Additional File 1: Proof and queries algorithms to manuscript "Querying huge read sets in main memory: a versatile data structure"

Nicolas Philippe, Mikaël Salson, Thierry Lecroq, Martine Léonard, Thérèse Commes, Eric Rivals

November 25, 2010

Additional table: elements of GkSA and their rank.

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
GkSA[i]	0	3	10	13	6	1	11	4	14	7	2	5	12	9	8
rank	0		1	2	3		4	5	6	7			8	9	

Table 1: GkSA with values of identical rank sorted by increasing values. Compared to Figure 1, values having rank 0 are now ordered and appear as 0, 3, 10 instead of 0, 10, 3.

Proof of Theorem 1

Proof of Theorem 1. We want to prove that Algorithm 1 correctly computes the arrays GkIFA and GkCFA.

Initialization on lines 2 to 4. GkSA[0] is the smallest *P*-suffix in the lexicographic order among the *P*-suffixes. Therefore, its lexicographic rank is initialized to 0 (line 4), which is recorded in variable t (line 2), and until now there is only one P_k -factor lexicographically ranked 0 (line 3).

Main loop on lines 5 to 12. The array GkSA, which stores the *P*-suffixes sorted in lexicographic order, is scanned from position 1 to position $\hat{q} - 1$. The rank of the previous P_k -factor is stored in t when entering the loop. Line 8 determines whether the current P_k -factor differs from the previous one. If it is so, t is incremented by since the current P_k -factor is the next one in lexicographic order. Moreover, its counter of occurrences, GkCFA[t], is initialized to zero (line 10). Hence, by induction, we know that t is the lexicographic rank of the current P_k -factor after line 10. In which case, it is recorded in entry j of GkIFA (line 11). Thus, GkIFA is correctly computed.

Moreover, each time a P_k -factor having rank t is encountered, its counter, GkCFA[t], is incremented by one (line 12). Hence, at the end of the algorithm GkCFA[t] correctly stores the number of occurrences of P_k -factor having rank t, as expected from its definition. This concludes the proof.

Algorithms for queries Q2, Q5-Q7

For each of these queries the input consits in a k-mer denoted f, which is known to occur at position j in C_R .

Al	Algorithm 1: Q2 $(\#Ind_k(f))$			
Ι	Data : $f \in \Sigma^k$, $j \in P_{\text{pos}}$ such that $C_R[j \dots j + k - 1] = f$			
F	Result : $#Ind_k(f)$, the cardinality of $Ind_k(f)$			
1 begin				
2	$t \longleftarrow GkIFA[j];$			
3	$\ell_f \longleftarrow GkCFPS[t-1];$			
4	$u_f \longleftarrow GkCFPS[t];$			
5	$\operatorname{prev} \longleftarrow -1;$			
6	$CIndk \leftarrow 0;$			
7	for each $i \in [\ell_f, u_f]$ do			
8	readIndex $\leftarrow \lfloor g^{-1}(GkSA[i])/m \rfloor;$			
9	$\mathbf{if} \ readIndex \neq prev \mathbf{then}$			
10	$CIndk \leftarrow CIndk + 1;$			
11	$prev \leftarrow readIndex;$			
12	return (CIndk);			

Algorithm 2: Q5 $(UInd_k(f))$

Data: $f \in \Sigma^k$, $j \in P_{\text{pos}}$ such that $C_R[j \dots j + k - 1] = f$ **Result**: The set $UInd_k(f)$, subset of $Ind_k(f)$ where f occurs only once 1 begin $UInd_k \longleftarrow empty set;$ $\mathbf{2}$ $t \leftarrow GkIFA[j];$ 3 $\ell_f \longleftarrow GkCFPS[t-1];$ $\mathbf{4}$ $u_f \longleftarrow GkCFPS[t];$ $\mathbf{5}$ $prev \longleftarrow \lfloor g^{-1}(GkSA[\ell_f])/m \rfloor;$ 6 $\operatorname{count} \longleftarrow 1;$ $\mathbf{7}$ for each $i \in \left]\ell_f, u_f\right[$ do 8 readIndex $\leftarrow \lfloor g^{-1}(GkSA[i])/m \rfloor;$ 9 if $readIndex \neq prev$ then 10 $\mathbf{if} \ \mathrm{count} = 1 \ \mathbf{then}$ 11 Add prev to $UInd_k$; 12 $\text{count} \longleftarrow 1;$ 13 prev \leftarrow readIndex; $\mathbf{14}$ \mathbf{else} $\mathbf{15}$ $\operatorname{count} \leftarrow \operatorname{count} + 1;$ $\mathbf{16}$ $\mathbf{if} \ \mathrm{count} = 1 \ \mathbf{then}$ $\mathbf{17}$ 18 Add prev to $UInd_k$; return $(UInd_k);$ 19

Algorithm 3: Q6 $(\# UInd_k(f))$

Data: $f \in \Sigma^k$, $j \in P_{\text{pos}}$ such that $C_R[j \dots j + k - 1] = f$ **Result**: $\# UInd_k(f)$, the cardinality of $UInd_k(f)$ 1 begin $\begin{array}{l} t \longleftarrow GkIFA[j];\\ \ell_f \longleftarrow GkCFPS[t-1]; \end{array}$ $\mathbf{2}$ 3 $u_f \longleftarrow GkCFPS[t];$ $\mathbf{4}$ prev $\leftarrow \lfloor g^{-1}(GkSA[\ell_f])/m \rfloor;$ $\mathbf{5}$ CUIndk $\leftarrow 0;$ 6 count $\leftarrow 1$; $\mathbf{7}$ for each $i \in \left]\ell_f, u_f\right[$ do 8 readIndex $\leftarrow \lfloor g^{-1}(GkSA[i])/m \rfloor;$ 9 if $readIndex \neq prev$ then 10 $\mathbf{if} \ \mathrm{count} = 1 \ \mathbf{then}$ 11 CUIndk \leftarrow CUIndk + 1; 1213 $\operatorname{count} \leftarrow 1;$ prev \leftarrow readIndex; $\mathbf{14}$ \mathbf{else} $\mathbf{15}$ $\operatorname{count} \leftarrow \operatorname{count} + 1;$ $\mathbf{16}$ $\mathbf{if} \ \mathrm{count} = 1 \ \mathbf{then}$ $\mathbf{17}$ CUIndk \leftarrow CUIndk + 1; 18 return (CUIndk); 19

Algorithm 4: Q7 $(UPos_k(f))$

Data: $f \in \Sigma^k$, $j \in P_{\text{pos}}$ such that $C_R[j \dots j + k - 1] = f$ **Result**: The set $UPos_k(f)$, subset of $Pos_k(f)$ where f occurs only once 1 begin $UPos_k \longleftarrow empty set;$ $\mathbf{2}$ $t \longleftarrow GkIFA[j];$ $\ell_f \longleftarrow GkCFPS[t-1];$ $u_f \longleftarrow GkCFPS[t];$ 3 $\mathbf{4}$ $\mathbf{5}$ prev $\leftarrow \lfloor g^{-1}(GkSA[\ell_f])/m \rfloor;$ posPrev $\leftarrow g^{-1}(GkSA[\ell_f]) \mod m;$ 6 $\mathbf{7}$ for each $i \in \left]\ell_f, u_f\right[$ do 8 readIndex $\leftarrow [g^{-1}(GkSA[i])/m];$ posInRead $\leftarrow g^{-1}(GkSA[i]) \mod m;$ 9 10 if $readIndex \neq prev$ then $\mathbf{11}$ Add the pair (prev, posPrev) to $UPos_k$; 12prev \leftarrow readIndex; 13 $\mathbf{14}$ $posPrev \leftarrow posInRead;$ return $(UPos_k);$ $\mathbf{15}$