Additional File 1: Proof and queries algorithms to manuscript "Querying huge read sets in main memory: a versatile data structure"

Nicolas Philippe, Mikaël Salson, Thierry Lecroq, Martine Léonard, Thérèse Commes, Eric Rivals

November 25, 2010

Additional table: elements of $G k S A$ and their rank.

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14 8 9
GkSA[i]	0	3	10	13	6	1	11	4	14	7	2	5	12	9	
rank	0			1	2		3	4	5	6		7		8	

Table 1: GkSA with values of identical rank sorted by increasing values. Compared to Figure 1, values having rank 0 are now ordered and appear as $0,3,10$ instead of $0,10,3$.

Proof of Theorem 1

Proof of Theorem 1. We want to prove that Algorithm 1 correctly computes the arrays GkIFA and GkCFA.

Initialization on lines 2 to 4 . $\operatorname{GkSA}[0]$ is the smallest P-suffix in the lexicographic order among the P-suffixes. Therefore, its lexicographic rank is initialized to 0 (line 4), which is recorded in variable t (line 2), and until now there is only one P_{k}-factor lexicographically ranked 0 (line 3).

Main loop on lines 5 to 12 . The array $G k S A$, which stores the P-suffixes sorted in lexicographic order, is scanned from position 1 to position $\hat{q}-1$. The rank of the previous P_{k}-factor is stored in t when entering the loop. Line 8 determines whether the current P_{k}-factor differs from the previous one. If it is so, t is incremented by since the current P_{k}-factor is the next one in lexicographic order. Moreover, its counter of occurrences, $G k C F A[t]$, is initialized to zero (line 10). Hence, by induction, we know that t is the lexicographic rank of the
current P_{k}-factor after line 10 . In which case, it is recorded in entry j of GkIFA (line 11). Thus, GkIFA is correctly computed.

Moreover, each time a P_{k}-factor having rank t is encountered, its counter, $G k C F A[t]$, is incremented by one (line 12). Hence, at the end of the algorithm $G k C F A[t]$ correctly stores the number of occurrences of P_{k}-factor having rank t, as expected from its definition. This concludes the proof.

Algorithms for queries Q2, Q5-Q7

For each of these queries the input consits in a k-mer denoted f, which is known to occur at position j in C_{R}.

```
Algorithm 1: Q2 \(\left(\# \operatorname{Ind}_{k}(f)\right)\)
    Data: \(f \in \Sigma^{k}, j \in P_{\text {pos }}\) such that \(C_{R}[j \ldots j+k-1]=f\)
    Result: \# \(\operatorname{Ind}_{k}(f)\), the cardinality of \(\operatorname{Ind}_{k}(f)\)
    begin
        \(t \longleftarrow G k I F A[j] ;\)
        \(\ell_{f} \longleftarrow G k C F P S[t-1] ;\)
        \(u_{f} \longleftarrow G k C F P S[t] ;\)
        prev \(\longleftarrow-1\);
        CIndk \(\longleftarrow 0\);
        foreach \(i \in\left[\ell_{f}, u_{f}[\right.\) do
            readIndex \(\longleftarrow\left\lfloor g^{-1}(G k S A[i]) / m\right\rfloor ;\)
            if readIndex \(\neq\) prev then
                CIndk \(\longleftarrow\) CIndk + 1;
                prev \(\longleftarrow\) readIndex;
        return (CIndk);
```

```
Algorithm 2: Q5 \(\left(\operatorname{UInd}_{k}(f)\right)\)
    Data: \(f \in \Sigma^{k}, j \in P_{\text {pos }}\) such that \(C_{R}[j \ldots j+k-1]=f\)
    Result: The set \(\operatorname{UIn}_{k}(f)\), subset of \(\operatorname{Ind}_{k}(f)\) where \(f\) occurs only once
    begin
        \(U I n d_{k} \longleftarrow\) empty set;
        \(t \longleftarrow G k I F A[j] ;\)
        \(\ell_{f} \longleftarrow G k C F P S[t-1] ;\)
        \(u_{f} \longleftarrow G k C F P S[t]\);
        prev \(\longleftarrow\left\lfloor g^{-1}\left(G k S A\left[\ell_{f}\right]\right) / m\right\rfloor ;\)
        count \(\longleftarrow 1\);
        foreach \(i \in] \ell_{f}, u_{f}[\) do
            readIndex \(\longleftarrow\left\lfloor g^{-1}(G k S A[i]) / m\right\rfloor\);
            if readIndex \(\neq\) prev then
                if count \(=1\) then
                Add prev to \(U I n d_{k} ;\)
                count \(\longleftarrow 1\);
                prev \(\longleftarrow\) readIndex;
            else
            count \(\longleftarrow\) count +1 ;
        if count \(=1\) then
            Add prev to UInd \(_{k}\);
        return \(\left(U I n d_{k}\right)\);
```

```
Algorithm 3: Q6 (\#UInd \({ }_{k}(f)\) )
    Data: \(f \in \Sigma^{k}, j \in P_{\text {pos }}\) such that \(C_{R}[j \ldots j+k-1]=f\)
    Result: \# \(\operatorname{UInd}_{k}(f)\), the cardinality of \(\operatorname{UInd}_{k}(f)\)
    begin
        \(t \longleftarrow G k I F A[j] ;\)
        \(\ell_{f} \longleftarrow G k C F P S[t-1] ;\)
        \(u_{f} \longleftarrow G k C F P S[t]\);
        prev \(\longleftarrow\left\lfloor g^{-1}\left(G k S A\left[\ell_{f}\right]\right) / m\right\rfloor\);
        CUIndk \(\longleftarrow 0\);
        count \(\longleftarrow 1\);
        foreach \(i \in] \ell_{f}, u_{f}[\) do
            readIndex \(\longleftarrow\left\lfloor g^{-1}(G k S A[i]) / m\right\rfloor\);
            if readIndex \(\neq\) prev then
                if count \(=1\) then
                CUIndk \(\longleftarrow\) CUIndk +1 ;
            count \(\longleftarrow 1\);
            prev \(\longleftarrow\) readIndex;
            else
            count \(\longleftarrow\) count +1 ;
        if count \(=1\) then
            CUIndk \(\longleftarrow\) CUIndk +1 ;
        return (CUIndk);
```

```
Algorithm 4: Q7 ( \(\operatorname{UPos}_{k}(f)\) )
    Data: \(f \in \Sigma^{k}, j \in P_{\text {pos }}\) such that \(C_{R}[j \ldots j+k-1]=f\)
    Result: The set \(U \operatorname{Pos}_{k}(f)\), subset of \(\operatorname{Pos}_{k}(f)\) where \(f\) occurs only once
    begin
        \(U P o s_{k} \longleftarrow\) empty set;
        \(t \longleftarrow G k I F A[j] ;\)
        \(\ell_{f} \longleftarrow G k C F P S[t-1] ;\)
        \(u_{f} \longleftarrow G k C F P S[t]\);
        prev \(\longleftarrow\left\lfloor g^{-1}\left(G k S A\left[\ell_{f}\right]\right) / m\right\rfloor\);
        posPrev \(\longleftarrow g^{-1}\left(G k S A\left[\ell_{f}\right]\right) \bmod m\);
        foreach \(i \in] \ell_{f}, u_{f}[\) do
            readIndex \(\longleftarrow\left\lfloor g^{-1}(G k S A[i]) / m\right\rfloor\);
            posInRead \(\longleftarrow g^{-1}(G k S A[i]) \bmod m\);
            if readIndex \(\neq\) prev then
                Add the pair (prev, posPrev) to \(U P o s_{k}\);
                prev \(\longleftarrow\) readIndex;
                posPrev \(\longleftarrow\) posInRead;
        return ( \(U P o_{k}\) );
```

