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CHAPTER 1

EXACT SEARCH ALGORITHMS FOR

BIOLOGICAL SEQUENCES

Eric Rivals, Leena Salmela, and Jorma Tarhio

1.1 INTRODUCTION

With the development of sequencing techniques, it has become easy to ob-
tain the sequence, i.e. the linear arrangement of residues (nucleotides or
amino-acids), of DNA, RNA, or protein molecules. However, determining the
function of a molecule remains difficult and is often bound to find a sequence
similarity to another molecule whose role in the cell is at least partially known.
Then, the biologist can predict that both molecules share the same function
and try to check this experimentally. Functional annotations are transferred
from one sequence to the other provided that their similarity is high enough.
This procedure is also applied to molecules subparts, whose sequences are
shorter: protein domains, DNA/RNA motifs, etc.

Depending on the sequence lengths and expected level of evolutionary re-
latedness, the sequence similarity can be found using alignment or pattern
matching procedures. A quest in bioinformatics has been to design more sen-
sitive sequence similarity searching methods to push further the limit or gray
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2 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

zone at which evolutionary sequence similarity cannot be departed from ran-
dom sequence similarity [4, 21]. These methods (e.g. profile Hidden Markov
Models) have provided, at the expense of computing time, important improve-
ments in functional annotations. However, it has soon become clear that in
other frameworks only high level similarity was sought, and speed rather than
sensitivity was the major issue. Hence, researchers have designed a continuum
of methods that can be classified according to level of allowed dissimilarity:

1. full sensitivity alignment (Smith & Waterman algorithm [58]),

2. fast similarity search programs (e.g. BLAST [4]),

3. approximate pattern matching (e.g. Bowtie [36]),

4. near-exact and exact pattern matching (e.g. mpscan [54]).

For some of everyday sequence manipulation tasks, the user needs exact
pattern matching programs (as available in large bioinformatic program suites
like EMBOSS): to find back from which chromosome or where in a genome
does a given sequence comes from; to find short nucleotidic motifs, like re-
striction or cleavage sites, in long DNA sequences; to verify whether a distin-

guishing sequence motif really departs negative from positive instances (longer
sequences). The latter happens when designing oligonucleotides for gene ex-
pression arrays or multiple primers for multiplex polymerase chain reactions
[51]. Even for exploring protein sequences, a server has been launched that
offers an exact search for short polymers in all sequences of protein data-banks
[9]. In such frameworks, the need is single pattern search or multiple pattern
search for a few hundreds patterns, which can easily be solved by repetitively
applying a single pattern matching program. Algorithmic solutions for these
tasks will be described in Section 1.2. However, pattern matching algorithms
fail to become popular among biologists for several reasons:

• most of them lack implementations capable of handling biological se-
quence formats (which then requires to change the format),

• they lack a graphical interface or were not integrated in popular graph-
ical sequence exploration package like the GCG (Genetics Computer
Group) package,

• as BLAST [4] was used for similarity searching on a daily basis, it has
become the all-purpose tool for most sequence processing tasks, even
when more adapted solutions were available [15].

Since 2005, biology experiences the revolution of high-throughput sequenc-

ing (HTS) due to the renewal of sequencing techniques (new technologies are
often termed Next Generation Sequencing) [43]. Due to the invention of par-
allel sequencing of multiple molecules on a single machine, the sequencing
output per run has grown by orders of magnitude compared to the traditional
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Sanger technique, and is expected to increase further [20]. This change has
not only technological consequences. Experiments previously done by hybridi-
sation are now preferentially performed by sequencing [10], since these tech-
niques offer a much deeper sampling and allows to cover the whole genome.
Hence, HTS is now exploited to address surprisingly diverse biological ques-
tions: genome sequencing or resequencing [43, 5], transcriptomics [59, 50],
genomic variation identification or genome breakpoint mapping [14], metage-
nomics [24], and epigenomics [12]. To grasp how drastic the shift is, consider
that one epigenomic census assays published in 2007 produced in one exper-
iment an already amazing 1.5 millions short read sequences of 27 base pairs
(bp)1 each [27], while another published only one year later delivered with the
same technology 15 millions 20 bp reads [12].

In all such applications, the first bioinformatic task is to map the short
reads on a reference genome sequence or on a large collection of DNA se-
quences. The goal of mapping in transcriptomics, epigenomics and other ap-
plications is to point out chromosomic positions either transcribed [59], bound
to a protein [27], or whose three dimensional conformation is altered by a pro-
tein [12]. Hence, further analysis only consider those reads that mapped to
a unique genomic positions. In other frameworks, all mapped reads inclusive
those mapped at multiple positions provide important information to detect,
e.g. new copies of repeats in the sampled genome. The number of (uniquely
and/or multi-) mapped reads depends on the read length, on the expected
probability for a read to map on the genome, on the level of sequence errors
in the reads, as well as on the genetic differences between the cell from which
the reads were sequenced and that which provided the reference genome se-
quence. Two approaches are possible: to map exactly or approximately (up
to a limited differences number between the read and the genome sequences)
reads on the genome sequence. The choice between the two is not obvious
since it has been shown for instance that exact mapping with a shorter read
length can yield the same number of uniquely mapped reads than approxi-
mate matching up to two mismatches [54], and since all approximate mapping
tools are not based on the same algorithm [26, 57, 39, 40, 36]. If approximate
mapping is used, another question is then how to distinguish a difference due
to a genetic variation or to sequence error in a match?

More practically, whether or not sequence quality information is provided
aside the reads themselves, often the complete read sequence cannot be ex-
ploited because of low quality positions. Hence, either preprocessing with
various parameters is applied to eliminate some positions or multiple map-
ping with different parameters are tested to optimize the mapping output. In
any case, the number of reads to map is so large that mapping efficiency and
scalability, both in terms of time and to a less extent of memory, becomes
a major issue. In Section 1.4, we will discuss on the comparison of exact

1A base pair is the length unit of a DNA/RNA sequence.



4 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

versus approximate mapping approaches on these issues. Before that, Sec-
tion 1.2 presents efficient solutions for the single pattern matching problem,
while Section 1.3 details fast algorithms for multiple or set pattern matching.

1.2 SINGLE PATTERN MATCHING ALGORITHMS

We consider exact string matching for locating the occurrences of single nu-
cleotide or amino acid sequence patterns in long biological sequences. We
assume that the sequences are in the raw format.

1.2.1 Algorithms for DNA Sequences

Most of the efficient string matching algorithms in the DNA alphabet are
modifications of the Boyer–Moore algorithm [11], which applies two heuris-
tics: match and occurrence. Most often only the occurrence heuristic (also
called the bad character heuristic) is applied for shifting. The Boyer–Moore–
Horspool algorithm [22] (BMH) is the most famous implementation of this
simplification. Because the DNA alphabet contains only four symbols, shifts
based on one character are short on average. Therefore, it is advantageous
to apply q-mers (or q-grams), strings of q characters, for shifting instead of
single characters. This technique was already mentioned in the original paper
of Boyer and Moore [11, p. 772], and Knuth [34, p. 341] analyzed theoretically
its gain. Zhu and Takaoka [65] presented the first algorithm utilizing the idea.
Their algorithm uses two characters for indexing a two dimensional array.

Baeza-Yates [6] introduced an extension of the BMH algorithm, where the
shift array is indexed with an integer formed from a q-mer with shift and
add instructions. For this kind of approach the practical upper limit with 8
bit characters is two characters.

For the DNA alphabet Kim and Shawe-Taylor [32] introduced a convenient
alphabet compression by masking the three lowest bits of ASCII characters.
In addition to the a, c, g, and t one gets distinguishable codes also for n and
u. Even the important control code \n=LF has a distinct value, but \r=CR
gets the same code as u. With this method they were able to use q-mers of
up to six characters. Indexing of the shift array is similar to Baeza-Yates’
algorithm.

With the DNA alphabet the probability of an arbitrary short q-mer ap-
pearing in a long pattern is high. This restricts the average shift length. Kim
and Shawe-Taylor [32] introduced a variation for the cases where the q-mer
in the text occurs in the pattern. Then two additional characters are checked
one by one to achieve a longer shift.

In most cases the q-mer that is taken from the text does not match with
the last q-mer of the pattern, and the pattern can be shifted forward. For
efficiency one can use a skip loop [23], where the pattern is moved forward until
the last q-mer of the pattern matches with a q-mer in the text. The easiest
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way to implement this idea is to place a copy of the pattern as a stopper after
the text and artificially define the shift of the last q-mer of the pattern to be
zero. After a skip loop the pattern is compared with the corresponding text
positions.

A crucial thing for the efficiency of a q-mer algorithm is how q-mers are
computed. Tarhio and Peltola [61] presented a q-mer variation of BMH that
applies a skip loop. The algorithm computes an integer called fingerprint from
a q-mer. The ASCII codes are mapped to the range of 4: 0 ≤ r[x] ≤ 3, where
r[x] is the new code of x, such that characters a, c, g, and t get different codes
and other possible characters get e.g. code 0. In this way the computation is
limited to the effective alphabet of four characters. The fingerprint is simply
a reversed number of base 4. A separate transformation table hi is used
for each position i of a q-mer and multiplications are incorporated during
preprocessing into the tables: hi[x] = r[x] · 4i. For q = 4, the fingerprint of

x0· · ·x3 is
∑3

i=0
r[xi]· 4

i, which is then computed as

h0[x0] + h1[x1] + h2[x2] + h3[x3].

Recently Lecroq [37] presented a related algorithm. Its implementation is
based on the Wu–Manber algorithm [63] for multiple string matching, but
as suggested above, the idea is older [11, 65]. For q = 4, the fingerprint of
x0· · ·x3 is

((((((x0 << 1) + x1) << 1) + x2) << 1) + x3) mod 255.

SSABS [56] and TVSBS [62] were developed with biological sequences in
mind. SSABS is a Boyer–Moore type algorithm. In the search phase the
algorithm verifies that the first and last characters of the pattern match with
the current alignment before checking the rest of the alignment (a.k.a. guard
tests). TVSBS uses a 2-mer for calculating the shift, adopted from the Berry–
Ravindran algorithm [8], which is a cross of the Zhu–Takaoka algorithm and
Sunday’s QS algorithm [60]. Instead of the two-dimensional shift table of
Berry–Ravindran, TVSBS uses a hash function to compute an index to a one-
dimensional table. According to Kalsi et al. [28], SSABS and TVSBS are not
competitive with q-mer algorithms in the DNA alphabet.

We present one fast q-mer algorithm for DNA sequences in detail. It is
SBNDM4 [19], which is a tuned version of BNDM (Backward Nondeterminis-
tic DAWG Matching) by Navarro and Raffinot [45]. BNDM is a kind of cross
of the Backward DAWG Matching algorithm (BDM) [16] and Shift-Or [7] al-
gorithms. The idea of BNDM is similar as in BDM, while instead of building
a deterministic automaton, a nondeterministic automaton is simulated even
without constructing it. The resulting code applies bit-parallelism and it is
efficient and compact. We present a C code for SBNDM4 as Alg. 1.1.

Algorithm 1.1
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01 for (i = 0; i < 256; i++) B[i] = 0;

02 for (i = 0; i < m; i++) B[P[m-i]] |= (1<<i);

03 for (i = 0; i < m; i++) T[n+i] = P[i];

04 while (1) {

05 while (!(d=(B[T[j]]<<3)&(B[T[j-1]]<<2)&(B[T[j-2]]<<1)&B[T[j-3]]))

06 j += m-3;

07 pos = j;

08 while (d=(d<<1)&B[T[j-4]]) j--;

09 j += m-4;

10 if (j == pos) {

11 if (j >= n) return (nmatch);

12 nmatch++;

13 j++;

14 }

15 }

There P[0],...,P[m-1] is the pattern and T[0],...,T[n-1] the text.
The code contains a skip loop so that a copy of the pattern is placed to
T[n],...,T[n+m-1]. This version prints only the number of matches. The
matches can be reported by changing line 12.

SBNDM4 is very fast in practice. One x86 processors one can still boost
its performance by using 16-bit reading [19]. In searching DNA patterns of 20
characters, SBNDM4 with 16-bit reading is more than eight times faster than
the classical Boyer–Moore algorithm [19] (see also comparisons [28, 37, 61]).

SBNDM4 works for DNA patterns of up to 32 or 64 characters depending
on the word size of the processor. In practice longer exact patterns are seldom
interesting, but e.g. Lecroq’s algorithm is good for them.

SBNDM4, like other variations of BNDM, works also for more general string
matching where positions in the pattern or in the text represent character
classes [46] instead of single characters. So e.g. the standard IUB/IUPAC
nucleic acid codes can be used with SBNDM4.

There are also algorithms [52, 33] for packed DNA. We decided to leave
them outside this presentation.

1.2.2 Algorithms for Amino Acids

In general, there is not much difference in searching amino acid and natural
language patterns. So any good search algorithm for natural language is also
applicable to amino acids. In searching short patterns [19], the 2-mer variation
of SBNMD4 is among the best. SBNDM2 is got from SBNDM4 as follows:
replace line 5 by

while (!(d=(B[T[j]]<<1)&B[T[j-1]]))

and m − 3 by m − 1, j − 4 by j − 2, and m − 4 by m − 2 on lines 6–9.
As in the case of SBNDM4 one can still boost the performance of SBNDM2

by using 16-bit reading [19]. In searching patterns of 5 characters, SBNDM2
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Figure 1.1: An example trie storing the strings {acc, accgt, attg, ccat, cgtt}

with 16-bit reading is more than two times faster than the classical Boyer–
Moore algorithm.

1.3 ALGORITHMS FOR MULTIPLE PATTERNS

In this section, we consider exact searching of multiple patterns. More pre-
cisely, we are given a text and r patterns and we need to find all occurrences
of all the patterns in the text.

1.3.1 Trie-Based Algorithms

Many algorithms for exact searching of multiple patterns are based on a data
structure called trie for storing the patterns. A trie is a tree where each edge
is labeled with a character. Each node of the trie is associated with a string
that is formed by concatenating all the labels of the edges on the path from
the root to the node. Given a node in the trie, all edges to the children of
this node have a different label. Figure 1.1 shows the trie storing the strings
{acc, accgt, attg, ccat, cgtt}.

1.3.1.1 Aho-Corasick The Aho-Corasick algorithm [2] builds as preprocess-
ing an automaton that recognizes the occurrences of all patterns. The prepro-
cessing starts by building the trie of the pattern set. We add an edge from the
root to the root for all those characters that do not yet have an outgoing edge
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Figure 1.2: An example of the Aho-Corasick automaton for the patterns {acc,
accg, att, cca, cgt}. The dashed lines show the failure links. Failure links to
the starting state of the automaton have been omitted.

from the root. The trie is then augmented with failure links as follows. The
failure link of a node N in the trie points to a node that is associated with the
longest possible suffix of the string associated with the node N excluding the
node N itself. Additionally we associate an output function with each node
whose associated string is one of the patterns. The output function outputs
the identifier of the pattern. Figure 1.2 shows an example of an Aho-Corasick
automaton for the patterns {acc, accg, att, cca, cgt}.

The automaton is used for searching the text as follows. We start at the
root node of the trie. We read the text character by character and for each
character we perform the following actions. While there is no child node with
an edge labeled with the read character, we follow the failure link. Then we
descend to the child with an edge labeled with the read character. Finally we
output the identifiers returned by the output function for the child node.

1.3.1.2 Set Backward Oracle Matching The Set Backward Oracle Matching
(SBOM) algorithm [3] builds an automaton that recognizes at least all factors
of the reversed patterns. The automaton is built as follows. First we build a
trie of the reversed patterns. Then we traverse the trie in breath-first order
and add some more edges between the nodes turning the trie into a directed
acyclic graph (DAG) that recognizes all factors of the reversed patterns. To
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sbom preprocess (P1, . . . , Pr)

1. build trie(P r
1 , . . . , P r

r )
2. set supply link of root to NULL
3. for each node N in the trie in breath first order
4. down = supply link of parent
5. c = the edge label from parent to N
6. while (down 6= NULL and down does not have a child with edge label c)
7. add an edge from down to N with label c
8. down = supply link of down
9. if (down 6= NULL)
10. set supply link of N to the child of down with edge label c
11. else
12. set supply link of N to root

Figure 1.3: Preprocessing of SBOM

a

g

a

g

a

c

a

a

Figure 1.4: An example of the SBOM automaton. The dashed lines show the
supply links.

assist us in adding these new edges we associate a supply link with each node.
For each node we then perform the pseudo-code on lines 4 to 12 shown in
Figure 1.3. Figure 1.4 shows an example of the SBOM automaton built for
patterns {aag, gac} As we can see the automaton recognizes also some other
strings, like caa, than the factors of the patterns.

This automaton is then used for searching the occurrences of the patterns
as follows. Initially we set the endpoint to the length of the shortest pattern.
We then read the characters of the text backward starting at the endpoint
character. For each character we make the corresponding state transition in



10 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

the automaton. Whenever we encounter a node associated with one of the
patterns, we verify the read region character by character against the pattern.
If we encounter a character that does not have a transition on that character,
we can shift the endpoint forward and start the backward scan again at the
new endpoint. The length of the shift is m − j, where m is the length of the
shortest pattern and j is the number of characters that we have read, or the
length of the shortest pattern, whichever is shorter.

1.3.2 Filtering Algorithms

Filtration aims at eliminating most positions that cannot match any pattern
with an easy criterion. Then, verification checks whether the remaining posi-
tions truly match a pattern. Thus filtering algorithms operate in three phases.
The patterns are first preprocessed, in the second phase we search the text
with a filtering method, and the candidate matches produced by the filtering
are verified in the third phase.

Here we describe several algorithms that use a generalized pattern of char-
acter classes for filtration [55]. Let us explain the filtration scheme with
an example. Assume a set of 3 patterns of length m = 8: {P1, P2, P3} =
{accttggc, gtcttggc, accttcca}, and set q to 5. The overlapping 5-mers (or 5-
grams) of each pattern are given in Figure 1.5. For a text window W of
length 8 to match P1, the substring of length q starting at position i in W
must match the ith q-mer of P1 for all possible i, and conversely. Now, we
want to filter out windows that do not match any pattern. If the substring
starting at position i in W does not match the ith q-mer of neither P1, P2,
nor P3, then we are sure W cannot match any of the patterns. Thus, our
filtration criterion to surely eliminate any non-matching window W is to find
if there exists a position i such that the previous condition is true.

Given a set of patterns, the filtering algorithms build a single q-mer gen-
eralized pattern (Fig. 1.5c). A generalised pattern allows several symbols to
match at a position (like a position [DENQ] in a PROSITE pattern, which
matches the symbols D, E, N, and Q). However, here each q-mer is processed
as a single symbol. Then, a string matching algorithm that can handle classes
of characters is used for searching for occurrences of the generalized pattern
in the text.

Various different algorithms can be used for implementing the filtering
phase. Below we describe in more detail algorithms where filtering is based
on the shift-or, BNDM, and Boyer-Moore-Horspool algorithms. A filtering al-
gorithm always requires an exact algorithm to verify the candidate matches.
In principle, any of the presented exact algorithms could be used for this
purpose.

1.3.2.1 Multi-Pattern Shift-Or with q-Grams The shift-or algorithm is easily
extended to handle classes of characters in the pattern [1, 7], and thus develop-
ing a filtering algorithm for multiple pattern matching is straightforward. The
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{P1, P2, P3} = {accttggc, gtcttggc, accttcca}

(a)

1 2 3 4 5 6 7 8
P1 a c c t t g g c

a c c t t
c c t t g

c t t g g
t t g g c

1 2 3 4 5 6 7 8
P2 g t c t t g g c

g t c t t
t c t t g

c t t g g
t t g g c

1 2 3 4 5 6 7 8
P3 a c c t t c c a

a c c t t
c c t t c

c t t c c
t t c c a

(b)

[acctt, gtctt][ccttg, tcttg, ccttc][cttgg, cttcc][ttggc, ttcca]

(c)

Figure 1.5: (a) A set of 3 patterns of length m = 8. (b) The overlapping
5-mers starting at position 1 to 4 (resp. in magenta, orange, red, blue) of
each pattern. (c) The generalised 5-mer pattern for the set of tags.

preprocessing phase now initializes the bit vectors for each q-mer as follows.
The i:th bit is set to 0 if the given q-mer is included in the character class in
the i:th position. Otherwise the bit is set to 1. The filtering phase proceeds
then exactly like the matching phase of the shift-or algorithm. Given this
scheme, it is clear that all actual occurrences of the patterns in the text are
candidates. However, there are also false positives as the generalized pattern
matches also other strings than the original patterns.

1.3.2.2 Multi-Pattern BNDM with q-Grams The second filtering algorithm is
based on the BNDM algorithm by Navarro and Raffinot [45]. This algorithm
has been extended to classes of characters in the same way as the shift-or al-
gorithm. We call the resulting multiple pattern filtering algorithm BG (short
for BNDM with q-Grams). The bit vectors of the BNDM algorithm are ini-
tialized in the preprocessing phase so that the i:th bit is 1 if the corresponding
q-mer is included in the character class of the reversed generalized pattern in
position i. In the filtering phase, the matching is then done with these bit
vectors. As with SOG, all match candidates reported by this algorithm must
be verified.

1.3.2.3 Multi-Pattern Horspool with q-Grams The last of our algorithms uses
a Boyer-Moore-Horspool [22] type method for matching the generalized pat-
tern against the text. Strictly speaking, this algorithm does not handle char-
acter classes properly. It will return all those positions where the generalized
pattern matches and also some others. This algorithm is called HG (short for
Horspool with q-Grams).
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5-mer tables:
1. 2. 3. 4.
accct accct accct accct

ccctt ccctt ccctt
cctta cctta

cttaa

(a)

hg matcher (T = t1 . . . tn, n)

1. i = 1
2. while(i ≤ n − m + 1)
3. j = m − q + 1
4. while (1)
5. if (not qMerTable[j][ti+j−1...i+j+q−2])
6. i = i + j
7. break
8. else if (j = 1)
9. verify match (i)
10. i = i + 1
11. break
12. else
13. j = j − 1

(b)

Figure 1.6: The HG algorithm: (a) the data structures for the pattern “acc-
cttaa” and (b) the pseudo code for the search phase.

The preprocessing phase of HG constructs a bit table for each of the m−q+1
positions where a q-mer starts in the pattern. The first table keeps track of
q-mers contained in the character class of the first position of the generalized
pattern, the second table keeps track of q-mers contained in the character
classes of the first and the second position in the generalized pattern, and so
on. Finally, the m − q + 1:st table keeps track of characters contained in any
of the character classes of the generalized pattern. Figure 1.6a shows the four
tables corresponding to the pattern ‘acccttaa’ when using 5-mers.

These tables can then be used in the filtering phase as follows. First, the
m−q+1st q-mer is compared with the m−q+1st table. If the q-mer does not
appear in this table, the q-mer cannot be contained in the character classes
of positions 1 . . .m− q + 1 in the generalized pattern, and a shift of m− q + 1
characters can be made. If the character is found in this table, the m − q:th
character is compared to the m − q:th table. A shift of m − q characters can
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be made if the character does not appear in this table and therefore not in
any character class in the generalized pattern in positions 1, . . . , m − q. This
process is continued until the algorithm has advanced to the first table and
found a match candidate there. The pseudo code is shown in Figure 1.6b.
Given this procedure, it is clear that all positions matching the generalized
pattern are found. However, also other strings will be reported as matches.

1.3.3 Other Algorithms

Other algorithms for searching multiple patterns include the Commentz-Walter
algorithm [17] with its variations, the Wu-Manber algorithm [63], and algo-
rithms derived from the Rabin-Karp algorithm [29] for a single pattern.

1.4 APPLICATION OF EXACT SET PATTERN MATCHING FOR
READ MAPPING AND COMPARISON WITH MAPPING TOOLS

Here, we concentrate on the question of set pattern matching and on its main
current application: read mapping on genomic sequences. In most frame-
works, millions of reads that originate from a genome have been sequenced
using HTS. A read serves as a signature for a molecule or a chromosomic
position. The goal of mapping is to find back for each different read the
chromosomic position of origin in the reference genome. As a read may be
sequenced several time according to its number of occurrence in the biological
sample, the number of different reads may be much lower than the number of
read sequences. For example, in a transcriptomic assay were 2 million reads
were sequenced, the read set contains ≃ 440.000 elements [50]. As a read
sequence can differ from the original chromosomic sequence because of poly-
morphisms or sequence errors, read mapping is often performed using approx-
imate pattern matching, which allows for a few mismatches and or indels. For
approximate mapping, either near-exact sequence similarity search programs
((BLAT [30], MegaBlast [64], or SSAHA [48]) or mapping tools (Eland,
tagger [25], rmap [57], seqmap [26], SOAP [39], MAQ [38], Bowtie [36],
and ZOOM [40]) are used. An alternative option when dealing with short
reads is to resort to exact set pattern matching, for which mpscan offers an
efficient solution [54, 50].

Due the number of reads to match, repeated application of a single pattern
matching algorithm for each read would require an unaffordable computing
time. Hence, practically efficient solutions involve

1. either indexing the reads in main memory and scanning the genome only
once (or a few times) for all reads (the solution chosen in MegaBlast [64],
seqmap [26], or mpscan [54])

2. or first preprocessing the genome to build an index and then loading
the index in memory before searching each read one after the other (the
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approach followed in SSAHA [48], BLAT [30], and in mapping tools like
Eland, tagger [25], rmap [57], SOAP [39], MAQ [38], Bowtie [36]).

1.4.1 mpscan: an efficient exact set pattern matching tool for

DNA/RNA sequences

The program mpscan [54, 50] is an implementation of the exact Multi-Pattern
BNDM with q-Grams algorithm (cf. Section 1.3.2.2, also called BG algorithm
in [55]). It is specialised for searching large sets of relatively short DNA/RNA
patterns in large DNA/RNA sequence files, and its interface is adequate for the
purpose of mapping reads: it handles file formats commonly used in biology,
can search for the reverse complementary of the pattern, etc.

Its correctness, which ensures it to yield for each read all text positions
at which that read matches the text, derives from that of the Multi-Pattern
BNDM with q-Grams algorithm [55]. The filtration efficiency depends on
the parameter q. We have shown recently that the average time complexity
of mpscan for searching r patterns of size l in a text of length n over an
alphabet of size c is

O(n logc(rl)/l) provided that q = Θ(logc(rl)).

As it was proved that the minimum time required is Ω(n logc(rl)/l) [44], this
makes mpscan asymptotically optimal in average.

For example on an Intel Xeon CPU 5140 processor at 2.33 GHz with 8
GB main memory, when searching 4 million 27 bp reads on the 247 Mbp of
human chromosome 1, mpscan sets the parameter q to 13, uses 229 megabytes
memory, and takes 78 seconds.

1.4.2 Other solutions for mapping reads

With HTS becoming more popular and the increase of their sequencing ca-
pacity, the question of mapping reads on a genome sequence is a crucial issue,
as well as a bottleneck.

At the HTS advent, an available solution was to use ultrafast similarity
search BLAST-like programs, which were not designed for this purpose, but
for locally aligning sequences that differ little (for instance, only because of se-
quencing errors). There were typically intended to align Expressed Sequence
Tags on the human genome. These programs are not adapted to short reads
(below 60 bp), and because of internal limitation cannot handle millions of
queries. Hence, both their sensitivity and scalability are insufficient for map-
ping application with short reads [54]. However, some user still resort to
these tools for they allow, unlike mapping tools, an unrestricted number of
differences between the read and the genome [31]. All these tools implement
a filtration strategy that requires a substring of the query sequence to match
the genome either exactly [48, 64] or with at most one mismatch [30].
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Since the commercialisation of HTS, numbers of commercial or free map-
ping tools have been developped or published (cf. list above); for instance the
Eland software is provided with the Illumina R©Solexa sequencer. As men-
tioned the goal of mapping differs with the application but it is often to find
the best match for a read: the match with the least differences, and if pos-
sible unique. All mapping programs perform successive approximate pattern
matching up to a limited number of differences. Some tools can find matches
with up to 4 mismatches and/or indels, but generally a guarantee to find
all matches (as required in the definition of approximate matching) is given
only up to one or two mismatches. This limitation makes sense to speed up
the search and derives from the applied filtration scheme. All tools (except
ZOOM) use variant of the so-called PEX filter [46], which consists in splitting
the read in k + 1 adjacent pieces, knowing that at least one piece will match
exactly when a maximum of k errors are allowed. Many mapping programs
makes it efficient by using 2-bit encoded sequences and/or an index of the
genome (e.g., MAQ, Eland, Bowtie, rmap, SOAP).

The program ZOOM exploits spaced seeds : it requires that a subsequence
of a defined form, instead of a substring, matches between the read and the
genome [13, 41]. The subsequence’s pattern of required matching positions
and wild-cards is designed on purpose depending on the expected match length
and maximal number of differences [35]. The advantage of spaced seeds is
their capacity to handle mismatches and insertion/deletions (indels), and their
increase sensitivity compared to substring based filtration [13, 41]. Their
main drawback is the difficulty of seed design: ZOOM uses a conjunction
of several seeds. Hence, sets of spaced seeds are specifically designed for a
certain read/match length and a maximum number of allowed differences,
and different sets corresponding to different parameter combinations are hard
coded in ZOOM. All known formulations of the seed design problem are at
least NP-hard, even for a single seed [35, 42, 47].

1.4.3 Comparison of mapping solutions

As already mentioned, many groups have developed and/or published their
own mapping tools, and all tools, except mpscan, implement a solution based
on approximate pattern matching. However to date, one lacks a comparative
evaluation of the sensibility of all these tools in various application frame-
works. The intended application makes a difference since for e.g., identifying
genomic variations, multiple matching locations of a read provides useful in-
formation, while in transcriptomics one usually discards multi-mapped reads.
Probing the sensitivity and evaluating the sensitivity vs speed or memory
balance is a difficult task knowing that the programs differ in their notion of
approximation (e.g., with or without indels).

Here, we discuss the conclusions of a comparison on the less difficult task
of exact set pattern matching. We exclude the program Eland for it is not
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free for academics, as well as MAQ, which does not accept parameters for
searching only exact read matches.

1.4.3.1 Speed, memory footprint, and scalability We compared rmap, se-

qmap, SOAP (v1 & v2), ZOOM, Bowtie and mpscan for searching in-
creasing read sets on the longest human chromosome (chromosome 1, 247
Mbp). The public input data sets contains 6.5 million of 27 bp reads and we
took subsets every million reads (available on the GEO database under acces-
sion number GSM325934). At the date of this comparison, this set belongs to
the largest ones in terms of number of different reads, and there is no available
data set of similar size with much larger reads (say > 36).

Figure 1.7 reports the running times in seconds on a logarithmic scale for
searching the subsets of 1, 2, . . . up to 6 and 6.5 million reads. Of course the
times do not include the index construction time for those programs that use
an index, which in the case of, e.g. Bowtie, lasts hours for the complete
human genome.

Figure 1.7: Comparison of mapping tools: Search times of rmap, seqmap,
SOAP (v1 & v2), ZOOM, Bowtie and mpscan in seconds (log scale) for
increasing subsets of 27 bp reads. All tools behave similarly and offer ac-
ceptable scalability. mpscan remains the most efficient of all, and can be 10
times faster than tools like seqmap or rmap. Times do not include the index
construction time.

First, all tools can handle very large read sets and their running times
remain impressive even if they degrade somehow with increasing read sets.
Second, the comparison of ZOOM or mpscan compared to genome indexing
tools like Bowtie or SOAP shows that high performances are not bound to
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a genome index, at least for exact pattern matching. Knowing that ZOOM

algorithm also handles approximate matches with up to two mismatches or
indels, it seems that it offers a very satisfying solution compared to Bowtie,
which is limited to mismatches and offers less guarantee. For exact pattern
matching, the performance differences can be quite large (times 10 between
mpscan and SOAP-v2 for two million reads), and mpscan offers the fastest
solution overall, even if it exploits only a 32-bit architecture. However, mp-

scan time increases more when going from 4 to 5 million reads, suggesting
that for equal read length, a coarse grain parallelization would improve its
performances.

To illustrate the low memory footprint of mapping tools that do not load
a genome index in RAM, we give the amount of RAM required by ZOOM,
seqmap, and mpscan for searching the complete human genome with one
million 27 bp tags. ZOOM requires 17 minutes and 0.9 Gigabytes, rmap

takes 30 min and 0.6 Gb, seqmap performs the task in 14 min with 9 Gb,
while mpscan needs < 5 min using 0.3 Gb. In contrast, Bowtie human
genome index, which is implemented as a Burrows-Wheeler Transform, takes
at least 1.4 Gb [36].

1.4.3.2 Exact pattern matching for read mapping The read length influences
the probability of a read to map on the genome, and also its probability to
map once. The shorter the read the higher the probability of mapping, but the
lower that of mapping once. In many applications, reads mapping at unique
genomic positions are preferred. A rationale for the currently developped
extension of read length is the increase probability to map a unique genomic
location. On the human genome, a length of 19 bp already brings the risk
of mapping at random below 1% and we have shown recently that it already
maximise the number of uniquely mapped reads on four real data sets [50].
Studying the sequence error position in the reads, we could show that the error
probability at one sequence position increases with the position in the read
for Illumina R©/Solexa data. Hence, an alternative to approximate mapping is
to perform exact matching using only a prefix of each read (of an adequate
length).

To evaluate this we compared the result of approximate matching with
full length reads with that of mpscan on read prefixes. Eland searches
the best read match up to two mismatches, while we ran mpscan to search
for exact matches of read prefixes. The full length read are 34 bp. If one
maps with mpscan the full length reads, 86% remain unmapped and 11%
are uniquely mapped. With at most two mismatches, Eland finds 14% of
additional uniquely mapped reads with one or two mismatches, while mapping
the 20 bp prefix of each read with mpscan allows to map 25% of all reads
at unique positions (14% more sites than with full length reads). Hence,
both approaches yield similar output, but exact matches represent easier and
more secure information than approximate matches. For the current rates
of sequencing errors and read lengths, exact matching is a suitable solution
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for read mapping. Moreover, it allows us to estimate computationally the
sequence error rate without performing control experiments (cf. [50] for a
more in-depth presentation), which would be more difficult using approximate
matching.

1.4.4 Conclusions

About pattern matching, q-gram based algorithms and especially mpscan

represent the most efficient theoretical and practical solutions to exact set
pattern matching for huge pattern sets (above a million patterns). Compared
to known solutions surveyed seven years ago in [46], which were reported to
handle several hundred thousands patterns, mpscan provides more than an
order of magnitude improvement: it allows to process at astonishing speed
pattern sets of several millions reads. The second take home message is that
its filtration scheme can compete with approaches that use a text index.

Since 2005, the capacity of HTS is continuously evolving: biotechnological
research and development aim at reducing the quantity of biological extract,
augmenting the sequencing capacity and quality, raising the read length, and
even enlarging the application fields. Despite the efforts for designing scalable
and efficient mapping programs, it will remain a computational issue to let
mapping solutions fit the requirements of new HTS versions. This is a complex
question since read length above 20 are not necessary to point out a unique
position in a genome as large as that of human [50].

An interesting conclusion is that different filtration schemes achieve impres-
sive efficiency and scalability, but may be insufficient for tomorrow’s needs.
The abundant pattern matching literature may still contain other possible
algorithms whose applications in this setup has not been yet evaluated. With
the spread of multi-core computers, parallelization represents another future
line of research.

Finally, we left aside the problem of mapping pairs of reads. In this frame-
work, two reads are sequenced for each targeted molecule: each at a different
extremity. The reads come in pairs and the goal of mapping is to find one
matching position for each read such that the two positions are on the same
chromosome and in an upper bounded vicinity. In other applications, the pair
relations are unknown and it is then required to find across the two sets of
beginning and ending reads, which ones constitute a pair for they map on
the same chromosome not too far from another [53]. Some mapping tools like
MAQ or ZOOM can solve read pair mapping efficiently, while a precursor of
mpscan has been developped and applied in the second framework [53].
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