
Additional File 1: Proof and queries algorithms

to manuscript ”Querying huge read sets in main

memory: a versatile data structure”

Nicolas Philippe, Mikaël Salson, Thierry Lecroq,
Martine Léonard, Thérèse Commes, Eric Rivals

November 25, 2010

Additional table: elements of GkSA and their
rank.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
GkSA[i] 0 3 10 13 6 1 11 4 14 7 2 5 12 9 8

rank 0 1 2 3 4 5 6 7 8 9

Table 1: GkSA with values of identical rank sorted by increasing values. Com-
pared to Figure 1, values having rank 0 are now ordered and appear as 0, 3, 10
instead of 0, 10, 3.

Proof of Theorem 1

Proof of Theorem 1. We want to prove that Algorithm 1 correctly computes the
arrays GkIFA and GkCFA.

Initialization on lines 2 to 4. GkSA[0] is the smallest P -suffix in the lexi-
cographic order among the P -suffixes. Therefore, its lexicographic rank is ini-
tialized to 0 (line 4), which is recorded in variable t (line 2), and until now there
is only one Pk-factor lexicographically ranked 0 (line 3).

Main loop on lines 5 to 12. The array GkSA, which stores the P -suffixes
sorted in lexicographic order, is scanned from position 1 to position q̂ − 1. The
rank of the previous Pk-factor is stored in t when entering the loop. Line 8
determines whether the current Pk-factor differs from the previous one. If it is
so, t is incremented by since the current Pk-factor is the next one in lexicographic
order. Moreover, its counter of occurrences, GkCFA[t], is initialized to zero
(line 10). Hence, by induction, we know that t is the lexicographic rank of the

1

current Pk-factor after line 10. In which case, it is recorded in entry j of GkIFA
(line 11). Thus, GkIFA is correctly computed.

Moreover, each time a Pk-factor having rank t is encountered, its counter,
GkCFA[t], is incremented by one (line 12). Hence, at the end of the algorithm
GkCFA[t] correctly stores the number of occurrences of Pk-factor having rank
t, as expected from its definition. This concludes the proof.

Algorithms for queries Q2, Q5-Q7

For each of these queries the input consits in a k-mer denoted f , which is known
to occur at position j in CR.

Algorithm 1: Q2 (#Indk(f))

Data: f ∈ Σk, j ∈ Ppos such that CR[j . . j + k − 1] = f
Result: #Indk(f), the cardinality of Indk(f)

1 begin
2 t←− GkIFA[j];
3 `f ←− GkCFPS[t− 1];
4 uf ←− GkCFPS[t];
5 prev←− −1;
6 CIndk←− 0;
7 foreach i ∈ [`f , uf [do
8 readIndex←− bg−1(GkSA[i])/mc;
9 if readIndex 6= prev then

10 CIndk←− CIndk + 1;
11 prev←− readIndex;

12 return (CIndk);

2

Algorithm 2: Q5 (UIndk(f))

Data: f ∈ Σk, j ∈ Ppos such that CR[j . . j + k − 1] = f
Result: The set UIndk(f), subset of Indk(f) where f occurs only once

1 begin
2 UIndk ←− empty set;
3 t←− GkIFA[j];
4 `f ←− GkCFPS[t− 1];
5 uf ←− GkCFPS[t];
6 prev←− bg−1(GkSA[`f])/mc;
7 count←− 1;
8 foreach i ∈]`f , uf [do
9 readIndex←− bg−1(GkSA[i])/mc;

10 if readIndex 6= prev then
11 if count = 1 then
12 Add prev to UIndk;

13 count ←− 1;
14 prev←− readIndex;

15 else
16 count←− count + 1;

17 if count = 1 then
18 Add prev to UIndk;

19 return (UIndk);

3

Algorithm 3: Q6 (#UIndk(f))

Data: f ∈ Σk, j ∈ Ppos such that CR[j . . j + k − 1] = f
Result: #UIndk(f), the cardinality of UIndk(f)

1 begin
2 t←− GkIFA[j];
3 `f ←− GkCFPS[t− 1];
4 uf ←− GkCFPS[t];
5 prev←− bg−1(GkSA[`f])/mc;
6 CUIndk←− 0;
7 count←− 1;
8 foreach i ∈]`f , uf [do
9 readIndex←− bg−1(GkSA[i])/mc;

10 if readIndex 6= prev then
11 if count = 1 then
12 CUIndk←− CUIndk + 1;

13 count←− 1;
14 prev←− readIndex;

15 else
16 count←− count + 1;

17 if count = 1 then
18 CUIndk←− CUIndk + 1;

19 return (CUIndk);

4

Algorithm 4: Q7 (UPosk(f))

Data: f ∈ Σk, j ∈ Ppos such that CR[j . . j + k − 1] = f
Result: The set UPosk(f), subset of Posk(f) where f occurs only once

1 begin
2 UPosk ←− empty set;
3 t←− GkIFA[j];
4 `f ←− GkCFPS[t− 1];
5 uf ←− GkCFPS[t];
6 prev←− bg−1(GkSA[`f])/mc;
7 posPrev←− g−1(GkSA[`f]) mod m;
8 foreach i ∈]`f , uf [do
9 readIndex←− bg−1(GkSA[i])/mc;

10 posInRead←− g−1(GkSA[i]) mod m;
11 if readIndex 6= prev then
12 Add the pair (prev, posPrev) to UPosk;
13 prev←− readIndex;
14 posPrev←− posInRead;

15 return (UPosk);

5

