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Patterns

Pattern: finite word over {A,B,C, · · ·}.
Word: over Σk = {0,1, · · · , k − 1}.
Occurrence: obtained from the pattern by replacing each letter
by a non-empty word.

Example
• 10111011 is an occurrence of ABCACB

with A = 10, B = 1, C = 1.
• 00101001 contains 3 occurrences of ABBA:

001010, 010100 and 1001.

w avoids P if w contains no occurrence of P as a factor.
Avoidability index: λ(P) is the smallest k such that there exists
an infinite word over Σk avoiding P.



Avoidability index (1)

• λ(AA) = 3: infinite ternary square-free words.
• λ(AAA) = 2: infinite binary cube-free words.

Remark: λ(P) ≥ 2

Divisibility:
ABCABCAAC contains an occurrence AABB
=⇒ λ(ABCABCAAC) ≤ λ(AABB)
=⇒ partial order among patterns



Avoidability index (2)

• · · · ≤ λ(ABCABC) ≤ λ(ABAB) ≤ λ(AA) = 3.
• · · · ≤ λ(AABBCC) ≤ λ(AABB) ≤ λ(AA) = 3.

We have:
• λ(ABCABC) = 2, λ(ABAB) = 3.
• λ(AABBCC) = 2, λ(AABB) = 3.



Bounds on the avoidability index

Lower bounds: To prove that λ(P) ≥ k , check that all words
over Σk−1 are finite by lexicographic enumeration. This is the
easy part.

Upper bounds: To prove that λ(P) ≤ k , construct an infinite
word over Σk and prove that it avoids P.



Square-free words and square-free morphisms

λ(AA) = 3: infinite ternary square-free word.

square-free morphisms:

• 0 7→ 01201, 1 7→ 020121, 2 7→ 0212021.
• 0 7→ 0120212012102120210,

1 7→ 1201020120210201021,
2 7→ 2012101201021012102.

More than 1.3n ternary square-free words of size n.



Morphic words
Pure morphic word (DOL):
fixed point m∞(a) of a morphism m such that m(a) = aw .
Morphic word (HDOL):
image h(m∞(a)) of a pure morphic word by a morphism h.

• λ(AA) = 3, avoided by pure morphic words.
• s: 0 7→ 0101, 1 7→ 0011, 2 7→ 1000.

The image by s of a square-free word avoids ABCABC.
• λ(ABCABC) = 2, avoided by a morphic word, but no pure

morphic word.
• Exponentially many binary words avoid ABCABC.

Julien Cassaigne’s conjecture:
λ(P) = k if and only if there exists a morphic word over Σk
avoiding P.



A square-free morphic word

m1: 0 7→ 012, 1 7→ 02, 2 7→ 1.

m∞1 (0) is the only infinite ternary word avoiding
• squares, 010, and 212.
• squares and 0u1u0 for u ∈ Σ∗3.

m1 is not square-free:
m1(0u1u0) = 012m1(u)02m1(u)012 contains (2m1(u)0)2.



Characterization

• A set S of forbidden patterns and factors.
• A morphic word w over Σk .

S characterizes w if w avoids S and for every finite factor f of
w , S ∪ f is unavoidable over Σk .

Example
• {AA,010,212} characterizes m∞1 (0).
• {ABABA,000,111} characterizes the Thue-Morse word.

This notion is defined to handle extendability issues.
Makes no difference between a pattern and the associated
formula.



Other characterizations by Thue (1)

m2: 0 7→ 130402, 1 7→ 132, 2 7→ 1304, 3 7→ 1402, 4 7→ 1404.

h1: 0 7→ 012102120210120212,
1 7→ 01210212,
2 7→ 01210212021,
3 7→ 01210120212,
4 7→ 0121012021.

h2: 0 7→ 0210120102012,
1 7→ 021012,
2 7→ 02101201,
3 7→ 02102012,
4 7→ 0210201.

• {AA,010,020} characterizes h1(m∞(1))

• {AA,121,212} characterizes h2(m∞(1))



Other characterizations by Thue (2)

m2: 0 7→ 130402, 1 7→ 132, 2 7→ 1304, 3 7→ 1402, 4 7→ 1404

• {AA,010,020} characterizes h1(m∞2 (1))

• {AA,121,212} characterizes h2(m∞2 (1))

m∞2 (1) appears in both. Interesting ?

• Take a ternary word avoiding {AA,010,020}, delete each
letter after a 0, you get a word avoiding {AA,121,212}.

• {AA,01,03,10,12,20,23,24,31,34,42,43,141,302,
414,2132,3213} characterizes m∞2 (1).



Characterizations using m∞1 (0)

h3: 0 7→ 0010110111011101001,
1 7→ 00101101101001,
2 7→ 00010.

h4: 0 7→ 1001001101011001101001011001001101
100101101001101100100110100101100110101,

1 7→ 100100110100101,
2 7→ 1001001101100101101001101.

• {AABBCABBA,0011,1100} characterizes h3(m∞1 (0)).
• Containing only 10101 as a 2+-power and 11 distinct

squares characterizes h4(m∞1 (0)).



More examples by Golnaz Badkobeh

m3: 0 7→ 032, 1 7→ 04, 2 7→ 12, 3 7→ 14, 4 7→ 1432.

h5: 0 7→ 1100, 1 7→ 110, 2 7→ 100, 3 7→ 10, 4 7→ 101100.

h6 : 0 7→ 100110, 1 7→ 10010110, 2 7→ 0110, 3 7→ 01,
4 7→ 0100110.

• Containing only 01010 and 10101 as 2+-powers and 8
distinct squares characterizes h5(m∞3 (0)).

• Containing only 1001001 as a 2+-power and 14 distinct
squares characterizes h6(m∞3 (0)).



A third example with m3

h7: 0 7→ 001110010110001101,
1 7→ 00111001011000110100010110,
2 7→ 00111001011101,
3 7→ 0011100101110100111000110100010110,
4 7→ 0011100101110100111000110100010110001101.

{AABBCC,ABCABC,0000,1111,0001110010110,
1110001101001,0110100111000,1001011000111}
characterizes h7(m∞3 (0)).



Remarks

• m∞1 (0) appears in many characterizations and we
understand why.

• m∞2 (1) appears in two similar characterizations and we
see the link.

• m∞3 (0) appears in three characterizations, seemingly by
chance.

We hope to:
• Discover new useful (pure) morphic words and find their

properties.
• Find links between characterizations using a same pure

morphic word.
• Use them to quickly find and prove new characterizations.



Dejean words VS Pure morphic words

To obtain the avoidability index of patterns:
• I used morphic images of Dejean words.

• Proves exponential factor complexity.
• Automated proofs.

• Julien Cassaigne used (pure) morphic words.
• More theoretical insights.
• Mandatory for patterns with polynomial factor complexity.

The only word avoiding AB.AC.BA.BC.CA is the fixed point Ω of
0 7→ 01, 1 7→ 21, 2 7→ 03, 3 7→ 23, up to permutation of letters.

=⇒ {AB.AC.BA.BC.CA,02, · · ·} characterizes Ω.



One last case by Golnaz Badkobeh
m4: 0 7→ 0102,

1 7→ 1013,
2 7→ 40135,
3 7→ 51024,
4 7→ 1024,
5 7→ 0135.

h8: 0 7→ 10011,
1 7→ 01100,
2 7→ 01001,
3 7→ 10110,
4 7→ 0110,
5 7→ 1001.

Containing only 0110110 and 1001001 as 2+-powers and 12
distinct squares characterizes h8(m∞4 (0)).



Proof technique

To prove that S = P ∪ F characterizes a morphic word
h(m∞(0)), where m is Σk ′ → Σk ′ , h is Σk ′ → Σk , and k ′ > k :
• Prove that extendable words in S are h-images of words

over Σk ′ .
• Find a set S′ = P ∪ F ′ that seem to characterize m∞(0)

over Σk ′ .
• Prove that S′ characterizes m∞(0) over Σk ′ :

• Prove that extendable words in S′ are m-images of words
over Σk ′ .

• Prove that the pre-images by m of words in S′ are also in
S′.



Remarks

• Conjecture: If λ(P) = k , then there exists a finite set S of
forbidden patterns and factors containing P that
characterizes a morphic word over Σk .

• The converse (every morphic word has a characterization)
does not seem to hold: consider the Fibonacci word.

• For all these characterizations, the set can be put in the
form {AB · · ·XAB · · ·X} ∪ F . It would be nice to have
characterizations with other patterns.

• Strategy “from above” to prove avoidability.



Thank you for your attention !
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