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Querying large read collections in main memory:
a versatile data structure
Nicolas Philippe1,2, Mikaël Salson3,4, Thierry Lecroq3, Martine Léonard3, Thérèse Commes2 and Eric Rivals1*

Abstract

Background: High Throughput Sequencing (HTS) is now heavily exploited for genome (re-) sequencing,

metagenomics, epigenomics, and transcriptomics and requires different, but computer intensive bioinformatic

analyses. When a reference genome is available, mapping reads on it is the first step of this analysis. Read mapping

programs owe their efficiency to the use of involved genome indexing data structures, like the Burrows-Wheeler

transform. Recent solutions index both the genome, and the k-mers of the reads using hash-tables to further

increase efficiency and accuracy. In various contexts (e.g. assembly or transcriptome analysis), read processing

requires to determine the sub-collection of reads that are related to a given sequence, which is done by searching

for some k-mers in the reads. Currently, many developments have focused on genome indexing structures for read

mapping, but the question of read indexing remains broadly unexplored. However, the increase in sequence

throughput urges for new algorithmic solutions to query large read collections efficiently.

Results: Here, we present a solution, named Gk arrays, to index large collections of reads, an algorithm to build

the structure, and procedures to query it. Once constructed, the index structure is kept in main memory and is

repeatedly accessed to answer queries like “given a k-mer, get the reads containing this k-mer (once/at least

once)”. We compared our structure to other solutions that adapt uncompressed indexing structures designed for

long texts and show that it processes queries fast, while requiring much less memory. Our structure can thus

handle larger read collections. We provide examples where such queries are adapted to different types of read

analysis (SNP detection, assembly, RNA-Seq).

Conclusions: Gk arrays constitute a versatile data structure that enables fast and more accurate read analysis in

various contexts. The Gk arrays provide a flexible brick to design innovative programs that mine efficiently

genomics, epigenomics, metagenomics, or transcriptomics reads. The Gk arrays library is available under Cecill (GPL

compliant) license from http://www.atgc-montpellier.fr/ngs/.

Background

Next-generation sequencing technologies are presently

being used to answer key biological questions at the

scale of the entire genome and with unprecedented

depth. Whether determining genetic or genomic varia-

tions, cataloging transcripts and assessing their expres-

sion levels, identifying DNA-protein interactions or

chromatin modifications, surveying the species diversity

in an environmental sample, all these tasks are now

tackled with High Throughput Sequencing (HTS) and

require different, but computer intensive bioinformatic

analyses. Typically, a recent RNA sequencing experi-

ment (RNA-Seq) produces about 8 million reads of 75

base pairs each [1], but both the yield and read length

will increase [2].

Mapping the reads against a reference genome pro-

vides the genomic positions of mapped reads. For

instance with RNA-Seq reads, these positions allow to

know whether a gene is expressed in the studied condi-

tion. The set of mapped positions represents only part

of the information needed to analyze the reads, and it

can be obtained only if a genome is available. Indeed,

other important information are contained in the read

collection itself. For instance, to determine the fre-

quency of haplotypes at a SNP position, one needs to

align the reads related to this position. These can be
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obtained by considering for some length k, the k-mers

overlapping the SNP and searching for the reads sharing

this k-mer. This procedure is applicable even in the

absence of a reference genome, and similar ones can be

designed to search for a binding motif in ChIP-Seq

reads, to determine with RNA-Seq data whether differ-

ent regions of a messenger RNA sequence are suscepti-

ble to be differentially expressed, etc.

For tasks like assembly or read clustering, one needs

to determine reads overlapping each other or that align

partly one to another. Numerous works on similarity

search algorithms have developed seed-and-extend stra-

tegies and shown that it can be performed efficiently by

searching common k-mers between two sequences [3,4].

Surely, now and even more in the near future, we will

need efficient indexing data structures to store and

query large collections of reads in main memory. Up to

now, a lot of computational research has been devoted

to read mapping, and the most efficient tools owe their

efficiency to the use of involved genome indexing data

structures, like the Burrows-Wheeler transform [5]. On

the other hand, the question of read indexing remains

quite unexplored, although the improvements in

sequencing throughput suggest that such structures will

become a compulsory part of future read analysis pro-

grams. A sign supporting this view: even mapping pro-

grams now start to index both the genome and the k-

mers of the reads to boost efficiency and accuracy [6].

Numerous works have presented data structures to

index a single text, like the well known Suffix Tree

(ST) or the Suffix Array (SA) [7,8]. These enable the

so-called locate query, that is to locate all occurrences

of a pattern P either from its sequence or from a posi-

tion j of occurrence in the text, as well as count query

to obtain the number of occurrences of P. These struc-

tures can be adapted to index a set of texts, where each

text differ from each other; the structures are then

called generalized Suffix Tree [9], or generalized Suffix

Array (gSA) [10]. This is done by concatenating all

texts and adding a separator symbol that does not

belong to the alphabet (e.g., a $ for the DNA alphabet)

after each text [9], or directly [10]. Then it requires to

store the length of each text in an additional array to

correctly answer locate queries. Such algorithms have

not been adapted to collections of texts, where two

texts may be equal in sequence but differ in their iden-

tifier. The reads obtained from sequencers form a col-

lection, not a set.

When the total text is too large, compressed indexes

reduce the memory needed by storing not all, but only a

certain proportion of the text positions. Compression is

obtained by sampling the positions to be stored, while

non sampled positions need to be recomputed at run

time. This enables the user to control the balance

between amount of memory and query time. Hence,

compression has an impact on the time needed to com-

pute a query. Ferragina et al. report in a large practical

evaluation of compressed text indexes, that the query

time of all tested compressed indexes are between 100

and 1,000 times slower than with a plain SA for an

index that is 5 times smaller [11]. The FM-index [5] is

used to index all chromosomes in mapping applications

[12]. However, the scalability of neither plain nor com-

pressed indexes to collections of millions of texts has

not been investigated so far. We thus address the ques-

tion of indexing large collections of reads with an

uncompressed index and compare its performance to a

generalized suffix array and a hash table. Our structure

aims to save space compared to those indexes while

globally retaining queries as fast. Thus we avoid the pit-

fall of compressed indexes which are less space consum-

ing but slower by orders of magnitude.

In this work, we propose a new data structure to

index reads, an algorithm to build the structure, and

procedures to query it. Our structure, named Gk

arrays, is kept in main memory once built and repeat-

edly accessed to answer different kinds of queries like

“given a k-mer, get the reads containing this k-mer

(once/at least once)”. One can ask both for the k-mer

positions or simply for the reads containing it, which

can prove useful in different applications. We focus on

cases where millions of queries need to be computed;

clearly, memory usage will be the key issue. An alter-

native solution is to adapt some uncompressed index-

ing structures designed for long texts (suffix tree or

suffix array [9,13]). We compare Gk arrays to such an

alternative and show experimentally that they process

queries fast, while requiring much less memory

(between 2/3 and 1/3 of a suffix array solution). We

also perform experimental comparisons against a

method using hash table: it shows that while the hash

table method can answer quickly to queries it does not

scale to large collections of reads.

If in biology the term k-mer is preferred, computer

scientists rather use the equivalent words of k-factor or

k-substring; we will stick to the term k-mer. The Gk

arrays allow to answer queries related to an input k-

mer; let us call these k-mer queries. Before entering the

algorithms description, we list below the applications of

k-mer queries in the analysis of High Throughput

Sequencing data. The Results section will first present

our data structure, its construction algorithm and the

procedures to answer k-mer queries, then detail the

experimental comparisons.

Finally, we discuss the advantages of our structure and

conclude with future developments.

Note that this study does not tackle the question of

read mapping, it focuses on read indexing.
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Queries and Applications

Let us give an informal presentation of the problem. We

are given a collection of q reads of length m and a

length of substring k such that k ≤ m.

Suppose one is given a string f of length k; one does

not know whether it appears in some of the reads or

not (i.e., whether f is a substring of some read). In the

Algorithm section, we describe a data structure in which

all substrings of length k of the reads are ordered lexico-

graphically. Hence, one can search for f using a dichoto-

mic search in O(k log((m - k + 1)q))) worst case time in

this structure (the dichotomic search is the standard

procedure in this context [8,9]), and determine whether

at least one read contains f as a substring and at which

position. If not, the answers to the queries below, which

are all related to a sub-collection of reads containing f,

are trivially the empty set or zero. Otherwise, one

knows that f occurs in some read r of the collection at

position j, and wishes to get some information on the

other reads where f occurs. One wants to answer the

following questions:

Q1: In which reads does f occur?

Q2: In how many reads does f occur?

Q3: What are the occurrence positions of f in the

reads?

Q4: What is the number of occurrences of f in the

reads?

Q5: In which reads does f occur only once?

Q6: In how many reads does f occur only once?

Q7: What are the occurrence positions of f in each

read where f occurs only once?

Q8: What is the number of occurrences of f in the

reads where it occurs only once?

We state several remarks about the queries before

dwelling on applications.

1. The queries go by pairs: the first one computes a

set of positions or read indices, while the second

computes the cardinality of that set.

2. Note the clear semantic difference between Q1/

Q2 and Q3/Q4. The answer to Q1 yields the identi-

fiers of the reads in which f occurs, while that to Q3

gives also all its positions in the read. This clearly

differs since f may occur several times in a read (e.g.,

if f is a poly-A sequence). Sometimes the positions

are needed, sometimes only the reads (see below).

3. Queries Q5-Q8 are versions of Q1-Q4 constrained

to a single occurrence of f in the reads. Of course

other variants can also be computed, e.g. where the

number of occurrences is limited by a user defined

threshold. Since f is constrained to occur only once

in each read, Q6 and Q8 are equivalent, and we will

mention only Q6 in the sequel.

4. The data structure we propose is intended to be

kept in memory and used for multiple queries.

Although this paper focuses on the data structure, its

efficiency, and on the algorithms to solve these type of

queries, it is important to list applications of these

queries. In which context of read analysis, can one use

such queries? Note that in such context, k is smaller

than the read length. Theoretical and empirical investi-

gations show that for instance, with k ≥ 19 or 20, k-

mers indicate in average a single genomic location in

the human genome [14]. Such values of k can be com-

puted depending on the genome length. Translated to

reads or sequences: it is unlikely that two reads sharing

a k-mer were not sequenced from the same part of the

DNA. In other words, sharing a k-mer is a witness for

having a common genomic origin.

Mutation detection

Putative mutations (SNP, somatic mutations, small

indels) are indicated by differences between a read and a

reference genome. Once the reads have been mapped to

the reference genome, one analyzes the sub-collection of

reads that covers a genomic position to count how

many reads support the variation observed in the read

or that observed in the genome. If one considers the

two substrings of length k centered on this mutation

position, one in the read and one in the genome,

answering Q2 for these substrings will give an approxi-

mate count of these two haplotypes. If one needs the

corresponding reads, then Q1 is the appropriate query.

If only a single, or a few reads, share this k-mer, then a

sequence error might be suspected [15].

Local coverage

Suppose one is given a target sequence, which can be a

read or an external sequence. For each of its k-mer, let

us call the local coverage, the number of reads sharing

this k-mer (this requires a dichotomic search). The local

coverage profile (i.e. a histogram of the local coverage)

along the target sequence provides useful information in

various contexts. For a known mRNA and an RNA-Seq

experiment, the average local coverage on all k-mers is a

proxy for the expression level of the target, while the

profile enables one to distinguish the target’s sub-

regions expressed at different levels [16,17]. In another

context, with a genomic library, taking reads as queries

and looking at their local coverage profile may help to

detect those overlapping the extremity of a repeated or

transposable element. This may prove useful to study

the distribution and evolution of these elements in the

genome.

Clustering and assembly without a reference genome

As for Expressed Sequence Tags, it is suitable to cluster

and assemble RNA-Seq reads to compute the various
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transcripts expressed in the assayed library [16,17]. It is

necessary to detect near exact alignment between pair

of reads, and this is usually performed efficiently by fil-

tration using seeds. In such case, very efficient and sen-

sible seeds are exact shared k-mers [4]. Here, the sub-

collection of reads sharing a k-mer with a given read, as

well as the k-mer positions, can be obtained using query

Q3. The answer to Q4 can help guiding the clustering

process.

Similar needs of query occur in the assembly of geno-

mic reads [18,19]. To know with which reads one can

assemble a given read without ambiguity, one may per-

form query Q7 using k-mers at the 5’ or 3’ extremities

of the read. The obtained occurrences together with

their positions will indicate the matching reads and the

relative positions of read pairs for assembly.

Our application list provides examples and is by no

means exhaustive. We could also mention for instance

the estimation of the target genome length in assembly

context, which uses k-mer counting [20]. Clearly, these

applications are beyond the scope of this paper. How-

ever, these paragraphs underline that the proposed data

structure suits the needs of read processing in various

application contexts, and will provide a unified frame-

work for building read analysis programs.

Results and Discussion

This section contains the main contribution: a data

structure to index large read collections, the Gk arrays.

To describe it, we first introduce the notation, formalize

the queries, exhibit the index data structure, give its

construction algorithm, and the procedures for answer-

ing all queries. This makes the content of the Algo-

rithms section. Then, in the Comparison section we

investigate its practical usability compared to two alter-

natives: one based on a generalized Suffix Array (SA)

and another based on a hash table. This includes theore-

tical and practical comparisons.

Algorithms

Here, we detail the algorithms to build the Gk arrays

and to answer the queries. We start by defining more

formally the queries we want to answer and introduce

the necessary notation.

Notation and definition of the queries

Let Σ be an alphabet of size s. Σ* denotes the set of

words, strings or sequences over Σ and, for any integer n,

Σ
n denotes the set of words of length n over Σ. For a

word x, |x| denotes the length of x. Given two words x

and y, we denote by xy the concatenation of x and y.

For every 0 ≤ i ≤ j ≤ |x| - 1, x[i] denotes the (i + 1)th

element of x, and x[i.. j] denotes the substring x[i]x[i +

1] . . . x[j]. Let ≤L denotes the comparison operator for

the lexicographic order on words. Lexicographic ranks

start from zero and all arrays are indexed from zero. For

any finite set A, we denote its cardinality by #A.

The input consists a list R = (r0, . . ., rq-1) of q short

sequences of length m, called reads, which are not

necessarily distinct. We know that m, k, q Î N satisfy m

≥ k > 0.

A k-long substring of a word is called a k-mer. For any

u Î Σ*, we denote by Fk(u) the set of k-mers in u: Fk(u)

= {v Î Σ
k | ∃p Î [0, |u| - k] such that v = u[p. . p + k -

1]}. Let f Î Σ
k and let us denote the set of indexes of

the reads in which f occurs by Indk(f) = {j Î [0, q[| f Î

Fk(rj)}, and the set of positioned occurrences of f in all

reads by Posk(f) = {(j,ℓ) | rj[ℓ. . ℓ + k - 1] = f}, where a

positioned occurrence is given by the pair made of the

read index in R and the beginning position of f in this

read. Let us denote the restriction of Indk(f) (resp. Posk
(f)) to subset of read indexes where f occurs only once

by UIndk(f) (resp. UPosk(f)). Formally, UPosk(f) = {(j, ℓ) |

rj[ℓ. . ℓ + k - 1] = f and ∀i ≠ ℓ, rj[i. . i + k - 1] ≠ f}, and

UIndk(f) = {j | (j, ℓ) Î UPosk(f)}. Let i Î [0, q[, j″ Î [0,

m - k + 1[, and let f be the k-mer starting at j″ in read

ri. Note that here we require the knowledge of the pair

(i, j″), which defines the k-mer f. Now, the seven k-mer

queries can be formally defined as computing

Q1: the set Indk(f ) Q2: #Indk(f ), the cardinality of Indk(f )

Q3: the set Posk(f ) Q4: #Posk(f ), the caradinality of Posk(f )

Q5: the set UIndk(f ) Q6: #UIndk(f ), the cardinality of UIndk(f )
Q7: the set UPosk(f )

Clearly, it appears (see Additional File 1: Proof and

queries’ algorithms) that the algorithms to compute

UIndk(f), resp. UPosk(f), for answering Q5/Q7, simply fil-

ter Indk(f), resp. Posk(f), on the fly, and are thus similar

to the algorithms for Q1/Q3. For place sake, we will

only detail the solutions for Q1-Q4 in the sequel.

The index structure

Our algorithm relies on four arrays that allow to query

the k-mers of all reads. Hence, we define a word made

of the concatenation of all reads: CR = r0r1 ... rq-1. Of

course, a k-mer that overlaps two reads in CR is not

necessarily a k-mer of some read. Hence, we introduce a

system to renumber the positions of interest in CR. The

rationale behind is to save place in the Gk arrays by dis-

carding the positions of overlapping k-mers in CR. Let

us denote by r̂ the number of distinct k-mers of all

reads, and for the sake of legibility we set m̂ := m − k + 1
and q̂ := qm̂ = q(m − k + 1) (the number of interesting

positions in a read and in CR, respectively). We call:

• P-position, a starting position in CR of a k-mer that

is not overlapping two reads, i.e. an element of

Ppos :=
[

0, qm
[

\
{

j |
(

j mod m
)

≥ m̂
}

.

• g, the function that renumbers P-positions in order

such that their index are consecutive; g is defined by:
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g : Ppos → Qpos

j �→
⌊

j
/

m
⌋

× m̂ + (j mod m) .

• Q-position, an image of a P-position by g(.), i.e. an

element of Qpos := g(Ppos) = [0, q̂[. Note that the set

Qpos is not a query.

Clearly, Ppos and Qpos have the same cardinality q̂, and

as (j ≠ j’) implies g(j) ≠ g(j’), g is bijective. Hence, g-1

exists and maps a Q-position back to its corresponding

P-position in CR. Proposition 1 explicits the conversion

between a positioned occurrence and a P-position.

Proposition 1. Let (j, ℓ) with j Î [0,q[, ℓ ∈ [0, m̂[ be a

positioned occurrence of a k-mer in a read. The corre-

sponding P-position in CR is jm+ℓ. Conversely, let j’ be a

P-position, the corresponding positioned occurrence in a

read is (⌊j’/m⌋, j’ mod m).

This numbering system is important for it allows us to

go back and forth between a positioned occurrence in a

read, its corresponding P-position in CR, and its Q-posi-

tion that will be stored in our arrays.

Let j be a Q-position. We denote by sQ(j), resp. fQ(j),

the suffix, resp. the k-mer, of CR beginning at the P-

position g-1(j), i.e. sQ(j) = CR[g
-1(j) . . qm - 1] and fQ(j) =

CR[g
-1(j) . . g-1(j) + k - 1]. We call sQ(j) a P-suffix. Note

that all suffixes beginning at P-positions have different

length and are pairwise distinct; thus, there are q̂ such

suffixes and they all have a different lexicographic rank.

However, this may, and in real data applications will,

not be the case for the k-mers, i.e. the fQ(j). We call the

set {fQ(j) | j Î Qpos} the set of Pk-factors, whose cardin-

ality is r̂ with our notation.

Now, we define the Gk arrays:

GkSA (Generalized k Suffix Array) is a modified Suffix

Array of CR that lexicographically sorts only the P-

suffixes,

GkIFA (Generalized k Inverse Factor Array) is a modi-

fied Inverse Suffix Array (ISA) that stores for each Q-

position, in position order in CR, the lexicographic rank

of the Pk-factors starting at the corresponding P-

position,

GkCFA (Generalized k Counting Factor Array) is an

array that associates to a k-mer (actually, to its rank) its

number of occurrences at P-positions in CR,

GkCFPS (Generalized k Counting Factor Prefix Sum)

stores the prefix sums of GkCFA. Since GkCFA and

GkCFPS are equivalent only one of them is necessary at

a time.

Formally, the definitions are (see Figure 1 for an

example and Figure 2):

• For i a suffix lexicographic rank and j a Q-position

(i.e. i, j Î Qpos),

GkSA[i] = j iff sQ(j) has lexicographic rank i

among the P-suffixes.

• For i a k-mer lexicographic rank and j a Q-position

(i.e. i ∈ [0, r̂[ and j Î Qpos),

GkIFA[j] = i iff fQ(j) has lexicographic rank i

among the Pk-factors.

• For i a k-mer lexicographic rank (i.e. i ∈ [0, r̂[),

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CR[ j] a a c a a c t c a a t t c a a a c a a g c

SA[ j] 13 0 14 3 17 8 1 15 4 18 9 20 12 2 16 7 5 19 11 6 10

g( j) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GkSA[i] 0 10 3 13 6 1 11 4 14 7 2 12 5 9 8

rank 0 1 2 3 4 5 6 7 8 9

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GkIFA[i] 0 3 7 0 4 7 2 6 9 8 0 3 7 1 5

ℓ -1 0 1 2 3 4 5 6 7 8 9

GkCFA[ℓ] 3 1 1 2 1 1 1 3 1 1

GkCFPS[ℓ] 0 3 4 5 7 8 9 10 13 14 15

Figure 1 Example of the read index data structure: the Gk-arrays. Example of the read index data structure: the Gk arrays. Example for a

collection R = (aacaact, caattca, aacaagc) of q = 3 reads of length m = 7 and considering 3-mers (k = 3). The index is composed of

three tables and uses a fourth one during construction (GkSA, GkIFA, GkCFA, and GkCFPS). The first table shows the starting indices of k-mers in

the text made by the concatenation of all reads, CR, the SA built on CR, and the function g that renumbers P-positions of CR to make them

consecutive. P-positions are {0,1,2,3,4,7,8,9,10,11,14,15,16,17,18}; all other positions, those starting positions where the k-mer overlaps two reads,

are displayed with a gray background (lines j and SA[j]). Line SA refers to the usual Suffix Array of CR. The k-mer caa occurs 4 times in CR at

positions 2, 7, 12 and 16. Among those, only 2, 7, and 16 are P-positions. The lexicographic rank of the Pk-factor starting at position 16 is given

by GkIFA[g(16)] = GkIFA12 = 7, and the number of occurrences of the Pk-factor caa is given by GkCFA7, which equals 3. The positions of these

occurrences are thus obtained by the set {g-1(GkSA[j]) | GkCFPS[7 - 1] ≤ j < GkCFPS7} = {2,7,16}. See also Figure 2.
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GkCFA[i] = #{j Î Qpos | fQ(j) = fQ (GkSA[i])},

• For i a k-mer lexicographic rank (i.e. i ∈ [0, r̂[), the

definition of the prefix sum is

GkCFPS[i] =
∑i

t=0 GkCFA[t] and

GkCFPS[-1] = 0.

Remark 1. The array GkCFPS is not essential to the

algorithm: it is solely there to avoid multiple, time con-

suming computations of prefix sums over GkCFA (see

GkCFPS definition above). Moreover, any value of

GkCFA can also be accessed in constant time using

GkCFA[i] = GkCFPS[i] -GkCFPS[i -1]. Thus, GkCFPS

will be kept in memory to replace GkCFA.

We give some useful properties of Gk arrays.

Proposition 2. For i ∈ [0, r̂[, GkCFPS[i] = #{j Î Qpos |

fQ(j) ≤L fQ(GkSA[i])} (Proof by induction).

In other words, GkCFPS[i] is the number of Pk-factors

having lexicographic rank less than or equal to i. Since

GkSA is sorted on the lexicographic order of the P-suf-

fixes, it is also sorted on the lexicographic order of the

Pk-factors. Hence, we get:

Proposition 3. Let f Î Σ
k such that Indk(f) ≠ ∅. All

occurrences of f have the same rank among the Pk-fac-

tors, and are stored consecutively in GkSA.

Construction algorithm

First, we detail the algorithm for building GkSA, and

then the one computing GkIFA and GkCFA.

Computation of GkSA We first build the full Suffix

Array (SA) of CR using a linear time and space algo-

rithm. Since |CR| = mq this first step can be done in O

(mq). Then GkSA is obtained from SA by selecting only

the P-positions and by renumbering them to Q-positions

using function g. This second step is performed in O

(mq) time and space. Moreover, GkSA is built in place

of the Suffix Array: our algorithm allocates only the

memory for the SA table. When answering Q1/Q2, each

read where a given Pk-factor occurs should be counted

only once (even if the Pk-factor occurs more than once

in the read). Similarly, for Q5/Q6, we count only reads

where a given Pk-factor occurs exactly once. To avoid

using masks on the reads, we sort in increasing order

the values of GkSA corresponding to Pk-factors sharing

the same lexicographic rank (see Table in Additional

File 1: Proof and queries’ algorithms). The values that

have to be sorted are Q-positions, i.e. integers, thus the

sort can be performed in linear time on values of GkSA

using e.g. radix sort [21]. The whole process takes O

(mq) time and space.

Computation of GkIFA and GkCFA Algorithm 1

shows how to compute jointly GkIFA and GkCFA. Its

correctness proof is given in Additional File 1: Proof

and queries’ algorithms.

Algorithm 1: Computation of GkIFA and GkCFA.

Data: GkSA, CR, k, q̂
Result: GkIFA and GkCFA

1 begin

2 GkIFA[GkSA[0]] ¬ 0;

3 GkCFA[0] ¬ 1;

4 t ¬ 0;

5 foreach i ∈ [1, q̂[ do

6 j ¬ GkSA[i];

7 j’ ¬ GkSA[i - 1];

8 if fQ(j) ≠ fQ(j’) then

9 t ¬ t + 1;

10 GkCFA[t] ¬ 0;

11 GkIFA[j] ¬ t ;

CR

r0 r1 rq−1

(a)

(b)

(c)

j
g

GkIFA

g( j)

GkCFPS

GkIFA[g( j)]

GkSA

GkCFA[GkIFA[g( j)]]

Figure 2 Accessing the occurrences of a k-mer in the index. Accessing the index to get the occurrences of a k-mer starting at position j in

the concatenation of the reads (i.e., CR). Accessing GkIFA, GkCFPS and GkSA: (a) From CR to GkIFA: g(j) is the renumbered position of the P-
position j. (b) From GkIFA to GkCFPS: GkIFA[g(j)] is the lexicographic rank of the Pk-factor starting at P-position j in CR, and GkCFPS[GkIFA[g(j)]] is the

number of occurrences in CR of the Pk-factors of rank less than GkIFA[g(j)]. (c) From GkCFPS to GkSA: The positions of the occurrences of the Pk-

factor starting at position j are in GkSA in the range [GkCFPS[GkIFA[g(j)] -1], GkCFPS[GkIFA[g(j)]]].
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12 GkCFA[t] ¬ GkCFA[t] + 1;

13 return (GkIFA and GkCFA);

Theorem 1. Algorithm 1 correctly computes the arrays

GkIFA and GkCFA. (Proof in Additional File 1: Proof

and queries’ algorithms).

The comparison between two Pk-factors (line 8) is

naively performed in O(k) time, and is the only instruc-

tion of the inner loop that takes more than constant

time. Hence, the computation of both GkIFA and

GkCFA is performed in O((m - k)qk) time. Let us

emphasize the simplicity of the algorithm, which

explains the fast construction times obtained in practice.

Remark 2. Once the values of GkCFA have been cal-

culated, one can compute the values of GkCFPS in-place

in O((m - k)q) time (see Remark 1).

Answering the queries

Assume the Gk arrays have been built in a preprocessing

step (see section Construction algorithm); we show how

to answer the first four queries, starting with Q4 and

Q3. Let i ∈ [0, q[, j′′ ∈ [0, m̂[, and let f be the k-mer

starting at j“ in read ri. This occurrence of f in CR is

found at P-position j’:= im + j“ and the corresponding

Q-position is j := g(j’).

Q4: Computing the cardinality of Posk(f) First, we

need to find the lexicographic rank of f among the Pk-

factors, which we obtain directly by setting t := GkIFA[j]

(by definition of GkIFA). The cardinality of Posk(f) is

simply the number of occurrences starting at P-positions

in CR, which is given by GkCFA[t] (by definition of

GkCFA). By Remark 1, GkCFA[t] = GkCFPS[t] -

GkCFPS[t - 1].

Q3: Computing Posk(f) By Proposition 3, all occur-

rences of f starting at P-positions are stored consecu-

tively in GkSA. It suffices to find the lower and upper

indices, denoted by ℓf and uf respectively. By the order-

ing of GkSA all occurrences of factors smaller than f in

the lexicographic order are stored before its occurrences

in GkSA. Hence, by definition of GkCFPS and Proposi-

tion 2, we have uf = GkCFPS[t] and ℓf = GkCFPS[t - 1].

Since GkSA is indexed from 0, the starting Q-positions

of occurrences of f are comprised in the range [ℓf, uf ]

in GkSA. The corresponding P-positions are obtained

using g-1(.) and are then transformed into positioned

occurrences with Proposition 1. This proves Theorem 2.

Theorem 2. Let f be a k-mer of a read occurring at Q-

position j in CR. Then, its lexicographic rank among the

Pk-factors is t := GkIFA[j]. If we set uf := GkCFPS[t] and

ℓf := GkCFPS[t - 1] then

1. the starting P-positions of f’s occurrences in CR are

{g-1(GkSA[ℓ]) | ℓ Î [ℓf, uf [},

2. Posk(f) = {(
⌊

g−1(GkSA[ℓ])/m
⌋

, g-1(GkSA[ℓ]) mod

m) | ℓ Î [ℓf, uf [},

3. #Posk(f) = uf - ℓf.

Given Theorem 2, the queries regarding Indk(f) can be

answered as follows:

Q1: Indk(f): = {
⌊

g−1(GkSA[ℓ])/m
⌋

| ℓ Î [ℓf, uf[},

Q2: by counting the elements of Indk(f) while comput-

ing it.

The algorithms for Q1, Q3, and Q4 are given exten-

sively in Algorithms 2, 3, and 4. The algorithms for all

other queries are included in Additional File 1: Proof

and queries’ algorithms.

To answer Q7, one computes Posk(f) and scans it on

the fly to remove reads (or the positioned occurrences)

having strictly more than one occurrence of f. A similar

approach solves Q8, and Q5. Variants of these queries

where the number of allowed occurrences is constrained

by a parameter can be answered similarly.

Complexity Answering Q1-Q3 or Q5-Q8 requires to

scan the values in GkSA inside the range corresponding

to the k-mer f, which can be performed in O(occ_Reads

(f)) time, where occ_Reads(f) denotes the occurrence

number of f in the reads. Query Q4 is computed in con-

stant time using GkCFPS.

Algorithm 2: Q1 (Indk(f))

Data: f Î ∑
k, j Î Ppos such that CR[j .. j + k - 1] = f

Result: The set Indk(f)

1 begin

2 Indk ¬ empty set;

3 t ¬ GkIFA[j];

4 ℓf ¬ GkCFPS[t - 1];

5 uf ¬ GkCFPS[t];

6 prev ¬ - 1;

7 foreach i Î [ℓf, uf [ do

8 readIndex ¬

⌊

g−1(GkSA[i])/m
⌋

;

9 if readIndex ≠ prev then

10 Add readIndex to Indk; prev ¬ readIndex;

11 return (Indk);

Algorithm 3: Q3 (Posk(f))

Data: f Î ∑
k, j Î Ppos such that CR[j . . j + k - 1] = f

Result: The set Posk(f)

1 begin

2 Posk ¬ empty set;

3 t ¬ GkIFA[j];

4 ℓf ¬ GkCFPS[t - 1];

5 uf ¬ GkCFPS[t];

6 foreach i Î [ℓf, uf [ do

7 readIndex ¬

⌊

g−1(GkSA[i])/m
⌋

;

8 posInRead ¬ g-1(GkSA[i]) mod m;

9 Add the pair (readIndex, posInRead) to Posk;

10 return (Posk);

Algorithm 4: Q4 (The cardinality of Posk(f))

Data: f Î ∑
k, j Î Ppos such that CR[j . . j + k - 1] = f

Result: The cardinality of Posk(f)
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1 begin //GkCFA[t] = GkCFPS[t] -GkCFPS[t - 1]

2 t ¬ GkIFA[j];

3 return (GkCFA[t]);

Practical considerations: implementation and variable read

length

The value of k, which determines the length of k-mers

used for querying the collection of reads, is a para-

meter of our index. However, the Gk arrays remain

flexible. If for the simplicity of the presentation we

have assumed until now that all reads have the same

length, the whole structure can be adapted to a collec-

tion of reads having variable length. Indeed, since

some sequencing technologies produce variable-length

reads (e.g. Roche 454®), this adaptation is an important

issue of versatility.

Indexing variable-length reads We show how our

method can be slightly adapted to tackle this problem.

Remind that the Gk arrays consider the string CR, the

concatenation of all reads, and save place by discarding

positions at which a k-mer overlaps two reads. This was

done efficiently by converting any read position, or P-

position, into a Q-position, and conversely, using func-

tion g. Up to now, this function relies on the fact that

the read length is fixed. Thus, we need to modify its

definition to accommodate different read lengths. For

this, we use a bit vector F, as long as CR, to record

which positions in CR are P-positions: j is a P-position

iff F[j] = 1. We implement it as a vector having rank

and select capabilities [22,23]. We define these opera-

tions as

• rank1(F, i) is the number of ones in F[0..i].

• select1(F, i) is the position of the i-th one in F (or |

F| if there is less than i ones in F).

These operations can be performed in constant time,

and F can be stored in a compressed form needing only

|F|H0(F) + o(|F|) bits, where H0 is the zero-th order

empirical entropy of F. Then computing g(j) and g-1(j)

can be easily performed with a single rank or select

query. Indeed, we have g(j) = rank1(F, j), and g-1(j) =

select1(F, j). Finally, using little extra memory, Gk arrays

can also handle variable-length reads.

Implementation Gk arrays are available as a reusable C

++ library under a Cecill C licence (GPL compliant). It

accepts standard formats for the input read collection

(FASTA, FASTQ). Depending on the number of k-mer

positions, the user should turn on the 64 bit encoding

at compilation. It allows to process data sets of more

than 231 positions. Default is set to 32 bit encoding.

Another compilation option can be activated to handle

variable-length reads (typically Roche 454® datasets),

otherwise by default Gk arrays process fixed length

reads.

The data structure construction and queries algo-

rithms are coded in standard C and C++. To reduce

memory consumption, the full SA of CR is built using

libdivsufsort library https://code.google.com/p/libdivsuf-

sort/, which was chosen for its efficiency and low mem-

ory usage (see https://code.google.com/p/libdivsufsort/

wiki/SACA_Benchmarks for a benchmark of up-to-date

SA construction algorithms). However, its worst case

time complexity is not linear in the length of the input

sequence. Also the sort of values in GkSA inside each

range corresponding to one Pk-factor is performed with

the quicksort algorithm. A linear time construction of

the array GkIFA is possible by using an LCP array (array

storing the length of the Longest Common Prefixes

between two consecutive suffixes in the lexicographic

order). However, building this array would need at least

9mq bytes with Manzini’s algorithm [24].

We implemented two versions of the Gk arrays: one

which indexes only fixed-length reads, and another for

variable-length reads. When not stated otherwise, Gk

arrays refers to the implementation for fixed-length

reads. For managing variable-length reads we used Sux

http://sux.dsi.unimi.it/, an implementation of bit vectors

with rank and select operations.

Theoretical and experimental comparisons

The sequencing capacity of new technologies continues

to improve. Managing ever increasing read collections

will be a major bottleneck in the bioinformatic analysis

of High Throughput Sequencing data. The Gk arrays

implement one solution to read indexing. If plain, as

well as compressed, indexing data structures have been

described in the litterature (cf. Introduction), their abil-

ity to handle large read collections have not been inves-

tigated. As we seek to optimise in practice the memory

consumption, the construction time, and query running

time, we will compare Gk arrays to two other uncom-

pressed indexes: a generalized SA (gSA) and hash tables.

We choose these two alternatives for they represent dif-

ferent approaches to read indexing. Among the uncom-

pressed text indexes that have been generalized to

handle a set of texts, the gSA is reckoned to be one of

the most memory efficient and has been preferred to

hash tables or the suffix tree in other contexts [9,25].

On the other side, the optimisation of web search

engines have triggered recent development of highly effi-

cient hash tables, like Google sparse hash http://code.

google.com/p/google-sparsehash or the hash tables from

SGI extension of the C++ Standard Library http://www.

sgi.com/tech/stl. It is thus instructive to also compare

Gk arrays to state of the art hash tables. As explained in

Introduction, compressed indexes save memory but

induce much longer running times to answer queries

compared to plain indexes, and have been excluded
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from this comparison. Nevertheless, designing efficient

compressed read indexes is a challenging future research

avenue, which could be addressed by compressing the

Gk arrays.

A generalized Suffix Array (gSA) solution

We detail here the solution based on a generalized Suf-

fix Array (gSA) to index a collection of reads, all reads

having the same length. We call it the gSA solution. In

fact it indexes the string made of the concatenation of

all reads, CR. The preprocessing consists in building the

generalized Suffix Array (gSA), the Inverse Suffix Array

(ISA), and the Longest Common Prefixes (LCP) array of

CR. The gSA is built using the same algorithm than for

Gk arrays (libdivsufsort). The ISA is built by scanning

the gSA in mq time, while the LCP array is also con-

structed in linear time using an efficient algorithm [26].

The tables are built in this order and add up in term of

memory footprint.

In Figure 3(a) and 3(b), we compare the time and

space complexities of gSA and Gk arrays solutions.

Since both start by building gSA(CR) and this is the

dominant term of the time complexity, we obtain O(mq)

time complexity: the space occupied during the con-

struction of that table alone is 4.02mq, while it amounts

to 4mq once built [27]. The last three columns of these

tables show how the cumulated memory footprint

evolves after each step during construction. We also

monitored the memory footprint evolution during the

construction of gSA and of Gk arrays and illustrate

these graphically in Figures 4(a) and 4(b), respectively.

For the gSA the three tables add up in memory and

each takes 4mq space. With Gk arrays

1. the GkSA table replaces gSA(CR) in memory and

takes only 4m̂q,

2. GkIFA takes an additional 4m̂q while GkCFA

occupies 4(r̂ + 1) with r̂ denoting the number of dis-

tinct Pk-factors, and

3. finally the GkCFPS replaces GkCFA and takes

exactly the same space.

In total, gSA takes 12mq bytes of memory, while Gk

generalized Construction Memory Cumulated memory footprint

Suffix time building gSA(CR) gSA built ISA built LCP built

Array O(mq) 4.02mq 4mq 8mq 12mq

(a)

Construction Memory Cumulated memory footprint

Gk arrays time building gSA(CR) GkSA built GkIFA & GkCFA built GkCFPS built

O(mq) 4.02mq 4m̂q 8m̂q+4(r̂ +1) 8m̂q+4(r̂ +1)

(b)

Gk arrays generalized Suffix Array

Q1 O(occ Reads(f)) O(q+occ CR(f))
Q2 O(occ Reads(f)) O(q+occ CR(f))
Q3 O(occ Reads(f)) O(occ CR(f))
Q4 O(1) O(occ CR(f))
Q5 O(occ Reads(f)) O(q+occ CR(f))
Q6 O(occ Reads(f)) O(q+occ CR(f))
Q7 O(occ Reads(f)) O(q+occ CR(f))

(c)

Figure 3 Comparing the complexities of the Gk arrays and generalized Suffix Array based solutions. Comparing the complexities of Gk

arrays and of the generalized Suffix Array solutions. A complexity is an expression that evaluates the running time or memory usage in function

of parameters describing the input size. The construction time and space complexities of the index for q reads of length m having r̂ distinct k-
mers are given for the generalized SA in (a), and for the Gk arrays in (b). We detail the cumulative space complexity during the construction of

the gSA, and after the main steps of the construction algorithms. I.e.: once the gSA, the ISA, and the LCP arrays are built in (a), and once GkSA,

GkIFA, and GkCFPS are built in (b). In (c) we give the time complexities for answering queries Q1-Q7 with a k-mer denoted by f. The procedures

for the gSA depends on occ_CR(f), the occurrence number of f in the text made by the concatenation of all reads (i.e. in CR), while those for the

Gk arrays depends on occ_Reads(f), the occurrence number of f in all reads, and we know that occ_Reads(f) ≤ occ_CR(f).
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arrays occupy 8m̂q + 4(r̂ + 1) bytes (with 32-bit integers),

and m̂ := m − k + 1 is smaller than m. This explains why

the memory footprint of Gk arrays remains smaller in

practice than that of gSA (Figures 4(a) and 4(b)), even

for varying k values (see Figures 5(a), 4(a) and 4(b)).

Indeed, the gain of memory provided by Gk arrays

increases with both k and q. If k is small, each k-mer

tends to occur more in average, and thus

4(r̂ + 1) ≪ 4mq, meaning that GkCFPS is much smaller

than the LCP array. If k is large then 4(m-k+1)q ≪ 4mq

and thus, GkSA plus GkIFA tables occupy much less

place than the gSA and ISA tables. This constitutes, in

almost all cases, a saving of at least 12(k - 1)q bytes.

Locating a k-mer in the reads can be done with a bin-

ary search in O(k + log qm) worst case time with gSA

using SA and LCP arrays and O(k × log qm̂) worst case

time with Gk arrays using GkSA. (We recall that the

binary search is the standard procedure in this context

[8,9]).

However, Manber and Myers [8] mentioned that a

simple improvement over the classical binary search

(namely remembering the minimum length between the

longest common prefix of the left and middle elements

and the longest common prefix of the right and middle

elements at each step of the binary search) permits to

run in practice as fast as a O(k + log qm̂) worst case

method (see also [9] Section 7.14.3 page 152).

Thus, starting from a k-mer, rather than from a posi-

tion, when answering the queries will bring an overhead

similar in practice for the gSA and Gk arrays.

Algorithm 5: Q1 (Indk(f)) with the generalised Suffix

Array solution

Data: f Î ∑
k, j Î Ppos such that CR[j .. j + k - 1] = f

Result: The set Indk(f)

1 begin

2 Indk ¬ empty set;

3 Initialize the whole bit vector, D, to zero;

4 i ¬ ISA[j];//starting position of f occur-

rences in SA

5 repeat

6 if (SA[i] mod m) ≤ m̂ then

//the occurrence position does not

overlap two reads

7 readIndex ¬

⌊

SA[i]/m
⌋

;

8 if D[readIndex] ≠ 1 then

//we have not found an occurrence

in this read yet

9 Add readIndex to Indk;

10 D[readIndex] ¬ 1;

11 i ¬ i + 1;

12 until (i ≥ qm) or (LCP[SA[i], SA[i + 1]] < k);

13 return (Indk);

Nevertheless although we consider the same input, a

position j of occurrence of the k-mer in a read, answer-

ing queries differ between the Gk arrays and gSA solu-

tions. Indeed, since the gSA stores all positions in CR,

we need to filter out positions of k-mers that overlap

two reads in CR to keep only P-positions. This adds

instructions to the procedure compared to that for the

Gk arrays: see line 6 in Algorithm 5, which gives the

algorithm for query Q1 with the gSA. For answering

queries Q1 and Q2, we must perform another slight

modification: we use a binary mask for dealing with

duplicate k-mers in a same read. This mask is stored in

a binary vector B having q bits, one bit per read. The bit

corresponding to a read is set to one whenever the k-

mer has been found to occur in that read, and subse-

quent occurrence positions in that read will be filtered

out if the corresponding bit is set (lines 8 and 10 in

Algorithm 5).
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Figure 4 Evolution of memory footprint during the construction of the generalized Suffix Array and of Gk arrays. Evolution of memory

footprint during the construction of the generalized Suffix Array (a) and of Gk arrays (b) when indexing 15 million 75 bp reads with k = 25.
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Assume we query on a k-mer f from one of its occur-

rence position j. Let us denote by occ_CR(f) the number

of occurrences of f in CR, including those overlapping

two reads (i.e., starting at non P-positions), and by occ_-

Reads(f) the number of its occurrences that are totally

included in a read (i.e., those starting at P-positions).

For Q1/Q2, Q5-Q7, we obtain with gSA a complexity of

O(q + occ_CR(f)) since one initializes the bit vector B of

size q and scan all occ_CR(f) occurrences. While with Gk

arrays, the complexity depends linearly on occ_Reads(f)

and we know that occ_Reads(f) ≤ occ_CR(f).

For Q3/Q4, there is no need of a bit vector with the

gSA method, hence their complexity is O(occ_CR(f)), for

one needs to scan positions in the gSA using the ISA

and the LCP arrays. However, Gk arrays offer a com-

plexity of O(occ_Reads(f)) for Q3 and O(1) for Q4. We

summarize all queries time complexities in Figure 3(c).

Remark 3. To avoid scanning occ_CR(f) entries, an

alternative solution consists in delimiting reads inside CR

using a separator. This solution would lead to a space

overhead of q bytes for lowering the time complexity to

occ_Reads(f). However we did not retain this solution

since our goal is to diminish the space complexity and

this solution would not improve much the time

complexity.

A solution based on a hash table

An alternative solution is to index all k-mers in a hash

table and to store for each read the list of its occurrence

positions in the read collection. This list will contain

pairs of integers: the read index in the collection, and

the starting position of the k-mer in that read. The read

index can be stored on a 32-bit integer, while a 16-bit

integer suffices for the starting position. In such a case,

storing the text is not necessary. The number of entries

is the number of distinct k-mers in the read collection,

i.e. our parameter r̂. Generally, r̂ is small compared to

4k for values of k in [15,60]. Hence the hash table will

be sparsely populated. We tried several implementation

of state of the art hash tables: the Google sparse and

dense hash arrays, and that from SGI extension of the C

++ Standard Library (called hash map).

Preliminary experiments have shown that Google sparse

requires significantly much longer to build than SGI hash

map, while having a lower memory footprint. With 20 mil-

lion 75 bp reads, Google sparse hash occupies one third of

the memory needed by the SGI hash map, but it takes

thrice more time to build. On the contrary Google dense

hash tables takes twice more memory, and offers only

similar construction time. Hence, SGI extension hash map

exhibited the best compromise in term of memory con-

sumption and construction time compared to Google

implementations. Thus, we choose SGI extension imple-

mentation for the comparison with Gk arrays.

Experimental settings

We tested index structures on three datasets.

1. We used a collection of 40 million Illumina®

RNA-Seq reads of length 75 from a human K562

library taken from the RGASP data (Accession num-

ber GM12878 at http://www.gencodegenes.org/rgasp

with permission from B. Wold). We call it the K562

dataset.

2. We compiled several lanes of Roche 454® geno-

mic sequencing to obtain a collection of 2.8 million
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Figure 5 Memory and construction time comparison between the Suffix Array solution, the hash table and the Gk arrays. Memory and

construction time comparison between the generalized Suffix Array solution (gSA), the hash tables (HT) and the Gk arrays. K562 dataset is used

for that experiment, with 5 million to 25 million reads. The length of k-mers ranges from 15 to 30. gSA plots have been shifted left and HT plots

have been shifted right for easing the reading. (a) Maximal memory usage while constructing the index and querying it. The error bars represent

the space consumption depending on the value of k. (b) Construction time for the three indexes on the same data as for the maximal memory

consumption. The levels of gray on the plots represent the value of k.
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reads ranging from [40,3000] bp with an average

read length of 523 bp. These were sequenced on a

Roche 454® GS FLX platform with Titanium chem-

istry for the Khoisan genome project [28]. We call it

the Khoisan dataset.

3. As much longer fixed length reads are not yet

available, we constructed a collection of fixed length

reads by slicing the Khoisan reads in non-overlap-

ping pieces of 150 bp. We obtained 25 millions of

150 bp reads, a read length that will soon be gener-

ated on High Throughput Sequencing platforms.

In the first and third collections, reads have a fixed

length, while in the second their length varies. The

experiments were performed on an Intel Xeon 2.27 GHz

equipped with 48 GB of main memory, and running

Linux 2.6.18 with C++ compiled using gcc version 3.4.6

and -02 -funroll-loops options.

Experimental comparison

The use of read indexing raises three questions: how

much computing resources does the index demand? Is

it scalable? How fast can it answer large number of

queries? Clearly the resources will depend on the num-

ber of reads (parameter q), their lengths and on the

length of k-mers (parameter k). We compare three solu-

tions: a hash table (HT), a generalized Suffix Array

(gSA), and Gk arrays.

Scalability We measured the construction time and

amount of memory taken by all solutions for various

numbers of reads and k-mer lengths. Figure 5(a) plots

the maximal memory footprint on K562 data. At this

scale, the value of k impacts only the hash table size; its

influence on the gSA and Gk arrays is not visible on

that graph. Second, the solutions can be ordered as fol-

lows: Gk arrays take the less memory, followed by the

gSA, and then the hash table. This order is irrespective

of the read number. For k = 20 e.g., Gk arrays use 10

GB, the gSA uses 20, and the HT 44, and the curves

clearly indicate that these differences increase with the

number of reads. Whatever the value of q, the hash

table requires twice as much memory as the gSA, which

itself takes at least 70% more memory than Gk arrays.

With 25 million reads the hash table saturates the mem-

ory, with 30 million the gSA also does, while the Gk

arrays constitute the only solution able to index the

whole collection, 40 million reads, on that computer.

Note that in both cases, the 64-bit implementation of

gSA and Gk arrays have to be used to index that

amount of reads. For the whole read collection, Gk

arrays needs at most 43 GB (k = 15) and at least 36 GB

(k = 30).

For all solutions, construction times increase linearly

with the number of reads as expected (Figure 5(b)). It

remains very similar between the gSA and Gk arrays,

which both takes e.g. <1000 s. for 25 million reads. The

influence of k is clearly visible on the hash table for 20

million reads: its construction time decreases with k

because the parameter r̂ also does (for a given number

of reads). As long as they fit in memory, all compared

solutions offer practical construction times.

We examined the behavior of Gk arrays on much

longer reads, 150 bp, when variable-length read option

is activated and when it is not. Figure 6(a) plots space

consumption, while Figure 6(b) records the construction

time for both options.

We see that adding a bit vector is not space consum-

ing since there is little difference between the two meth-

ods (Figure 6(a)). For 13 million reads, the difference is,

at most, of 300 MB between the two methods. In Figure

6(b), we plotted the construction time for both indexes.

The variable length read implementation becomes

slower when the number of reads grows, compared to

the fixed length Gk arrays. This shows that despite a

constant-time theoretical complexity for rank and select

operations; there is a dependency on the length of the

bit vector in practice. However, the construction time

remains reasonable in the variable case.

Figures 7(a) and 7(b) plot space and time measured

for the hash table and Gk arrays (with variable length

reads option) on the Khoisan read collection. The gSA

has not been implemented to handle variable length

reads; note that the relative cost would have been simi-

lar to that observed with Gk arrays between fixed and

variable read length options. Here for one million reads,

variable length Gk arrays require 470 s. to build vs 428

s. for the hash table, but 8 times less memory (5.5 vs 46

GB). The difference increases strongly with the read

number. Above one million reads, the memory footprint

of the hash table exceeds the computer memory (which

is 48 GB), while Gk arrays index the complete collection

of 2.8 million reads on the same hardware with <15.6

GB. Hash tables appear to be more space consuming on

the Khoisan dataset than on the K562 dataset. This can

be explained by the nature of the data. Roche 454®

sequencers offer a coverage depth much lower than Illu-

mina’s. Hence the number of distinct k-factors in the

reads is likely to be greater with the Khoisan dataset.

Answering queries We measured the mean time needed

to answer 100,000 random queries of Q1-Q4. Since Q5-

Q7 are slight variations of Q1-Q3 we do not report on

these queries.

Figure 8 shows how the mean time for each solution

vary with the number of indexed reads (q) and k on the

K562 collection. Clearly, the influence of q is similar for

all solutions, and small compared to the differences

between solutions. Generally, gSA takes always longer

than the hash table irrespective of the query type, and it

also takes longer than Gk arrays for Q1-Q2 and Q4, and
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a similar time for Q3. The order between the hash table

and Gk arrays depends on the query type. They are

equally fast on Q1, the hash table does slightly better on

Q2, clearly better on Q3, while Gk arrays is much faster

on Q4. Anyway, for both the hash table and Gk arrays,

the mean running time is in the order of or less than 10

microseconds for Q1-Q3, and around 0.1 microsecond

for Q4 with the Gk arrays, meaning reasonable practical

times.

For our comparison of Gk arrays with fixed or variable

length read options, we see that the latter is becoming

slower than the former (up to 7 times slower) when k is

small, i.e. when the number of occurrences of k-mers is

large. With larger k, the query time of the latter

diminishes and becomes 2 to 3 times slower than with

fixed Gk arrays.

With variable length reads (Figure 7(c)) the query

times remain practical, but the hash table needs between

1 and 32 fold less time than Gk arrays depending on the

query.

In summary, under various conditions Gk arrays are

equivalent in construction time to a generalized Suffix

Array or to a hash table. Compared to these solutions,

they also offer reasonable query times under all circum-

stances; however, Gk arrays clearly outperform them in

terms of memory footprint, the main bottleneck for pro-

cessing High Throughput Sequencing data.

Conclusions

As High Throughput Sequencing becomes widespread,

computational biology will face the challenge of mana-

ging astronomical quantities of short sequences. Mining

such amount of sequences is feasible if the sequences

are indexed in a preprocessing step. An index is a data

structure that, like a telephone book, enables one to find

easily a piece of information. For some value k, it

records the positions of all k-mers in the reads in an

organized fashion to minimize the memory usage. Then

finding the reads related to some k-mer takes as long as

reading the k-mer and listing the corresponding reads,

but not as long as scanning all the reads. In other

words, read indexing factorizes the results of searches,

which later speeds up the numerous queries made while

the index is kept in memory. Our main contribution is

to propose such an index: the Gk arrays. They are fast

to build, require less space than alternative
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uncompressed solutions, and can thus handle larger

read collections: 40 million vs 20 million reads for the

hash tables with a memory limited to 48 GB. It is a key

issue in practice.

While being comparable to hash tables in terms of

time efficiency, only the Gk arrays can completely index

a large read collection (like the K562 dataset) with a

memory size available on nowadays computing servers.

Moreover, our index remains fast for a wide range of

values of parameter k (the length of k-mers). We have

also shown that Gk arrays are both faster and smaller

than an alternative generalized Suffix Array approach.

Similarly, on variable-length reads like a Roche 454®

dataset, Gk arrays can handle the whole read collection

using less than 16 GB while hash tables are limited to a

smaller sub-collection (about 1 million reads) on a 48

GB machine.

The Gk arrays answer efficiently different types of

queries, but they have been optimised for queries where

the searched k-mer is extracted from an indexed read.

Sometimes one wishes to know for a given k-mer the

reads in which it occurs and its positions inside those

(e.g. assembly), while in other contexts one only wants

the number of reads sharing this k-mer (e.g. estimation

of expression level). Moreover, Gk arrays adapt well to

variable length reads. Their scalability and versatility are

key advantages, which allows to envisage multiple appli-

cations as mentioned in Introduction. However, scaling

up to gigantic datasets (terabytes of data), as the ones

obtained in large metagenomic projects, will require

compressed read indexes. The simplicity of use of our

index, and its implementation as a C++ library make it

a software brick that can be easily exploited in future

programs or further developed by the community.

For mapping reads on a reference sequence, solutions

exist that index reads with hash tables [6,29]. For the

error correction problem, other works have indexed

reads with classical text indexing solutions: with a gen-

eralized suffix trie [15,30], a suffix array [31], or hash

tables [32]. Gk arrays represent a first, attractive read

indexing solution; it is specialised for this question and

should suit different applications. Nevertheless, one can

envisage several research perspectives. Indexing approxi-

mate k-mers or spaced seeds will authorize more types
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of queries, but will certainly increase the construction

time and space requirements. Designing a dynamic con-

struction algorithm for Gk arrays would futher enlarge

their range of applications. Another challenge is to com-

press Gk arrays by storing sampled positions and recom-

puting other positions at run time, as done with the

Burrows Wheeler transform [5]. This would enable the

user to adapt the index to its computer memory, while

sacrificing some of its performance.

Additional material

Additional File 1: Proof and queries’ algorithms.
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