is at least one homomorphism from F ′ toR(F) and

• every homomorphism from F ′ toR(F) maps x to e.

3 Graphical Framework
In order to solve these problems we use graph representation of formulas and graph homomorphisms.

3.1 Graph notions
Notions defined in this section are adapted from notions defined in [CM09].

Definition 19 (G-vocabulary) A G-vocabulary is a pair (T, P ) where T and P are two pairwise disjoint
sets. T is a set of terms and P is a set of predicates of arity 1, ...k.

Definition 20 (Graph) A graph defined over a vocabulary (T, P ) is a 4-tuple G = (C,R,E, l) satisfying
the following conditions:

• (C,R,E) is a bipartite multigraph. C is the concept node set, R is the relation node set and E is the
family of edges.
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• l is a labeling function of nodes and edges that satisfies:

1. A concept node is labeled by a set (possibly empty) of terms in T .

2. A relation node is labeled by a predicate in P .

3. The degree of a relation node is equal to the arity of its label.

4. Edges incident to a relation node labeled r are totally ordered and they are labeled from 1 to
k (the arity of r).

Such a graph looks like a BG-graph on a flat vocabulary where the markers are sets of terms. A concept
node labeled by the empty set is called a generic concept node

Definition 21 A normal graph is a graph such all labels of concept nodes are pairwise disjoint and without
twin relations. The normal form norm(G) of a graph G is the normal graph obtained by merging the
concept nodes having a non empty intersection of their label (the label of a node resulting from a merging
is the union of the labels of the merged nodes) and by deleting twin relations.

Other notions defined in [CM09] can be easily extended to the graphs defined in this section. The
central notion of graph homomorphism can be defined as follows.

Definition 22 (Graph Homomorphism) Let G = (CG, RG, EG, lG) and H = (CH , RH , EH , lH) be two
graphs defined over the same vocabulary. A homomorphism π from G to H is a mapping from CG to CH

and from RG to RH such that:

• ∀(r, i, c) ∈ G, (π(r), i, π(c)) ∈ H ,

• ∀r ∈ RG, lH(π(r)) = lG(r),

• ∀c ∈ CG, lH(π(c)) ⊇ lG(c)

If there is a homomorphism (say π) from G to H , we say that G maps or projects to H (by π).

Let c and d be two concept nodes of a graphG. The merging operation of c and d consists of identifying
the two nodes c and d into a new node having the label l(c) ∪ l(d). One now defines rules and rule
applications and w.l.g. one only considers rules with at most one relation node in the conclusion.

Definition 23 (G-rule) The two following kinds of graph rules are considered. An equality rule is an
ordered pair R = ((c, c′), H) where c and c′ are distinct (generic) concept nodes in the graph H .

An atomic rule is an ordered pair R = ((c1, ...cn)H, p) where the ci are concept nodes (not necessarily
distinct) in the graph H and p is a predicate of arity n.

Application of a rule graph can now be defined.

Definition 24 (Application of an equality rule) Let G be a graph and R = ((c, c′), H) be an equality
rule. R is applicable to G if there is a homomorphism π from H to G. In this case, the result of the
application of R to G according to π is the graph G′ = (R, π)G obtained from G by merging π(c) and
π(c′).

Definition 25 (Application of an atomic rule) Let G be a graph and R = ((c1, ...cn)H, p) be an atomic
rule. R is applicable to G if there is a homomorphism π from H to G. In this case, the result of the
application of R to G according to π is the graph G′ = (R, π)G obtained from G by adding a new relation
node labeled p whose i-th neighbor is π(ci) for i = 1, . . . , n.
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3.2 Relationships between formulas and graphs
Simple relationships between logical notions presented in Sect. 2 and graphical notions presented in Sect. 3
allow to solve problems concerning formulas by graph algorithms based on graph homomorphism.

Definition 26 (Graph of a Fact) The graph of a fact A is the normal graph graph(A) obtained as fol-
lows.

1. Create a concept node for each equivalence class of terms. Each concept node is labeled by the set of
surrogates and constants belonging to the equivalence class and by the empty set if the equivalence
class only contains variables.

2. From each atom p(t1, ...tk), adds a relation node r labeled p with k edges labelled from 1 to k that
link r to the k concept nodes resp. associated with the equivalence class of t1, ...tk.

3. Delete twin relation nodes.

Note that graph(A) = graph(norm(A)) and, more generally, for any fact B, such as norm(B) =
norm(A), one has graph(B) = graph(A).

Theorem 3 There is a bijection between the set of normal facts (up to a renaming of the variables) on
the vocabulary (C,P ) and the normal graphs on the vocabulary (C ∪ S, P ). The same result holds for
rr-rules and G-rules. There is a homomorphism from a normal fact A to a normal fact B iff there is a
homomorphism from graph(A) to graph(B). A rr-rule is applicable to a fact A iff the associated G-rule
is applicable to graph(A). etc.

Comment To finish...
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