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Abstract. Given a graph and a set of vertices, searching for a connected
and minimum cost structure which spans the vertices is a classic problem.
When no constraints are applied, the minimum cost spanning structure
is a sub-graph corresponding to a tree. If all the vertices in the graph
should be spanned the problem is referred to as minimum spanning tree
(MST) construction and polynomial time algorithms exist to find these
trees. On the contrary, if only a subset of vertices is concerned then
the problem becomes NP-hard. The computation of partial minimum
spanning trees is known as the Steiner problem in graphs.
In some cases, constraints are present in the problem formulation: sev-
eral constrained spanning and Steiner problems are known. Generally,
only the tree-like spanning solutions were investigated. In this paper, we
demonstrate that the cost optimal spanning structure in constrained sit-
uations is not necessarily a spanning tree. To find the optimal spanning,
we propose the extension of the tree concept and we define the hierar-
chies. A hierarchy is obtained by a graph homomorphism from a tree to
a given target graph which may refer vertices (and so edges) of the tar-
get graph several times. We prove that generally (including constrained
spanning problems) the minimum cost connected structure spanning a
set of vertices is a spanning hierarchy. To justify the introduction of
spanning hierarchies, some spanning problems with various constraints
are presented. The constrained spanning problems are frequently NP-
hard and intensive research will be required to explore the properties of
the optimal spanning hierarchies and to find exact and efficient heuristic
algorithms to solve these newly formulated problems.

Keywords: Graphs, constrained spanning problems, spanning trees,
spanning hierarchies, homomorphism, minimum spanning hierarchies, net-
work

1 Introduction

One of the first studies on graphs was related to the computation of
paths and walks. Many problems lead to a (shortest) path between a ver-



tex pair in a given graph. The underlying graph can be weighted on the
edges and/or the vertices, and different problems need paths computa-
tion (e.g., computation of the shortest path or the path with maximum
capacity, etc.). A path can be considered as a structure spanning its end
points and the shortest path corresponds to the partial minimum cost
spanning structure (sub-graph) of the end points. Walks corresponding
to the solutions of some problems describe ordered visits of graph vertices
and edges. Often, walks and spanning problems are related. Eulerian and
Hamiltonian paths (if they exist) spanning the edges or the vertices of a
given graph also correspond to special walks. Paths (or elementary walks)
contain any graph element (vertex or edge) at most once. Several walk
problems cannot be resolved using elementary walks. For example, Eule-
rian paths may contain repeated vertices. In non-elementary walks vertex
and edge repetitions may occur.

When a set of vertices containing more than 2 vertices should be
spanned and there is no further constraint, the minimum cost spanning
sub-graph is a tree. (In our study, we suppose that the goal is to span a
set of vertices by a connected structure.) If the spanning tree must cover a
subset of vertices with minimum length, then the solution corresponds to
a Partial Minimum Spanning Tree (PMST) or Steiner tree. The problem
of finding a Steiner tree is NP-hard and several propositions for exact
and approximated solutions exist (cf. a large state of the art for example
in [12]). The Steiner problem is in APX and good approximated solutions
have also been proposed (cf. [26] for the best solution currently available).

It is known that some minimum cost spanning problems under con-
straint cannot be solved using trees. Several cases have been analyzed
in the literature both in constrained spanning and Steiner problems (cf.
some examples in [10]). Generally, constrained spanning trees or sets of
trees are supposed as minimum cost solutions. In some cases, the authors
state that there is no tree-like solution for the given constrained spanning
problem (cf. the analysis of the degree bounded spanning problem in [2]).
Often, the constrained spanning problems are related to networks. For
example, in all optical WDM networks switches which can have a degree
greater than two in the spanning structure are not available anywhere. To
perform multicast1 routing with respect of the splitting constraints, the
authors of [1] propose a special walk containing returns to some vertices.
As also demonstrated for a different constrained multicast routing prob-
lem in [15], finding a spanning tree subject to multiple QoS requirements

1 Multicast communications aim at point to multi-point and multi-point to multi-
point communications
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is not always possible. Nevertheless, the optimal (minimum cost) solution
of these constrained partial spanning problems was not yet analyzed.

To find the minimum cost solution, we propose hierarchical structures
related to graphs which can refer vertices and edges several times. As our
main result, we demonstrate that the optimal solution of the spanning
problems always corresponds to a hierarchy and trivially spanning trees
are special cases of spanning hierarchies.

In the next of the paper, after the definition of the hierarchy concept in
Section 2, Section 3 shows examples of the discussed constrained spanning
problems. A new formulation and its hierarchy based solution is presented
in Section 4. Section 5 describes briefly some known applications in which
the hierarchy concept is applied successfully to find the minimum cost
solution. The presentation is closed by some perspectives of this inchoate
work.

2 Hierarchies in Graphs

To introduce the here proposed spanning structure, we begin with a trivial
analogy. Let G = (V,E) an undirected graph. An elementary walk is
given by a sequence of vertices and edges forming a connected sub-graph
beginning and ending with a vertex. It can be done by the sequence of
the successively visited vertices, for instance:

P = (a, b, c, d) (1)

In elementary walks vertices (and thus edges) are not repeated. The cor-
responding sub-graph is a path.

Non-elementary walks may contain vertices and/or edges several times
and consequently several cycles. The following walk contains the vertices
b and e twice (and so two cycles):

P2 = (a, b, c, d, b, d, e, f, g, e, h) (2)

Notice that the sub-graph generated by the walk (i.e. its image) is
more simple as it is illustrated by Figure 1.

Homomorphism of graphs was proposed first in [27]. To handle simil-
itudes between structures, the homomorphism has been studied in [17].
For graphs, the homomorphism is defined as follows. Let H = (W,F )
and G = (V,E) two (undirected) graphs. An application x : W → V

associating a vertex in V to each vertex in W is a homomorphism if the
mapping preserves the adjacency: (u, v) ∈ F implies (x(u), x(v)) ∈ E.
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Fig. 1. A non-elementary walk and its image

The definition can also be given for directed graphs. Usually, in directed
graphs, the homomorphism also preserves the direction of the arcs.

Graph homomorphism given by a triplet (H,x,G) can be applied to
define spanning structures. The mapping from the base graph H to G

determines a sub-graph in G which is called image of H in G. This image
contains the vertices and edges in G which are mapped by the application
x. Since several vertices in H can be associated with the same vertex of
G (and so, several edges in H can be associated with the same edge
of G), the image of H in G does not reflect the whole structure of H.
The shortcoming of the classic image related to the homomorphism is
that the generated sub-graph may correspond to different base graphs
(this property is very useful for graph core determination but is useless
disturbing for spanning problems). For spanning structures, we need a
more detailed ”image” in G preserving the basic properties of the graph
H. Similarly to non elementary walks, where repetitions of vertices and
edges can be clearly distinguished in the walk, the entire projection of H
in G may be very useful. Moreover, significant values can be associated to
the spanning structure: its length, its diameter and other derived values.
In certain network applications, the topology graph is a valuated graph
and the routes have they proper derived values (as the capacity, the end-
to-end delay, etc.). The total knowledge of the spanning structure permits
to define these derived values (cf. in [11] the definition of some lengths
associated to walks).

Figure 2 illustrates a case resulted by a homomorphism from a non-
connected graph H to a connected graph G such that the image obtained
by the homomorphism is connected. Trivially, despite the fact that the
image of H in G is a path, it does not correspond to a walk. Notice that
connected images can be obtained only in connected components of the
target graph G. In the following, we suppose that the target graph is al-
ways connected. To distinguish homomorphism corresponding connected
walks, we propose the following definition.
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Fig. 2. Connected image of a non-connected graph

Definition 1 (Token connectivity). A structure obtained by homo-
morphism from a graph H to a graph G is token connected iff H is con-
nected.

Since a connected image can correspond to a non-connected origin, the
token connectivity is an important property of the spanning structure. In
our study, we consider the token-connectivity of the spanning structures.

The goal of the spanning problems is the coverage of the vertices in
a set M ⊆ V of the graph G = (V,E). In some cases the objective is the
coverage by a sub-graph which is not necessary connected (e.g., to create
a matching, a Steiner forest) or in other cases by a connected one (e.g.,
spanning tree, Steiner tree construction). Unfortunately, the sub-graphs
are not sufficient to give all useful spanning structures. With the help of
the following definition, we try to extend the possible spanning structures
of a vertex set M applying a homomorphism.

Definition 2 (Token connected spanning of a vertex set). A struc-
ture given by (H,x,G) spans the vertex set M , if the image of H in G

covers all vertices in M and it is token-connected.

To define both elementary and non-elementary finite walks in an undi-
rected graph G = (V,E), the following definition is used in [11].

Definition 3 (Walks in a graph). Let P = (W,F ) be a connected
graph which has not any vertex with degree greater than two (the graph P

is a path). Let x : W → V be a homomorphism which associates a vertex
v ∈ V to each vertex w ∈ W . Trivially, (P, x,G) defines a walk in G.

As x is a homomorphism, it preserves the adjacency of vertices: the
edge f = (w1, w2) belongs to F implies that the edge e = (v1, v2) with
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v1 = x(w1) and v2 = x(w2) is in E. If the application x is injective (that
is a vertex v ∈ V corresponds to only one vertex w ∈ W ), then the walk
defined in this way is an elementary walk in G (its image is also a path).
If several vertices in W can correspond to a same vertex in V (and also
several edges in F can be associated with a same edge in E), then (P, x,G)
gives a non-elementary walk in G (the image of a non-elementary path
can be an arbitrary connected sub-graph). Several homomorphisms from
paths and cycles are discussed in [11].

The concept of the tree is used to describe connected sub-graphs
without cycles. Trees are minimum connected graphs without path re-
dundancies. Similarly to walks, tree-morph structures which we will call
hierarchical walks or hierarchies can be defined with the help of homo-
morphisms. (Naturally, the same approach can be applied from different
graphs, not only from trees.)

Definition 4 (Hierarchies in a graph). Let T = (W,F ) be a connected
graph without cycle (a tree). Let x : W → V be a homomorphism which
associates a vertex v ∈ V to each vertex w ∈ W . The application (T, x,G)
defines a hierarchy in G.

The base graph T = (W,F ) is the origin of the hierarchy and the sub-
graph generated in G by the applications x from T is the image of the
hierarchy. The hierarchy itself in the graph G corresponds to a ”hierar-
chical walk” in which some vertices are branching vertices (there are the
vertex occurrences corresponding to the branching vertices of the tree
T ). When a hierarchical walk on the structure is performed, the incoming
walking object or token is duplicated in these branching vertices to con-
tinue the walk. Figure 3 shows an example of a hierarchy. Each vertex of
the tree T is associated with a unique vertex of the graph G. In reverse
direction, a vertex of G can be mapped (or not) to several vertices in T .
To simplify, we use different occurrences of the vertices in V to represent
the vertices of W in the obtained hierarchy. To distinguish the occur-
rences related to a vertex v, we will use v1, v2, . . . vk if needed. Figure 3
gives an example of a homomorphism from a tree resulting a hierarchy.
In the figure, each vertex of the base graph T indicates the name of the
corresponding vertex in the graph G. A vertex in G can correspond to a
branching vertex in T and an other mapping to this vertex can have as
origin a vertex in T having a degree two or less as it is the case of the
vertex g in our example. The image of T in G is a sub-graph indicated by
bold lines in Figure 4. The proposed hierarchy corresponds to the folded
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tree in the target graph (to facilitate the distinction of the different parts
of this hierarchy, a part of the structure is plotted usingy dotted line).
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Fig. 3. Determination of a hierarchy using a homomorphism

aa bb cc dd

ee ff gg hh

ii jj kk ll
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Fig. 4. The hierarchy and its image in the related graph

Trivially, if the application x is injective, then the hierarchy and also
its image correspond to a tree in G. To simplify, we will say that the hi-
erarchy is a tree. Using an analogy with elementary and non-elementary
walks, a hierarchy can be seen as a structure regrouping elementary and
”non-elementary” hierarchical objects. The gain of this definition is due
to the possibility that hierarchical structures (which may contain sev-
eral occurrences of the vertices and edges of G) can satisfy constraints
when trees can not. Hierarchies offer more flexible structures to solve
constrained spanning problems. We will see that the hierarchies permit
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the precise description of the cost optimal solution of some constrained
spanning problems.

2.1 Particular Hierarchies

Hierarchies can be rooted or not. In some applications, rooted hierarchies
should be applied (for example, there is a distinguished source node in a
network corresponding to the root).

Definition 5 (Rooted hierarchy). A hierarchy given by (T, x,G) is a
rooted hierarchy if the base graph T = (W,F ) is a rooted tree.

At each level of a non-empty rooted tree, there is a root vertex and a
number of sub-trees. So, a rooted tree can be represented recursively:

T = (v(e1, T1, e2, T2, . . . , ek, Tk)) (3)

where T1, . . . , Tk are sub-trees linked to v by edges e1, . . . , ek respectively.
According to the recursive decomposition of its origin T = (W,F ), a
rooted hierarchy can also be given recursively:

H = (v(e1, H1, e2, H2, . . . , ek, Hk)) (4)

Here, the sub-hierarchies are the hierarchies (T1, x1, G), . . . , (Tk, xk, G)
determined by the mappings x1, . . . , xk from the corresponding sub-trees
T1, . . . , Tk. A rooted hierarchy can also be described using a hierarchically
parenthesed enumeration of vertices (labeled by the vertices in the graph
G). For instance, supposing that the root is the vertex a, the hierarchy in
Figure 4 can be given by the following parenthesed enumeration of graph
vertices:

H = (a(e(f(g(h, k(l)))), b(f(j(i, f, k(g(c))))))) (5)

As it is shown, some vertices of the graph G are repeated several times
and at different levels of this hierarchy.

Moreover, hierarchies can be directed or undirected according to the
direction of the origin T . Basically, to define a directed hierarchy, the
graphs T and G should be directed.

Definition 6 (Directed hierarchy related to a directed graph). A
directed hierarchy is given by (T, x,G) when the base graph T = (W,B)
and the target graph G = (V,A) are directed having arc sets B and A

respectively. The homomorphism preserves the direction of the arcs: if the
arc b = (w1, w2) belongs to B than the arc a = (v1, v2) with v1 = x(w1)
and v2 = x(w2) is in A.
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Since an undirected graph G′ = (V,E) can be replaced by a directed
one G = (V,A) defined on the same vertex set and containing a pair
of opposite arcs in the place of each edge in E, the association of an
undirected graph with a directed hierarchy is possible. As we will see
later in this paper, directed hierarchies related to undirected graphs may
have practical interest. For these cases, the homomorphic application is
slightly extended in the following definition.

Definition 7 (Directed hierarchy related to an undirected graph).
A directed hierarchy in an undirected graph can be given by (T, x,G) where
the base graph T = (W,B) is a directed tree, the target graph G = (V,E) is
undirected and by using a direction-less homomorphism x. The direction-
less homomorphism regards only the existence of an edge corresponding
to the arcs of the base graph: if the arc b = (w1, w2) belongs to B than
the edge e = (v1, v2) with v1 = x(w1) and v2 = x(w2) must be in E.

2.2 Trivial Properties of Hierarchies

Some properties known for trees are also valid for hierarchies but not all.
On the contrary, since trees in a graph can be obtained having particular
(injective) homomorphism, the properties characterizing hierarchies are
always true for trees. For instance, elements of Property 1 were formulated
for trees but they may be formulated more generally for hierarchies.

Property 1. Due to its definition:

– a non-empty hierarchy in a graph is a token-connected structure: there
is a walk between an arbitrary pair of vertex occurrences w1,w2 in the
hierarchy

– the walk between w1 and w2 in a hierarchy is unique (the origin T of
the hierarchy does not contain loops)

– the image of the walk between w1 and w2 in a hierarchy may be a
sub-graph of G containing eventual cycles.

Property 2. In a hierarchy, a vertex v ∈ V can be visited several times;
and also an edge (arc) of the target graph G can be used by the hierarchy
several times.

This property also follows from the definition.

Property 3. A hierarchy is not a sub-graph of G.

Property 4. Unlike trees, the image of a hierarchy in the graph G may
contain cycles.
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Property 5. Trees correspond to hierarchies obtained by injective homo-
morphic application x, and so without repetition of any vertex of G.

Property 6. Because the mapping function x associates one vertex of G
to each vertex in H, the number of vertex occurrences in the hierarchy is
equal to |W |.

Consequently, the number ns of vertices spanned by a hierarchy ob-
tained from a tree T = (W,F ) is limited by |W |: ns ≤ |W |.

For rooted hierarchies, we also mention the following important prop-
erty.

Property 7. In a rooted hierarchy, each vertex occurrence has at most one
parent.

2.3 Metrics Associated to Hierarchies

Length, cost and other significant values for applications can be associ-
ated to a hierarchy. These associations (the computation of the derived
values) are natural for paths, cycles, trees, etc. Some extensions to walks
as the net length of a walk (which is the difference between the number of
forward arcs and the number of backward arcs in the walk performed in
a digraph) have been formulated in [11]. Note that the distance between
two vertex occurrences in a walk is not obligatory equal to the length of
the path between the vertices in the image of the walk.

Different values can be associated to vertices and edges in a weighted
graph. Since our paper deals with the introduction of the hierarchies, we
note only some important aspects of the associated values.

Usually, one can distinguish three types of metrics associated to graph
elements: additive, multiplicative and bottleneck type of metrics. This
type indicates, how derived values for paths, tress, cycles, etc. can be
computed. Typically, a cost is an additive metric: the cost of a path (a
tree,...) is the sum of the cost of the edges ( and/or vertices) composing
the path (the tree). In the case of a multiplicative metric, the derived
value corresponds to the product of the edge/vertex values composing
the implied sub-graph. For the bottleneck type of metrics, the sub-graph
(path, tree, ...) can be characterized by the minimum/maximum value of
the elements composing it. (A good example for a bottleneck metric is the
bandwidth in networks: the capacity of a route is equal to the minimal
capacity of the links composing the route.)

There are several possibilities to associate values to graph related
structures as walks and hierarchies. We propose to keep the interpretation
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known for trees to formulate the derived values associated to hierarchies.
let us suppose that a hierarchy defined by (T, x,G) concerns a weighted
graph G (otherwise the graph T can also be weighted, but we ignore here
this case). Generally, a tree contains a graph element (vertex, edge) only
once but graph elements may be repeated several times in hierarchies.
To compute a derived value for a hierarchy, all components (occurrences)
should be considered. In this way, an associated value based on additive
metrics in G, can be computed as follows. Let us suppose that a cost
c(v) and c(e) is associated to each vertex v ∈ V and to each edge e ∈ E

respectively.

Definition 8. The cost of the hierarchy H obtained is equal to:

c(H) =
∑

w∈W

c(x(w)) +
∑

f∈F

c(x(f))

where x(w), x(f) are the vertex / the edge corresponding to w and to f

in G respectively using the mapping x.

The multiplicative and bottleneck values associated to a hierarchy can
be formulated very similarly.

Given its importance in constrained spanning problems, the degree of
a vertex occurrence in a hierarchy should also be defined. Let us suppose
that H is a hierarchy obtained by (T, x,G), w is a vertex in T and the
mapping associates v ∈ V to this vertex in the hierarchy. With other
world, a vertex occurrence vi of v belong to H.

Definition 9. The degree d(vi) of the vertex occurrence vi in H is :

d(vi) = d(w)

where d(w) gives the degree of w in T .

It is important to emphasize that v can also be mapped to an other
vertex z ∈ W . The corresponding vertex occurrence vj in H has a degree
equal to the degree of z. So, different occurrences of a same vertex of G
can have different degrees in a hierarchy. In directed cases, the out and
in degrees can be defined in the same way.

Constraints can be defined on the different weights and associated
values. For example, the QoS requirement of a network connection (usu-
ally path or tree) can be given as a set of constraints, which are classified
as link constraints, path constraints, or tree constraints in [4]. The same
logic can be followed for spanning hierarchies: constraint can consider
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vertex, edge, walk and hierarchy associated values. Our goal is the analy-
sis of some constrained spanning problems. So, we give examples for the
constrained problems in the following of the paper.

If the origin of a hierarchy is an infinite tree, the number of vertices
in the obtained hierarchy is also infinite. For practical purposes, we focus
only on finite hierarchies. A first network related presentation of hierar-
chies, some illustrations of optimal and quasi-optimal spanning hierar-
chies and related algorithms can be found in [19]. Although to discover
further important properties, hierarchies should be thoroughly analyzed
in future work.

After the definitions, we try to illustrate the usefulness of the hier-
archies in spanning problems. It is known (cf.[12]) that minimum-cost
spanning sub-graphs are minimum cost spanning trees. These structures
respond to spanning problems when there are no constraints in the for-
mulation. We are interested by token connected solutions of the spanning
problems even if there are constraints to respect. We will demonstrate
that the minimum cost spanning structure is always a hierarchy (cf. The-
orem 1). In the following section, we mention some constraints and some
constrained spanning problems analyzed in the literature.

3 Constrained Spanning Problems

A multitude of spanning problems in graphs with different constraints
have been formulated. These problems aim at finding a spanning struc-
ture (generally a sub-graph) which covers a given subset of vertices in
a target graph with respect of a set of constraints. In some cases the
spanning structure can be unconnected (cf. for instance the Steiner forest
problem in [8]), but often the connectivity of the spanning structure is re-
quired. The target graph can be weighted (usually by non-negative values
associated to the edges and/or to the vertices) and an objective function
can also be given. For instance, the cost or the diameter of the solution
must be minimal. Most of the problems are mono-objective problems but
some multi-objective formulations exist. In our study we are interested
by mono-objective spanning problems when token connected solutions are
wanted. Constraints can change the solution. For instance, if the degree
of vertices in the spanning structure is limited by two, then the solution
corresponds to a path (to the Hamiltonian path, if it exists) instead of a
spanning tree. The feasibility and the complexity change from a problem
to another by changing the constraints. Often, the presence of constraints
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makes the problem NP-hard, none the less that some unconstrained span-
ning problems are solvable in polynomial time [23] [5].

Some examples of constrained problems can be found in [10]. In this
section, we enumerate a few of them. For the indicated problems, the
introduction of the hierarchies improves the possibilities to cover the de-
sired vertex set. Our enumeration is not exhaustive: hierarchies can be
useful to solve other constrained spanning problems.

Problem 1 (Degree constrained and degree bounded spanning and Steiner
problems). In these problems, a non-negative integer value is assigned to
the vertices of the graph. When applying the constraint, the degree of
a vertex occurrence in the spanning structure cannot exceed the given
degree bound.

In the degree constrained minimum spanning tree problem the objec-
tive corresponds to finding the minimum cost tree among the spanning
trees of the graph such that the tree meets the degree bounds on the ver-
tices. For example, this problem corresponds to the well known minimum
cost traveling salesman problem between two vertices when these vertices
have degree bounds of one and the other vertces have degree bounds of
two. The degree bound can be homogeneous or heterogeneous in the ver-
tex set. The case of a homogeneous integer bound was introduced in [7]
and intensively was analyzed (cf. some examples in [2] [24] [3] [5] [23] [25]
[13]). The case of heterogeneous bounds is described for example in [9]. As
it is mentioned in [2], unfortunately the tree-like solution does not always
exist for this problem. We will show that the solution can be different
from a tree and can be found in some cases where the spanning tree does
not exist.

If only a subset M ⊂ V of the vertices should be covered with respect
of the degree bounds, then the problem is a degree constrained Steiner
problem. In the literature, important analysis, exact and heuristic solu-
tions can be found for example in [28] [2] [25] [16].

Problem 2 (Minimum cost spanning with size limit of the spanning trees).
Let k be a positive integer value, s ∈ V a source and D ⊂ V a set of
destinations in a weighted graph G = (V,E). Let be the number of leaves
and/or Steiner vertices in any spanning tree limited by k. The goal is to
connect the destinations to the source by respecting the size constraint
k. Trivially in some cases, for example when |D| > k, several trees rooted
at the source are needed to connect all of the destinations to the source
[20]. The solution is a set of trees rooted at the same vertex.
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The combination of multiple constraints may be present in the span-
ning problems. Spanning tree and Steiner tree problem with revenues,
budget and hop constraints have been formulated and analyzed to find a
spanning tree with maximal revenue and with respect to constraints on
the total budget and on the hop distances from a given source vertex in
[6][14].

Problem 3 (Multiple constrained spanning problem with end-to-end con-
straint). Several multimedia applications in networks are based on multi-
casting and need to satisfy several criteria. They require multi-constrained
multicast routes to do so. To model these problems, an m-dimensional
vector −→w (e) = [w(e)1, ..., w(e)m]T of additive-type metrics is associated
with each edge e ∈ E. The end-to-end constraints (constraints from the
source to the destinations) are also given by an m-dimensional vector
−→
L = [L1, ..., Lm]T . Multi-constrained QoS path computation between
nodes s and d consists in finding a feasible path satisfying:

wi(p(s, d)) =
∑

e∈p(s,d)

wi(e) ≤ Li, for i = 1, . . . ,m (6)

This path computation is known to be NP-hard [18]. For multi-constrained
multicast routing a feasible path should be exist for each destination and
three formulations with different objectives have been proposed in [15]. In
the Multiple Constrained Minimum Weight Multicast (MCMWM) prob-
lem the goal is to find a sub-graph GM of G in which there exists a
directed feasible path from a source s to each destination dj ∈ D and the
length of the sub-graph is minimal. So, this routing problem corresponds
to a particular spanning problem where end-to-end constraints limit the
spanning structure.

4 A New Formulation of Constrained Spanning Problems

Hierarchies can be proposed to solve constrained spanning problems if the
related problem does not obligatory needs a spanning sub-graph. Often,
the solution of the constrained problems should not obligatory corre-
spond to a connected sub-graph but can be a token-connected spanning
structure. For example, the solution will be used to configure the control
plane of a network. The spanning structure (the route, the scheduling
plan, etc.) may cover the entire set or a subset of the vertices in a graph
respecting constraints. Without loss of generality, we suppose that the
objective of the spanning problem is the minimization of a cost function.
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In some cases, this objective can be different from the cost minimization,
but our results can be easily extended to other objectives (for example:
to minimize the diameter of the spanning structure, etc.).

Constraints can be arbitrary except for the following particular con-
straint. Sometimes, a set of vertices should be connected by a k-connected
graph with k > 1 (for instance to satisfy fault tolerance criterion). In our
case, the spanning structure should only be 1-connected. Moreover, we
have not constraint on the spanning structure itself: it can be different
from a sub-graph. The only constraint on this structure is that it must be
token-connected. So, our problems can be formulated as follows.

Problem 4 (Token-connected constrained spanning problems). Let a set
M ⊆ V be given in a graph G = (V,E) assigned (positive) values on
the edges and/or on the vertices. Let K be a (possibly empty) set of
constraints excluding the k-connectivity with k > 1. Let G′ be a to-
ken connected structure defined by the homomorphism (H,x,G) (with
mapping x). Let V ′ and E′ be the set of vertex occurrences and edge
occurrences of this spanning structure (V ′ contains zero or several occur-
rences of a vertex v ∈ V and E′ contains zero or several occurrences of
the edges e ∈ E). The token-connected constrained spanning problem is
solved by the structure defined by (H,x,G) if the image of H in G covers
the vertices in M and vertice occurrences in V ′ and edge occrrences in E′

satisfy the constraints in K.

Let c(e) be the cost associated to the edge e ∈ E. We consider the
cost of the structure following Definition 8. We are looking at the token-
connected minimum cost spanning structure covering M .

Theorem 1. The minimum cost token-connected structure spanning M

and respecting the constraints K is always a hierarchy.

Proof. The spanning structure given by the homomorphism (H,x,G)
should be token-connected with respect to K. Moreover it is with min-
imum cost. It is sufficient to prove that the origin H = (W,F ) of the
minimum cost spanning structure cannot contain any cycles: it is a tree.

Let us suppose that H contains a cycle. At most one edge of H can be
omitted without less of the token-connectivity. Let f be an edge which can
be deleted from H. The obtained graph H ′ = (W,F \ {f}) is connected
and covers M (the set of vertices associated to W does not change).
(H ′, x,G) is a token-connected spanning solution and its cost is less then
the cost of H (the deleted edge have a positive cost). So, H cannot be of
minimum cost. ⊓⊔
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Fig. 5. A vertex v ∈ V is present twice in the solution of an unconstrained problem

If the entire vertex set V of G must be covered, then the term min-
imum spanning hierarchy will be used. If a subset M ⊂ V of vertices
must be covered and the best (i.e. the minimum cost) spanning structure
respecting the constraints is required we will talk about partial minimum
spanning hierarchies.

The following, trivial lemma expresses that without constraints the
solution is always a spanning tree.

Lemma 1. The (partial) minimum spanning hierarchy of a given vertex
set M ⊆ V with no constraints in the graph G = (V,E) corresponds to
the (partial) minimum spanning tree of M .

Proof. The minimum cost solution is always a hierarchy given by (H,x,G).
To prove the current lemma, it is sufficient to prove that the homomor-
phism is injective: the (partial) minimum spanning hierarchy does not re-
fer any vertex v ∈ V twice when there are no constraints. Let us suppose
that the optimal hierarchy contains a vertex v ∈ V twice (v is associated
to two different vertices of H). Let v′ and v′′ be these two occurrences of v
in the hierarchy. The sub-hierarchies of v′′ can be connected arbitrarily to
v′ or to v′′. Let these sub-hierarchies be connected to v′. So v′′ becomes a
leaf and is superfluous when spanning M because the vertex v is already
covered (cf. Figure 5). In this case, v′′ can be deleted and a new shortest
hierarchy can be obtained. This is in contradiction with the fact that the
hierarchy from (H,x,G) has minimal length. ⊓⊔

4.1 The Interest of Spanning Hierarchies

Real-life spanning problems (routing problems in networks, constrained
scheduling problems for example) do not explicitly impose a sub-graph
as solution. From the technical point of view, the solution should be con-
nected but may correspond to an arbitrary token-connected structure.

16



1

1

11

2

3

a
a

b
b

cc

d

d

e
e

f

f

f

OriginSpanning hierarchy

Fig. 6. A minimum cost spanning hierarchy

The cost minimization objective leads to the spanning hierarchies. Of-
ten, the spanning hierarchies are spanning trees, but in several cases, the
hierarchies provide unquestionable advantages.

A. In some constrained problems a spanning hierarchy satisfying the
constraints may exist even if spanning trees do not exist.

Figure 6 shows a graph in which constraints on the vertex degrees are
imposed (these upper bounds are indicated in the figure). Due to tech-
nical limits (for example on the capacity of the elements modeled by the
vertices), no vertex occurrence in the spanning structure may have a de-
gree greater than the corresponding upper bound. Trivially in this graph,
spanning trees cannot meet the degree constraints but spanning hierar-
chies can. To simplify, the cost of all edges is equal to one. The minimum
cost structure is a spanning hierarchy drawn in bold. This hierarchy uses
the central vertex f twice, but each occurrence of this vertex respects the
degree constraint.

B. In some other constrained cases, a spanning hierarchy may be more
favorable (cheaper) than the existing spanning trees satisfying the con-
straints.

To illustrate such a case, the degree bounded spanning problem can
also applied. Even when spanning trees exist (and so there is at least a
minimum cost spanning tree) satisfying the degree constraints, the min-
imum cost spanning tree is not necessarily the minimum cost spanning
hierarchy. That is, a more favorable (lower cost) spanning hierarchy may
exist. This phenomenon is illustrated in Figure 7, where the edges have
different costs and the degree bounds are equal to two. The doted lines
represent a minimum spanning tree (with length 5). The minimum span-
ning hierarchy also depicted with bold lines has a more favorable length
(it is equal to 4).
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Fig. 7. The spanning hierarchy has lower cost than the minimum cost spanning tree
respecting the constraints

As demonstrated in the previous section, spanning hierarchies can
contain graph elements several times. These spanning structures are ob-
tained by a homomorphism from a tree T to a target graph G. Real span-
ning problems can impose additional constraints on the applied mapping
function x.

4.2 Constraints on the Spanning Hierarchies

The repetition of graph elements (the number of times an element is used)
in the spanning structure itself may also be constrained.

Constraint 41 (Unique usage of the edges). This additional con-
straint on the spanning hierarchy expresses that an edge of the target
graph may belong to the spanning hierarchy at most once.

Notice that the extremities of a unique edge can belong to the hierarchy
several times. The constraint only prohibits the multiple usage of the
target graph edges in the spanning structure. For instance, this constraint
is imposed, if a label (address, wavelength, etc.) can be used at most once
in a communication link of a network.

In some real cases of directed communications, the same label ( e.g.,
a wavelength) can be used in both direction of the communication links.
Let us suppose that a directed spanning structure is required for these
communications in an undirected graph corresponding to the network
topology having bidirectional links.

Constraint 42 (Unique directed usage of the edges). Applying this
constraint, any edge of the graph may be used in a given direction at most
once.
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In some cases, the origin and also the target graph are directed. Beyond
the preservation of the direction of the arcs in the homomorphism apply-
ing between these directed graphs, an additional constraint on the number
of occurrences of an target graph arc in the spanning hierarchy can be
given as follows.

Constraint 43 (Unique usage of the arcs). in a directed target graph
this constraint implies that an arc can belong to the spanning structure at
most once.

Constraint 44 (Unique visite of the vertices). This constraint im-
plies that any vertex of the related graph can be used in the solution only
once.

Constraint 45 (k-constraints). The previously mentioned constraints
can be generalized to express that each vertex and/or edge can be used in
the spanning hierarchy at most k times.

The k-constraints may be useful to describe the spanning possibilities in
k-graphs (for example, the optical routing in k-fiber optical networks).

Property 8. Trivially, when there are no vertices that can be present twice
in the hierarchy then no edge/arc can be present twice. So Constraint 44
on the vertices is more strict than Constraints 41, 42 and 43.

The following example (cf. Figure 8) illustrates the impact of the
mentioned constraints on the optimal hierarchy. In this example a directed
spanning hierarchy with minimum cost is supposed from a source (vertex
a) to a set of destinations (vertices d and e). The degree of vertices is
limited to two in the spanning structure. In the first case (cf. Figure 8/a),
when Constraint 44 is applied neither of the vertices can participate twice
in the spanning structure: here a directed Steiner tree is the solution
of the problem. This solution (whose length is equal to 6) is indicated
by arrows. If the tree construction constraint is relaxed and a vertex
can associated several times to the spanning hierarchy, but an edge of
the graph cannot be used twice corresponding to Constraint 41, then a
minimum partial spanning hierarchy with length 5 is the optimum as
indicated on Figure 8/b. In the third case, Constraint 41 is replaced by
Constraint 42, so an edge can be used twice: once in each direction. The
optimum is another hierarchy with a length of 4 (cf. Figure 8/c).

Generally, minimum cost spanning problems have been formulated
with the assumption that the solution is a spanning tree even if con-
straints are imposed in the problem formulation. The use of spanning
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Fig. 8. Partial minimum cost directed hierarchies with different constraints

hierarchies in stead of trees can be profitable and permit a pertinent re-
formulation of these problems. In the following, we present three concrete
applications corresponding to constrained optimization problems where
spanning hierarchies are profitable.

5 Initial Results Related to Spanning Hierarchies

The first case presented here after corresponds to a special application of
the degree constrained partial spanning problem, in the second the size
of the spanning structures is limited and in the third there are several
additive end-to-end constraints to respect from a source vertex to a set
of destinations. For these constrained spanning problems, the usefulness
of the spanning hierarchies is proved by several studies.

5.1 All Optical Multicast Routing

This problem is done in all optical WDM networks where ”light-trees”2

have been proposed for multicast communication from a source to multi-
ple destinations. In this kind of networks, the light splitting capacity of
optical switches is limited (and there are splitting incapable vertices) [22].
Multicast incapable nodes correspond to vertices having a degree bound
two in the undirected graph modeling the network topology, whereas the
degree of the optical splitters is not limited. Generally, optical switches
can be traversed several times with the same wavelength if the incom-
ing and outgoing links of the different crossing are different (nevertheless

2 A light-tree is a directed partial spanning tree which can be realized using a single
wavelength in the optical network
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the wavelength should be unique in the fibers). In other worlds, there is
no constraint on the number of occurrences of a vertex in the spanning
structure but some of the constraints 41, 42, 43 must be satisfied. We
saw that the optimum does not always correspond to a tree but to a hi-
erarchy. To solve the multicast routing problem in all optical networks,
”light-hierarchies”3 have been proposed [30] [29]. The examples in Fig-
ure 9 illustrate a minimum cost light-hierarchy in a small optical network
(circles and squares indicate multicast capable and multicast incapable
nodes respectively).

2

2

5

7

a b c

d e f

source

destinations

Fig. 9. A minimum cost light hierarchy

5.2 Size Constrained Spanning Problems

In the Steiner forest problem [8], a set of connection request is given by
a set of vertex pairs R = {(s1, t1), (s2, t2), ...} in an undirected graph
G = (V,E) and the goal is to find a minimum cost structure offering a
path between the vertices si and ti for all vertex pairs. Here we suppose
a particular case of the Steiner forest problem, where a central vertex s

belongs to each element of R. That is, this central vertex (a server or
a source) must be connected with the other vertices (clients or destina-
tions). In simple cases, the minimum cost spanning structure is a unique
Steiner tree spanning the source and all destinations. Let us suppose that
the spanning capacity of any connected spanning structure is limited. For

3 A light-hierarchy is a directed partial spanning hierarchy realized by using a single
wavelength respecting the optical constraints as the un by a homomorhismiqueness
of the used wavelength in a fiber
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example the number of destination vertices in the same connected span-
ning structure is limited and the objective is to find a spanning structure
with minimum cost. It is easy to see that

1. the limitation may necessitate a partitioning of the destinations: sev-
eral independent spanning trees are needed to cover the different (gen-
erally disjoint) destination subsets

2. the spanning tree of each subset in the partition is a Steiner tree
rooted at the common source vertex s.

As Figure 10 illustrates, in this particular problem, the partitioning and
the Steiner tree computation are inseparably related, and the common
optimization is NP-hard (cf. in [20]). If the upper bound of the tree size
is small, then several trees are needed to cover the set of destinations.

The optimal solution is a set F ∗ = {Ti, i = 1, ..., k(F ∗)} of trees
Ti such that the tree Ti covers s and a subset Di of destinations and⋃k(F ∗)

i=1 Di = D. Moreover the total cost is minimal:

F ∗ : arg min
P∈P

k(P )∑

i=1

c(Ti) (7)

where P denotes the set of possible partitionings of the destination set
D and each partitioning P is composed of k(P ) non-empty subsets. The
set of Steiner trees in the optimal solution forms a hierarchy as it is
demonstrated by the following lemma.

Lemma 2. A set of trees rooted at the same vertex (or having a shared
common vertex) always corresponds to a hierarchy.
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Proof. Let F = {Ti, i = 1, ..., k} a set of trees in G = (V,E) having
a common vertex s. This set can be obtained from a tree H using a
homomorphic mapping x as follows. An origin corresponding to a tree H

can be created as follows. H is initialized by s and each tree Ti, i = 1, ..., k
is added as an independent sub-tree to s. Each vertex of the obtained
tree H is associated with one vertex of G and the mapping preserves the
adjacency of vertices since the different Ti are trees in G. ⊓⊔

So, this optimization problem corresponds to a particular minimum
spanning hierarchy problem. Notice that the sets of trees rooted in the
same vertex are often called forests, but the hierarchy denomination fol-
lowing our definition is more precise.

5.3 Multiple Constrained Multicast Routing

The last example to illustrate the benefice of the hierarchies corresponds
to the multi-constrained minimum cost multicast routing briefly presented
in Section 3 as Problem 3.

It is stated in [15] that the solution of this routing problem is not
always a tree. By comparing the original problem formulation (where
a sub graph containing feasible paths is required) to the here proposed
structure, the limitation of the MCMWM problem is due to the fact
that the original formulation is based on the image GM of the spanning
structure and not on the structure itself. In a recent work, we proved that
the cost/length optimal solution is a directed hierarchy [21]. Trivially, in
the optimal spanning solution a vertex can be traversed and an edge can
be used several times in both directions. A simple example of such a
hierarchy is shown in Figure 11. In this example, the source is the vertex
a and the destinations are the vertices f , g and h. A two-dimensional
weight vector is assigned to each edge as depicted in the figure. Let 13
be the tolerated upper bound of each metric on the required paths. With
the given values there is only one feasible directed path from the source
to each destination. These feasible paths are also indicated in the figure.
The unique feasible hierarchy and thus the minimum directed spanning
hierarchy uses the edge (d, e) twice and traverses it in both directions.

The identification of the solution as a spanning hierarchy facilitates
future research on the computation of good directed multicast routes.

6 Conclusions and Perspectives

In this paper, the generalization of the spanning tree concept in graphs
was proposed. Trees do not permit the repetition of graph elements but
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Fig. 11. Several paths can use the same edge

hierarchies obtained from trees by homomorphism permit. In the pro-
posed more generic hierarchies, graph vertices or edges can be concerned
several times. If there are constraints in a spanning problem, the question
of finding minimum spanning structures satisfying the constraints often
requires the determination of the minimum cost spanning hierarchy.

To illustrate the benefit of hierarchies, we discussed some special ap-
plications. In degree bounded spanning problems, we demonstrated that
spanning hierarchies exist largely when spanning trees do not provide a
solution and in some cases hierarchies provide better solutions even when
spanning trees exist. When a size constraint is imposed on the spanning
structures and a set of destinations should be connected to a source node,
the optimal solution corresponds to a minimum cost hierarchy which can
be decomposed into a set of trees rooted in the (central) source node. Our
last example presented the case, where multiple QoS related constraints
are given between a source vertex and some destinations. We mentioned
that the optimal spanning structure solving this problem is also a hierar-
chy.

The analysis of minimum cost spanning problems under constraints
promises further interesting challenges. Generally, these constrained span-
ning problems are NP-hard, and the solutions are spanning hierarchies.
By reformulating the constrained spanning problems and proposing hier-
archies instead of trees new conditions are obtained to resolve them. In fu-
ture works, the different spanning hierarchy problems should be precisely
analyzed from the point of view of their complexity, approximability, etc.
In some cases and for real applications, the computation of optimal hi-
erarchies is expensive and cannot be tolerated. Important research work
should investigate the fast computation of advantageous spanning hier-
archies for constrained spanning problems and related applications.
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