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ABSTRACT

Genome comparison is now a crucial step for
genome annotation and identification of regulatory
motifs. Genome comparison aims for instance at
finding genomic regions either specific to or in
one-to-one correspondance between individuals/
strains/species. It serves e.g. to pre-annotate a
new genome by automatically transfering annota-
tions from a known one. However, efficiency, flexi-
bility and objectives of current methods do not suit
the whole spectrum of applications, genome sizes
and organizations. Innovative approaches are still
needed. Hence, we propose an alternative way of
comparing multiple genomes based on segmenta-
tion by similarity. In this framework, rather than
being formulated as a complex optimization
problem, genome comparison is seen as a segmen-
tation question for which a single optimal solution
can be found in almost linear time. We apply our
method to analyse three strains of a virulent
pathogenic bacteria, Ehrlichia ruminantium, and
identify 92 new genes. We also find out that a
substantial number of genes thought to be strain
specific have potential orthologs in the other
strains. Our solution is implemented in an effi-
cient program, aob, equipped with a user-friendly
interface, and enables the automatic transfer of an-
notations betwen compared genomes or contigs
(Video in Supplementary Data). Because it
somehow disregards the relative order of genomic
blocks, aop can handle unfinished genomes,
which due to the difficulty of sequencing completion
may become an interesting characteristic for the
future. Availabilty: http://www.atgc-montpellier.fr/
qod.

INTRODUCTION
The unprecedented sequencing capacity offered by high
throughput sequencing technologies allows whole

genome sequencing in short times and at low costs.
Many projects aim at sequencing several genomes of a
species or of a genus to infer functional and evolutionary
knowledge from their genomic variability, among
which the 1000 human genomes project (http://www
.1000genomes.org) or the Microbial Genome Program of
US Department of Energy (http://microbialgenomics
.energy.gov). With the genomes at hand, the projects
step ahead with a comparative genomic analysis to
annotate genes, infer their homology/orthology relation-
ships or reveal syntenic regions and rearrangement events.
Broadly summarized, comparative genomics aims at iden-
tifying the genomic regions or organization that are either
‘shared’ among or ‘specific’ to individuals, strains and
species. It is fundamental to the understanding of
genomes structure and evolution. In bacteriology, the
genomic part shared among all strains, the ‘core’
genome, represents the essential genic component, while
the specific part, or ‘dispensable’ genome, abound in genes
associated with genomic exchanges, which promote bac-
terial evolution (1). Core and dispensable genomes are
computed using whole ORFeome/proteome comparisons
(1,2) or whole genome alignments (3). In eukaryotes, large
syntenic regions are detected either on DNA sequences
using whole genome alignments computed with genome
aligners (4,5) or more specialized programs (6), or by con-
sidering genomes as permutations of known orthologous
genes and computing rearrangement distances (7). In both
eukaryotic and prokaryotic cases, regulatory or chromo-
some maintenance motifs conserved across species are
sought in aligned, shared genomic regions (8,9).

Among multiple applications, comparative genomics
served to identify species-specific genes that could
explain the capacity to cause disease. For instance, the
comparison of Candida dubliniensis with the virulent
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Candida albicans exhibited specific expansion of some
families of proteins, which became potential virulence-
associated factors (10). Comparative analysis represent
an important step in post-genomic vaccine design
(11,12), in which shared, variable genes of multiple
strains are selected for further immunization tests and
may lead to design broadly protective vaccines (13).
Similarly, comparison of three strains of the ruminants’
pathogen, Ehrlichia ruminantium, underlined the import-
ance of tandem duplication as a source of diversity and
annotated some strain-specific genes (14). Not only may
strain-specific genomic regions include virulence-related
genes, but they can also serve to refine the diagnostic.

A wealth of computational methods have been designed
to meet the needs of comparative genomics; most attempt
to find ‘shared’ and ‘specific’ regions in the compared
genomes. The two commonly used bioinformatic solutions
for this sake rely on different information levels: the
genome or proteome levels. The first involves comparing
the ORFeomes/proteomes, as sets of proteins, to predict
orthology with the reciprocal BLAST-hit approach, which
is time consuming (15). Moreover, this requires the
proteins to be correctly annotated. The second solution,
‘whole genome alignment’, is a computationally difficult
optimization problem (7). Hence, heuristic alignment tools
(4,5) usually build a highest scoring chain of local align-
ments and try to infer the evolution of each genome in
terms of rearrangements (duplication, inversion, transpos-
ition), another NP-hard problem (7). The output align-
ment is sensitive to the method’s parameters, the setting
of which requires trained users. Consequently, even with a
whole genome alignment at hand, which could be long and
complex to obtain, it is not straightforward to determine
the core genome of a bacterial species (3).

Note that neither the chaining nor the rearrangement
inference steps solved during a whole genome alignment
(and other methods) are necessary to determine the
‘shared’ and ‘specific’ parts of the genomes under consid-
eration. Hence, whole genome alignment may be too
involved for some goals in comparative genomics. This
is the rationale that led us to propose a new formulation
of multiple genome comparison to meet only this goal.
We introduce a novel concept, ‘maximum common
intervals’: a genome region that cannot be extended and
is shared, i.e. alignable, across all genomes [MCI: not to be
confounded with common intervals taken as subset of
shared genes that colocalize in a region (7)]. The formula-
tion is: given sets of pairwise local similarities between a
‘target’ genome and each other genome as input, compute
all MCI of the target. Apart from avoiding the optimiza-
tion of a numerical criterion (which often turns out to be
NP-hard), and having few parameters, this formulation
has another nice property: it can be solved exactly with
a fast algorithm, which moreover yields a unique solution.
The number of MCI covering a region also indicates
whether several possible alignments exist for that region.
Hence, the target genome segmentation induced by the
MCI allows to partition regions into: unshared, shared
with only one putative alignment and shared with
several putative alignments, where the second category
indicates possible orthology relationships.
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Hence, we implemented an almost linear time algorithm
to compute all MCI and the corresponding partition in
Qop, a software equiped with a ‘graphical user interface’
(GUI), which provides a graphical overview of the
multiple similarities on the target genome. If provided
with the target’s annotations, QoD intersects the partition
with annotations and deduces from the MCI the pairwise
alignment of each annotated feature. In potentially
orthologous regions, Qobp automatically sclects well-
conserved features and proposes them as potential anno-
tation transfers to the user. Qop, which runs on all major
computer platforms, is further equipped with many
user-friendly options like word search, graphical/textual
results or annotation transfers export, etc. As case
study, we investigated the sequence relationships
among all three strains of the ruminant pathogen
bacteria, E. ruminantium, which have already been exten-
sively compared using both proteome and whole genome
comparisons (14,16). Qop’s results enabled a deep revision
of the set of genes annotated as strain specific and
provided supporting information for annotating 92 novel
genes altogether.

ALGORITHM AND METHODS

Here, we describe a novel approach to genome sequence
comparison based on segmentation. We first define the key
concept of the segmentation, the notion of ‘maximum
common interval’, and formulate the segmentation algo-
rithm that computes all MCI. We then expose the compu-
tation of annotation transfer and describe the tool
implementing this algorithm, Qop and its pratical
features (Figure | and Supplementary Figure S1).

Segmentation algorithm and maximum common intervals

The algorithm description requires a formal statement of
the problem. We are given a ‘target’ genome 7, which we
need to compare with k other ‘reference’ genomes: Gj,. . .,
Gi. For each reference genome G; with 1<j<k, we
compute between 7" and G; all local pairwise similarities
whose statistical 51gn1ﬁcance lies above a user-defined
threshold. Each local alignment represents a pair of
genomic intervals, one from 7 and one from G, that are
aligned with each other. We consider the intervals on 7" of
all those local pairwise similarities: they can be disjoint,
overlap or even include each other on 7. The intervals
corresponding to the 7 versus G; comparison form the
collection C; of ‘base’ intervals on 7. The collections C;
for all 1< J<k i.e. one per reference genome, make the
input of our algorithm. We assume that the »; intervals of
C; are ordered first by increasing beginning position in 7,
second by decreasing length. For 1 <7 <n;, the i-th interval
of C; is denoted I/ (the superscript indicates the collection,
and the subscrlpt the interval index). The ‘beginning’ and
‘end positions’ of an interval / are denoted by h(Z) and e([),
respectively. From the k input collections, C; with 1 <j <k,
we want to compute all MCI, which we define below. This
is the question answered by our algorithm.

Definitions. An interval J is ‘common’ to all C; ;< if and
only if for any collection C; there exists an interval say I/
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Figure 1. Workflow of a typical Qop analysis. Procedures are drawn in
rectangles and intermediate results in ellipses, output locations and
formats are shown right of the workflow. The first analysis part is
performed outside Qop: local similarities are searched between the
target genome 7 and each reference genome G; for 1<i<k. This
results is & collections of base interval pairs, since each local similarity
puts in correspondance one interval of 7" with one of G, The interval
pairs coordinates with the corresponding local alignments make up the
input of Qopb, and can be obtained using Brast, BLAT or Yass. The
second part of the analysis takes place inside Qop and includes
1/computing the MCI, 2/ partitioning 7, 3/ intersecting the partition
with input annotations and infering potential transfers. A dynamic
version of the workflow with pointers to the output diagrams and
text areas in the GUI is given in Supplementary Figure SI.

from C; such that J C I{ Assume J = [p,q] with p<q is a
common interval. J is said to be a ‘maximal’ if neither
[p — 1,4] nor [p,q+ 1] are common intervals.

Basic properties. Several properties of MCI underlie our
algorithm.

(1) Tt can be shown that an MCI beginning, respectively
end, position is the beginning, respectively end,
position of some base interval.

(2) As MCI are intersections of base intervals, which can
be determined from the interval endpoints, it follows
that one only needs to consider the base interval
endpoints, not the base intervals themselves, to
compute MCI.

(3) An MCI is the intersection of some base intervals,
one from each collection. First, the MCI beginning
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(respectively end) position will be the largest begin-
ning (respectively the smallest end) position of the
base intervals overlapping the beginning position.

(4) Moreover, for a given position, if at least an interval
of each collection includes it, there exists an MCI
covering this position.

(5) Last, because of maximality any two MCI can be
disjoint or overlap, but cannot include each other.
As a corrollary, all MClIs the are totally ordered by
increasing beginning position.

Algorithm  overview. The Dbasic properties lead to
Algorithm 1, which computes all MCI in the order of
increasing beginning position, and is illustrated dynamic-
ally in Supplementary Data. We scan in parallel (while
loop lines 4-16) the base intervals of each C;.;-j<; from
left to right (in order) and consider a current ‘reference
base interval’ (variable R). We determine whether its ‘ref-
erence beginning position’ (variable r) can be that of an
MCI, and if such is the case, we compute the MCI end
position (lines 12-14), then we iterate with the next
possible reference interval. Meanwhile, we maintain in a
‘heap’ data structure (variable H) one current base interval
of each C;.j <<« that is possibly overlapping the reference
position; this structure allows to determine their intersec-
tion in constant time. The reference beginning position is
initialized to the maximum among the starting positions of
the first current interval in each collection, since before
that at least one collection has no interval, and thus no
MCI can start. The reference interval is set to the corres-
ponding interval (line 2). The scan works as follows.
Assume the current reference interval is Z,, which
belongs to C; for some 1 <j<k and 1 <m <n; We need
to determine whether in the other collections, Cp.jzj1 <<t
there is an interval overlapping b(Z/,) (for loop, lines 5-11).
For this, we simply skip intervals until one satisfies this
condition or lies at the right of the current reference
interval (lines 6-10), and we update the heap appropriate-
ly (line 11; procedure updateBranch changes the
interval of leaf / and updates the intersections in its
branch). If (case 1) no interval of C, for some [:/#};
1 </ <k satisfies the condition, then we know that there
exists no MCI overlapping b(//,), the current reference
beginning position (Property 4). Moreover, the beginning
position of the current interval of C,, say Iil, becomes the
next current ‘reference’ position (line 9). Otherwise (case
2), if for each other collection one interval overlaps b(1/,),
we know that b(Z))) is the MCI beginning position, and we
determine its end position with the heap (Property 3; line
13). If I/ now denotes the interval with the smallest end
position among all current overlapping base intervals,
then e([,-’) is the MCI end position. In case 2, we show
that the current interval of C; must be updated, and the
next interval in C, i.e. Iil+l, becomes the next reference
interval/position. (The proof of this property is given in
Supplementary Data.) Several collections may need to be
updated; the procedure updateHeapEndPoint
computes the MCI endpoint, determines these collections,
updates their leaf and stores their indices in list
L. Afterwards, we update the current interval of these
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Algorithm 1: QOD’s main algorithm

Input: £: number of reference genomes; V1 <j <k: Cj
the sorted collection of n; base intervals,
C; ::{Ig:lgignj}
Output: All MCI shared between the target and all
reference genomes
Variables: R: current reference base interval; r: index of
the collection to which R belongs; i interval
index in C;; H: heap of interval intersections

1 begin .
r%&rgmaxlgjgk(b(fi));
ij—1 forall 1<j<k;

while AND << (i; <n;) do
forall [ in [1,k]\ {r} do
while ((i; <n;) and (e(I}) <b(R))) do ij++;
if (i;>mn;) then return ;

if (b(I})>b(R)) then

9 rI; R<—I£l;

10 break;

// restart for loop from [=1

R—1IT;

N A A W N

o

// Invariant: Ifl overlaps b(R)
1 H.updateBranch(l,Ifl)// set leaf | to Ifl
& updates its branch

// Invariant: there exists an MCI
// starting in b(R)

12 b(M)«—0b(R); L«—empty list;

13 e(M )« H.updateHeapEndPoint(L,);

14 output MCI M;

15 forall [ in L do i;++;

16 r&argminlgjgk(b(lgj)); R<—I{r;

17 end

collections (line 15), and the reference interval (line 16).
Note that except at the extremities, no beginning position
can be skipped since all of them can be the endpoint of
an MCI, as shown by the upper bound property in
Supplementary Data.

To update the heap, we may face two alternatives.
Denote by ¢ the end of the last computed MCI, and 1,
by I for simplicity. Either h(/) < ¢ then in all other collec-
tions the current interval overlaps b(1), updating the heap
to account for the change of current interval in C; will
assign the next MCI to the root node. Otherwise when
b(I) > q, the updated heap indicates the collections
whose current interval does not overlap h(I) and re-
quire an update (line 13). The scan will resume for any
of these collections (in any order), and may either show
that an MCI starts in b(/) or find a new reference position
>b(I).

Changing one leaf in the heap induces an update
of internal nodes in O(log k) time. Hence, the algorithm
has a complexity of O((3 i<j<xnplog(k)) time and
O(3_1<j<kh;) space, where n; denotes the number of base
intervals in C;.

Pace4or 11

Partitioning algorithm and regions classification

Once all MCI have been computed, QoD partitions the
target genome into ‘common’ (classes 2 and 3) versus
‘unshared’ (class 1) regions. In a partition, every base
belongs to a single region; hence, unlike MCI, the
regions of the partition cannot overlap. To partition the
target genome, Qop simply scans the endpoints of MCI
from left to right and starts a new region at each
position where the set of MCI covering this position
changes compared to the previous one. The partitioning
is fast: it takes a time proportional to the number of MCI.
At the same time, Qop records all alignments associated
with a region, which will serve for annotation transfer.

By combining the number of MCI covering a region
and the number of possible multiple alignments of an
MCI, qQop classifies the partition regions of the target re-
garding their similarity to the reference genomes into three
categories: (i) ‘unshared’, those that cannot be aligned
with all other genomes (ii) similar but with a unique
possible alignment or (iii) similar with several possible
alignments with at least another genome. As partition
regions do not overlap, the genome coverage of each
category delivers an overall measure of the target
genome similarity with the reference genome set. Clearly,
the coverage of similar regions (class 2+ 3) measures the
core genome size, while that of class 2 regions indicate
how much of the genome is shared and likely orthologous,
provided the similarity level is high enough to ensure
homology. Note the difference between unshared and
‘genome-specific’ regions. For instance, if three genomes
are considered, a genome-specific region must be unshared
in a three-way and in all two-way comparisons with that
genome as a target. Both notions are nevertheless relative
to the set of genomes under consideration.

Annotation transfer and visualisation

Qop is equipped with a structured GUI: Supplementary
Figure S1 shows for each step of Qop’s workflow where
the results appear on the GUI. Beyond the capacity to give
an overall measure and view of the target genome similar-
ity with a set of reference genomes, the partition offers
the possibility to determine which functional sequence
elements are shared or genome specific (which may
require several comparisons). If provided with the anno-
tations of the target genome, QoD computes the inclusion/
overlap of annotations with each partition segment and
gathers its related annotations in those two categories
(included/overlapping). Moreover, it extracts from the
segment possible alignments the subalignments corres-
ponding to annotated features and displays them on the
GUI (cf. Supplementary Figure S1). All features located in
uniquely aligned segments are marked as ‘transferable’
from the target to any other reference genome. The user
can then select according to a minimal per cent of identity
or from a feature list, which annotations he wants to
transfer, and export the list in various formats
(GenBank/Embl/Sequin, see Supplementary Figure S3).

The annotations related to a segment are displayed with
the segment information and can be easily browsed with
the GUI or output in tabular format.
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Figure 2. Qop GUI. It is divided in four parts: a upper and lower diagrams at the top, and below that two text subwindows: one left for the MCI
description and one right for the partition description. The upper diagram displays the MCI relatively to their genomic coordinates and shows how
they intersect. The lower diagram plots the number of overlapping MCI for each position along the genome. Both can be browsed and zoomed in
parallel. In both the MCI and partition descriptions, the text is structured like a tree and each item can be displayed or hidden when browsing.
The partition description includes a summary of the comparison at the top.

Pratical features and graphical interface of Qop

Qob implements efficient algorithms in ANSI C++ and is
available under Cecill license for academic use. It incorp-
orates a sophisticated but user-friendly GUI with many
relevant features as described below. QoD can run several
processes in parallel on the computer, which lets it exploit
in a transparent manner the multi-core computer architec-
tures for an improved efficiency. Moreover, it runs on
multiple platforms: Mac OSX, Windows and Linux.
When sets of comparisons are performed, the data (se-
quences, annotations, alignments) occupy large disk/
storage resources, which can be reduced using data com-
pression. To avoid the user time-consuming compression/
decompression processes, Qobp can directly read (gzip)
compressed files. Moreover, Qob can export both images
representing the genome maps (in a wide variety of image
formats) and the MCI/segmentation information together
with corresponding annotations (in text/PDF formats).
The former can be used e.g. for illustrating the findings
of a comparison, while the latter can be further analysed
in silico. QoD incorporates a text search facility to look for
some specific annotation.

Visualization in the GUI

Qop GUI is divided in four sections (Figure 2): two hori-
zontal diagrams at the top give two parallel, zoomable
and explorable maps of the target genome and two text
sections. The upper diagram shows how the MCI cover

the target genome, while the lower one shows how many
MCI cover a given genomic interval; in both, the x-axis is
the genome position. The left structured text details the
MCI positions and related information (alignments, anno-
tations), while the right one shows the genome segmenta-
tion and related information. In the upper diagram, the
thick, black bar represents the target genome, while colour
bars above and below it represent the MCI. The MCI
position above or below is unrelated to the strand on
which similarity was detected. MCI are drawn in lines
such that all MCI on a line share the same colour, and
two overlapping MCI are displayed on different lines. In
the MCI text window, MCI keep the same colour as in
the diagram. In the lower diagram, the y-axis gives the
number of MCI covering a position. For a line at
level 1, only a single alignment may be available for the
unique MCI. In which case, this absence of ambiguity for
homology is displayed by a green coloured line. When the
line reaches level 0, meaning the absence of similarity, it is
coloured in red. Again, this colour scheme is respected in
the segmentation description (right text section). At any
time, the interval corresponding to the current selection
(MCI or feature) appears as a thick black line on the
y-axis of the second diagram.

Evaluation method and data

We compare Qop with whole genome aligners widely
used in the field, MAUVE and PROGRESSIVEMAUVE (4,17).
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All approaches detect pairs of homologous regions and
align them. On this basis, it is possible to determine po-
tential annotation transfer of genes or coding regions
(CDS) according to their alignment’s percentage of
identity (%id.). We apply the same procedure on the
results of each tool to compute which annotations could
be transferred from the ‘target’ onto a ‘reference’ genome.
If the alignment of the feature’s region reaches a percent-
age of identity higher than a predefined threshold, the
feature is transferred. Then, we checked whether the
transferred annotation falls in a true annotated feature
of the other genome by comparing their genomic positions
and allowing a small proportional difference. We consider
that the transfer ‘matches’ the annotation if both the dis-
tances between their start, respectively end, positions is
less than 2% of the gene/CDS size. The outcome of the
test is as follows. If the gene is aligned, we encounter four
situations: if the alignment reaches the %id. threshold, the
gene is ‘transferred’, then if there is a matching gene on the
reference, we count it as a true positive (TP), otherwise,
either no feature or a non-matching gene, it is a false
positive (FP); if the alignment %id. is below the threshold,
the gene is not transferred, then if there is a matching gene
on the reference, we count it as false negative (FN), and
otherwise as a true negative (TIN). Arbitrarily, we consider
unaligned genes as TN (except for the Human—chimpan-
zee and simulated data sets, see below). The ‘sensitivity’ or
TP rate (TPR) is the ratio TP/(TP + FN), while the FP rate
is FP/(FP+TN). For each tool, we plot the receiver
operating characteristic (ROC) curve, that is the TPR
versus FPR for all %id. threshold values in [0, 100]. We
applied these procedures on five data sets: strains of 1/
Acinetobacter baumannii with AC numbers CP000521,
CP001182, CP000863, CU459141, CU468230, 2/ of
Lactococcus  lactis  with  AC numbers CP000425,
AE005176, AM406671, 3/ of Buchnera aphidicola with
AC numbers AE013218, AE016826, BA000003,
CP001161, CP001158, CP000263, 4/ the longest contigs
of Human and chimp chromosomes 21 (AC NT_011512,
NT_106996) and 5/ four bacteriophages of the
Siphoviridae family that infects L. lactis (P335, TP90I,
Tuc2009 and ul36 with AC DQS838728, AF304433,
NC_002703, AF349457).

We also compared Qop, MAUVE and PROGRESSIVEMAUVE
on data sets obtained by simulating random genome evo-
lution from an ancestral genome along a known tree
and allowing random substitutions, indels and inversions.
For the simulation, we use the SimALI software (18) with
four genomes and parameters estimated on the above-
mentioned bacteriophage data. In these cases, the test
records whether the output local alignment blocks above
a given %id. threshold coincide with the true alignments
obtained by simulation with 2% tolerance on their pos-
itions. Results are shown on ROC curves as above. More
details are available in Supplementary Data.

RESULTS

To demonstrate the utility of our approach, we first inves-
tigate a case study on bacterial strains for which genome

PAGE6OF 11

annotation and comparison have been published, and
compare Qop to well-known multiple genome aligners in
terms of accuracy and running times.

As a case study, we evaluated Qop by comparing the
three available strains of the bacterium E. ruminantium.
The strains’ genome sequences have been annotated and
compared using 1/ whole proteome comparisons to deter-
mine orthology/paralogy relationships between proteins,
and 2/ whole genome alignments to study the variability
at the DNA level (14,16). Hence, this case study offers the
opportunity to judge Qop relevance compared to standard
methods in the field.

This obligate intracellular bacterium from the
Rickettsiales order causes Heartwater disease in wild and
domestic ruminants in the sub-Saharan Africa, in African
and some Carribean islands. When affected by this fatal
tick-borne disease, up to 90% of susceptible animals die
within three weeks (19). The spread of E. ruminantium and
Heartwater severely impacts the production of livestock in
Africa, making it an important economical issue (20).
Since current diagnostic tools and vaccines show a
limited efficiency, partly due to genotypic variations,
new targets need to be discovered (14). For this sake, a
sequencing program was completed to determine and
annotate the protein-coding repertoire (16), and then a
comparative genomic analysis of three phenotypically
different strains investigated the genomic evolutionary
mechanisms of this Rickettsia (14). The genomes of
three strains are now available: two Welgevonden,
denoted Erwo (embl:CR767821; 1516355bp) and Erwe
(embl:CR925678; 1512977bp), and a Gardel strain
denoted Erga (embl:CR925677; 1499920bp). Both
Welgevonden strains originated from South Africa, but
Erwe was maintained in the Guadeloupe Island for 18
years in a different cell environment (a naive goat). The
Gardel strain was isolated in Guadeloupe from an infected
goat (14). Both studies pointed out the surprisingly im-
portant proportion of tandem repeats (TRs) in both
coding and non-coding regions, and suspected that
repeat variation contributes greatly to genome adaptation
in E. ruminantium. The comparative approach revealed
that the three genomes under consideration are highly
similar and mostly colinear, and it pointed out a number
of strain-specific genes, which could be considered as
potential targets for strain-specific diagnostic and/or
vaccine design (14).

Comparisons of E. ruminantium strains: an overview

To assess QoD’s capacity to reveal strain-specific genomic
features, we compared three E. ruminantium strains. We
first sought local similarities between any pair of strains
using Yass (E-value threshold of 10) (21). We completed
the following searches: Erwo versus Erwe, Erwo versus
Erga and Erwe versus Erga. We then ran Qop to
perform each two-way comparison and three multiple
comparisons once with each strain as target: 1/ Erwo
versus (Erwe, Erga), 2/ Erwe versus (Erwo, Erga) and
3/ Erga versus (Erwo, Erwe). First, the two-way Erwo
versus Erwe (and converse) comparisons report that
common segments cover 100% of either genome, and
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Table 1. Overview of genome coverages for all two- and three-way
comparisons
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Table 2. Strain-specific genes according to Ref. (14) and their
homology at DNA level according to Qop

Comparison Uncov. Single Multiple Cov. No. of
align. align. uncov.

regions

Erwo versus Erwe 0 99.36 0.64 100.00 0
Erwe versus Erwo 0 9937 0.63  100.00 0
Erwo versus Erga 0.10  99.35 0.55  99.90 1
Erga versus Erwe 0.13  99.28 0.60  99.88 3
Erga versus Erwo 0.13 9931 0.56  99.87 3
Erwo versus Erwe,Erga 0.10  98.79 1.10  99.89 1
Erwe versus Erwo,Erga 0.10 98.40 1.06 99.46 2
Erga versus Erwo,Erwe 0.13  99.21 0.67  99.88 4

Columns from left: (1) comparison, (2-5) genome percentages (%) in
uncovered, single alignment, multiple alignment and covered regions,
respectively, (6) number of uncovered intervals. The overall percentages
of covered and of single alignment regions indicate the high degrees of
similarity and synteny between the three strains. The low percentages
and numbers of uncovered regions denote the few ‘specific’ regions in
the genomes.

that 99.3% of the genome has a unique correspondence in
the other one. Moreover, the genomes are mainly covered
by 16 large, unique segments ranging in size between 11
and 237 kb, meaning that these are syntenic regions and
suggesting that both strains likely shared their complete
genomic repertoire (Supplementary Figure S2). The
detailed coverages for all comparisons are summarized
in Table 1.

In the three-way comparison with Erwo as a target (i.e.
comparison #1), Qop yields a coverage by common
segments of 99.9%, in complete agreement with the high
similarity reported in Ref. (14) and the strains’ evolution.
In this shared genome part, unique segments covered
98.9%, while duplication accounts for 1.1%. This
already gives a good insight into where the contour of
E. ruminantium core genome may lie. However, the coun-
terpart of unshared genomic regions, as estimated by Qop,
contains a single 1540bp long segment (0.1% of the
genome), which is clearly insufficient to enclose all
specific genes detected in Ref. (14). We thus inspected
closely the regions where those genes lie and their
feature alignments.

Investigation of strain-specific genes predicted by
Frutos et al.

According to Ref. (14), Erwo, Erwe and Erga feature, re-
spectively, 7, 28 and 22 strain-specific genes. We found
that among the Erwo and Erwe supposedly specific
genes, none is strain specific since all aligned well in the
sister strain. More exactly, their DNA sequence aligns to
100% identity for 34 out of 35(=7+28) genes, and one
gene aligns with a single difference. Thus, all those genes
are shared and nearly identical in Erwo and Erwe
genomes. Out of these 35 genes, 29(=4+25) align in
Erga genome over their whole length with >90%
identity, meaning that they are still present in Erga but
may not be functional. We thus checked whether the cor-
responding DNA region in Erga genome encodes an open
reading frame (ORF) that is longer than 80% of the

Erwo Nb Erwe Not annot. Erga Not annot. ORF >80%
100% id. 7 7 6

>90% id. 4 6 3
Erwe Nb Erwo Not annot. Erga Not annot. ORF >80%
100% id. 28 27 20

>90% id. 28 26 22 18
Erga Nb Erwo Not annot. Erwe Not annot. ORF >80%
100% id.

>90% id. 22 17 18 17 18 10

For each strain, the columns list the number (Nb) of strain-specific
genes, how many can be aligned with either 100 or >90% identity at
DNA level in the other strain, how many regions lack annotation (not
annotated) and last for those genes not 100% identical, how many
encode an ORF longer than 80% of the original protein. For a vast
majority of genes annotated as strain specific, Qop finds a homologue in
the other strains.

original Erwe/Erwo’s protein length. Out of these 29
shared genes, 19(=16+ 3) encode an ORF satisfying this
criterion. The analysis of the 19 Erga’s supposedly specific
genes exhibits a similar situation: 17 genes align in both
Erwe/Erwo genomes completely with >90% identity, and
11 encode a putative CDS satisfying our criterion. A
summary of this analysis is given for each strain in
Table 2, while all genes alignments and predicted ORFs
are gathered in Supplementary Data.

Our results suggest that a large majority of the genes
that were annotated as strain specific by Ref. (14) indeed
have a homologue, and most of the time a likely ortholog,
in the compared strains. Precisely, only three Erga genes
appear to be unalignable and thus seem truly strain
specific. Generally, the corresponding homologue is not
anotated in the other strains. However, for instance
between Erwe and Erwo, 7 of these genes were described
on both strains but their homology was nevertheless
missed. Altogether, only four genes in these subsets
share an alignment with <50% identity between Erwo/
Erwe and Erga strains; all other genes are still present in
all three strains, either as pseudogenes or most of the time
as likely functional genes. Moreover, we observed that the
homologue alignments are included in the alignment of a
single MCI that is tens of kb long, denoting a syntenic
region, which provides a high confidence (see
Supplementary Tables S3-1, S3-2 and S3-3). Altogether,
our results suggest that based on highly significant align-
ments, 40, 24, 28 genes or pseudogenes could be newly
annotated in Erwo, Erwe and Erga, respectively.

Comparison with multiple genome aligners

The E. ruminantium study shows the benefits of using Qop
compared to standard approaches deployed in genome
annotation and comparison projects. However, whole
genome aligners represent another way of comparing
genome sequences, and it is thus natural to assess how
Qop compares to these tools. The assessment is not

TT0Z ‘€2 1SNBNY U0 |QYTD e I0"S[euINolpIojX0™Jeu Wol papeojumoq


http://nar.oxfordjournals.org/cgi/content/full/gkr177/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr177/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr177/DC1
http://nar.oxfordjournals.org/

el01 Nucleic Acids Research, 2011, Vol. 39, No. 15

trivial since the approaches differ and benchmarks are
missing. Qob can exhibit several local alignments
covering the same region, while an aligner chooses only
one according to some criterion. Nevertheless, both types
of tools seek to determine which pairs of regions are
orthologous between the genomes and align them. Thus,
if the reported orthologies are correct, the gene structure
annotation could be potentially transferred from one
genome to the other based on the reported alignments.
We compared Qop with two widely used genome
aligners, MAUVE (4) and PROGRESSIVEMAUVE (17), on
their ability to correctly transfer annotations based on
the DNA similarities they detect.

To consider a wide spectrum of species and several
levels of divergence, we selected three bacterial, one
viral, one eukaryotic real data sets and completed these
with data sets of simulated genomes (for which we know
the correct alignments).

In the case of the human—chimpanzee comparison, we
could use the set of orthologous genes given by BioMart
(22), while in the other comparisons a prediction was con-
sidered correct if the transfer matches an annotated
feature at the predicted positions on the other genomes
(cf. ‘Results’ section).

Figure 3 presents the comparison of Qop, MAUVE and
PROGRESSIVEMAUVE on real (Figure 3a—e) and simulated
data sets (Figure 3f). Results are presented as three
ROC curves, one per tool. Each ROC curve plots one
minus the specificity of the method or FPR, on the
Xx-axis, versus its ‘sensitivity’ or TPR, on the y-axis, for
varying thresholds of minimum per cent of identity. Of
course, the lower the %id. threshold, the larger the
number of considered alignments, the higher the sensitiv-
ity can be. ROC curves can be compared globally on the
surface lying below the curve: the larger the surface the
better the prediction. A point is interpreted as follows: for
Qob, the point for 60% identity on Figure 3c is located at
(0.03, 0.98) meaning that for this threshold Qop yields a
specificity of 97% (i.e. 1-0.03) and a sensitivity of 98%.
An optimal prediction would yield a point in (0, 1), while
the worst would lie in (1, 0).

On bacterial and viral data sets, Qop performs well and
better than both genome aligners. Its ROC curves cover
larger areas and are almost vertical, meaning that its pre-
dictions remain valid whatever the %id. threshold. The
transfer is performed pairwise, from one genome onto
the other. However, the choice of the genome as origin
of annotations has little effect on the ROC curves, even if
some genomes are longer or contain more genes than
others (see Supplementary Data). One sees that Qop
gains in sensitivity without loosing much specificity
when decreasing the %id. threshold, which is not the
case of MAUVE and PROGRESSIVEMAUVE. For genomes
with higher divergence levels (Figure 3c and e), MAUVE’s
and PROGRESSIVEMAUVE’s results degrade rapidly with the
%id. threshold, while Qop achieves near perfect predic-
tion. It is noteworthy that in all cases, MAUVE and
PROGRESSIVEMAUVE yield very low specificity ratio with
low %id. thresholds (see the points at 20 or 0%
identity), while Qop is robust to this parameter. Likely,
MAUVE’s and PROGRESSIVEMAUVE’s alignments include
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regions with low percentage identities that match
non-homologous regions of the genomes, and impact
drastically their performances. At such thresholds, Qop
outperforms both genome aligners. In practise, it means
that with Qop almost all detectable orthologs are correctly
transferred and these are polluted by very few false
positive transfers. QoD’s accuracy remains superior
whatever the level of genomic divergence; comparatively
its best results are obtained for the most divergent cases:
on B. aphidicola and bacteriophages.

Even if all genomes shared an orthologous protein in a
region, a transfer may not match the corresponding item
on the other genome, and therefore be counted as a false
positive, if their sequences have evolved. In the bacterio-
phages comparison, it is the case of ORF44 in TP901 and
ORF47 in Tuc2009, which are transferred on all other
genomes, but are counted as false positives on ul36 and
P335. Indeed, the genes exist in the corresponding regions
in all genomes, all four proteins are orthologous and
similar in sequence, except that those encoded by ORF40
in P335 and ORF89B in ul36 lack 20 amino acids in their
N-terminal region. Hence, the transferred gene does not
match the features on these genomes because the start
positions are too distant. However, the DNA alignment
underlying the transfer detects the similarities over the
region corresponding to the longest genes of TP901 and
Tuc2009, and can therefore predict that mutations have
altered the start codons and resulted in shorter proteins.
Thus, DNA comparison provides useful information for
understanding the evolutionary and functional differences
between these proteins.

On the Human versus chimpanzee comparison, see
Figure 3d, all tools deliver moderate results, which can
be due to the fact that genes and orthology relationships
are more variable and difficult to annotate than in pro-
karyotes. Nevertheless, Qop yields the best results (its
ROC curve departs the most from the diagonal).

We also compare these tools on four simulated data sets
in which the compared genomes have evolved along a tree
from an ancestral genome, and where we know the correct
alignments. Results obtained on all simulated data sets
indicate that MAUVE and Qop offer similar performances,
and perform generally better than PROGRESSIVEMAUVE, as
illustrated in Figure 3f where the curves of MAuUvE and
QoD are nearly superimposed.

On real and simulated data sets, QoD superiority proves
to be robust to the genome used as source of annotations,
as well as to the tolerance threshold (see Supplementary
Figures S1-3, S1-4, S1-5 and S1-6).

For the Human versus chimpanzee comparison, MAUVE
takes 9 min, PROGRESSIVEMAUVE 12 min, while YAss takes
66 min and Qop takes alone 4 min. Highly sensitive local
alignment search is time consuming for long eukaryotic
genomes. However, it can be drasctically increased by
choosing somehow less sensitive, but much faster tool
(such as BLAT).

Finally, Figure 3g reports the running times of the dif-
ferent methods on all bacterial data sets. For our
approach, the time includes both searching the local align-
ments for all pairwise comparisons (Y Ass), changing their
format (Yass2AXT) and the computation made by Qop.
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Figure 3. Comparison of Qop with multiple genome aligners. Whole genome aligners and Qop ability to identify orthologous regions on bacterial
(a)—(c), eukaryotic (d), viral (¢) and simulated data sets (f). All results are plotted as ROC curves: plotting (1 — specificity) versus the sensitivity for
varying threshold of minimum percentage identity of the considered alignments. In all cases, the ROC curves of Qop cover a larger surface than that
of MAUVE and PROGRESSIVEMAUVE, denoting its superior performance in identifying orthologous regions. Notably, with low per cent of identity
thresholds, MAUVE and PROGRESSIVEMAUVE show a degraded specificity [see points at 0% in (a)—(e)], while QoD remains very accurate. At those %id.
values, Qop outperforms these genome aligners. In (g), we plot the total running times for all methods on all bacterial data sets.
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In general, all methods run in reasonable and similar
times, with Qop ranging between MAUVE and
PROGRESSIVEMAUVE. For instance, the comparison of five
genomes of A. baumannii (average length of 3.85Mbp)
Mauve takes 380s., PROGRESSIVEMAUVE 820s. and QoD
530s. in average depending on the reference genome.
For all data sets, about 95 percents of the time counted
for Qop is in fact taken by the local similarity detection
done with Yass. The running times for MAUVE and
PROGRESSIVEMAUVE seem to be most influenced by the
number of genomes.

DISCUSSION
Summary and advantages of Qop

Here, we proposed a novel approach for multiple genome
comparison based on segmentation. Given sets of pairwise
local similarities between a target genome and each of k
reference genomes, it determines which regions of the
target are both shared among all genomes and maximal
(in the sense that they cannot be extended neither to the
left nor to the right). Such regions are called MCI and any
base may belong to one or more MCI, or to none. Not
being covered by an MCI means that Qop did not detect a
k-way homology for the region considered (class 1). A
target region covered by a single MCI that has a single
possible alignment indicates an unambiguous k-way
homology, i.e. a likely orthologue (class 2). In all other
cases, the region is involved in several possible multiple
alignments indicating that it was duplicated in some ref-
erence genome and that additional investigation is
required to determine orthology/paralogy (class 3). Qobp
outputs the genome partition and regions classification,
which are highly informative.

Our approach is fast, independent of annotations and
does not require phylogenetic information. For they
process interval bounds, the MCI and partition proced-
ures run in few seconds or minutes. Compared to whole
genome multiple alignment (4,5,7) or rearrangement
distance approaches (7), it avoids to solve some questions
that render these computationally difficult (7): choosing a
score optimal multiple alignment or sequence of re-
arrangements. Two main reasons underlie this choice.
First, solving these questions is usually done by optimizing
some criterion that may not give the biologically most
relevant solution. Second, this information may not be
needed for certain applications, for instance when
focusing on genome-specific regions or inferring
orthologs.

QoD approach is based on local similarities, which gives
it another advantage over multiple alignment and re-
arrangement distances: it can compare unfinished or in-
completely assembled genomes whose relative order of
contigs is unknown. Genome finishing is a long,
complex, and expensive step, which may be avoided in
future genome projects. Hence, the capacity to compare
an unfinished genome is an issue, to which Qop brings a
novel solution. An illustration of such a comparison is
shown in Supplementary Data. Consider the comparison
of a complete genome as target and the concatenation in
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an arbitrary order of the contigs of an unfinished genome
as reference. For example, two MCI covering adjacent
(or slightly overlapping) target regions may help
ordering two different contigs. It can also tell whether a
gene from the target is partially or completely conserved in
one or more contigs of the unfinished genome, and
whether the latter encodes some paralogs. The reverse
comparison (i.e. the unfinished genome as target and
complete genome as reference) can help locating a re-
arrangement boundary if adjacent MCI on the target
match distant regions in the reference. Additionally, Qop
is used to annotate single contigs of a new genome by a
comparative approach (data not shown).

Our results suggest that Qop compared favourably to
two widely used genome aligners, especially in the cases
of highly divergent genomes. QoD outputs alignments
between genomic regions that allow accurate and sensitive
transfers of annotations whatever the chosen threshold of
identity percentage. Comparatively, the outputs of MAUVE
and PROGRESSIVEMAUVE include alignments with low %id.
between non-orthologous regions that induce false anno-
tation transfers. In the case of PROGRESSIVEMAUVE, this is
surprising since it includes a filtration step that removes
low-quality alignments (17). The better performance of
QoD observed on bacterial, eukaryotic and viral genomes
is partly, but not only, due to the use of spaced seeds in the
local alignment search (21), since PROGRESSIVEMAUVE also
relies on spaced seeds (17). We claim that the advantage
comes from combining maximum common intervals (i.e.
the presence of a local similarity) and the number of
overlapping MCI for predicting that two regions are
orthologous. This is consistent with the better specificity
obtained on prokaryotic versus eukaryotic genomes, since
the former are less repetitive than the latter. In conclusion,
QoD offers satisfactory performance with diverse data sets:
eukaryotic or prokaryotic, pairwise versus multiple,
closely or more distantly related genomes.

Considering its user-friendly interface, Qop may prove a
handy tool to practise comparative genomics for both
research and educational purposes. Future development
will aim at adapting qQop interface to easily handle
genomes with multiple contigs or chromosomes, especially
for large eukaryotic genomes.

Novel gene homologies among E. ruminantium strains

Our analysis of three strains of the pathogenic bacteria
E. ruminantium delivered a more precise view of their
genome similarities. The pairwise comparison of Erwo
with Erwe strongly suggests that they share all their
genomic repertoire. Moreover, for most genes reported
as strain specific (14), we exhibit significant conservation
at the DNA level among all strains (35/35 for the Erwe/
Erwo pair, 30/35 for Erga versus Erwe/Erwo, 17/22 for
Erwo/Erwe versus Erga). A majority of those still give rise
to a putative, long ORF in the strains supposed to lack
those genes. Notably, the homology/orthology status of
all these genes could be clarified or corrected based on
this analysis. Knowing that strain-specific genes are poten-
tially involved in host—pathogen interactions, and are
further investigated as diagnostic or potential drug
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targets, we believe that the new homology relationships
identified here are of theoretical as well as practical rele-
vance. Moreover, a total of 92 yet unknown genes could
be newly annotated in those strains.

It is noticeable that most of genes that were annotated
as strain specific by Ref. (14) are short (<300 bp, see
Supplementary Data). Like many others, this study
mainly based homology/orthology inference on compari-
sons at the protein level, from which ORF not exceeding
an arbitrary threshold length are often excluded. Despite
the use of whole genome comparisons at the DNA level,
this might explain why those DNA similarities were
missed and why annotations lack mention of these
homologies. Another reason lies in the fact that some
ORFs were probably missed in either genome due to the
parameter used when processing shorter ORFs (14,16).
The sensitivity of YASS and its ability to report long
alignments also partly explains why we could detect
those homologies with Qop. Only the comparisons at
both the DNA and proteome levels allow to distinguish
between absent genes and pseudogenes, both of which are
not translated into protein and thus not considered at the
proteome level. Our report illustrates the pitfalls of using
only proteome comparisons for orthology prediction, even
in a case of highly similar genomes. Altogether, it suggests
that Qop is a practical, sensitive and complementary tool
for annotation and comparison of whole genomes, and
may suit future needs of comparative genomics.
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