
HAL Id: lirmm-00635866
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00635866v1

Submitted on 26 Oct 2011 (v1), last revised 22 Sep 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Sentence to Concept
Anne Preller

To cite this version:
Anne Preller. From Sentence to Concept. E. Grefenstette, C. Heunen, and M. Sadrzadeh. Categorical
Information Flow in Physics and Linguistics, Oxford University Press, pp.247–271, 2012. �lirmm-
00635866v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00635866v1
https://hal.archives-ouvertes.fr

From Sentence to Concept

Predicate Logic and Quantum Logic in Compact Closed Categories

Anne Preller ∗

Abstract

The compositional functional logical models of natural language are
recast as compact closed categories. Composition is based on the geomet-
rical representation of information flow characteristic for these categories.
The functional logical interpretation of (strings of) words is carried over
to projectors in a finite tensor product of 2-dimensional spaces such that
the truth of a sentence is equivalent to the truth of the corresponding
projector.

Examples include sentences with compound noun phrases involving
quantifiers, adjectives and negation.

Keywords: Compact closed categories, quantum logic, concept spaces, two-sorted first order

logic, compositional semantics, pregroup grammars, proof graphs, compound noun-phrases

1 Introduction

The present work attempts to relate two semantic representations of natural
language, the functional logical models and the distributional vector models.
The former deals with individuals and their properties, the latter with concepts
and how they can be approximated.

Montague semantics and similar functional logical models for natural lan-
guage are extensional and compositional. Meaningful expressions designate in-
dividuals, sets of individuals, functions from and to (sets of) individuals, truth-
value functions and so on. The meaning of a grammatical string of words is
computed from the meanings of the constituents using functional application or
composition. This semantics requires prior grammatical analysis where every
word contributes to the meaning, including ‘noise’ like negation, determiners,
quantifiers, relative pronouns , etc.

The semantic vector models are based on the principle that the content of
a word is measured in relation to the content of other words. They handle
probabilistic estimations of concepts. Words, with the exclusion of ‘noise’, are
represented by vectors in a finite dimensional space over the field of real numbers.
Frequency counts of co-occurrences with other words determine the coordinates

∗LIRMM, 161 rue Ada, 34194 Montpellier, France. E-mail: preller@lirmm.fr

1

of a word. Semantic vector models excel in detecting similarity of words. They
confound opposites.

Compositionality of vector semantics remains an open question and is subject
of intensive research.

One approach to compositionality is quantum logic on the lattice of projec-
tors of Hilbert spaces, see [Rijsbergen, 2004] for an overview oriented towards
information retrieval or [Widdows, 2004] for a discussion of geometric properties
of meaning. There is, however, no general algorithm that transforms a string
of word into a vector respecting the logic. Another approach is composition of
vectors by the tensor product, [Smolensky, 1988] invoking computational prin-
ciples of cognitive science, or [Clark and Pulman, 2007] and [Clark et al., 2008]
using syntactical analysis. Again, ‘noise’ is not included in composition.

The present work outlines a method that takes into account the logical con-
tent of ‘noise’ and transforms the compositional extensional representation into
a conceptual representation. Both representations are based on biproduct dag-
ger compact closed categories.

On one hand, a concept space, that is to say a tensor product of two-
dimensional spaces, hosts both the words (concepts) and their probabilistic ap-
proximations. Concept spaces are the linguistic pendent to compound systems
in quantum mechanics.

On the other hand, the logical functional representations of (strings of) words
are also recast as vectors. These vectors are, roughly speaking, the names of
the functions representing the words. Their construction involves syntactical
analysis by a pregroup grammar, [Lambek, 1999].

Pregroup calculus, also known as compact bilinear logic, [Lambek, 1993], is
a simplification of the syntactic calculus by the same author, [Lambek, 1958].
Compact bilinear logic ‘compacts’ the higher order of categorial grammars into
second order logic with general models, or equivalently, into two-sorted first
order logic, [Benthem and Doets, 1983]. Moreover, the category of types and
proofs of compact bilinear logic is the free compact 2 -category , [Preller and
Lambek, 2007].

Categorical semantics in compact 2-categories for pregroup grammars was
first proposed in [Preller, 2005], reformulated in [Preller, 2007] in terms of func-
tions in two-sorted first order logic. This reformulation rests on the fact that sets
and two-sorted functions form a compact closed category. The embedding of
the category of two-sorted functions in the category of semi-modules over a real
interval, [Preller and Sadrzadeh, 2011], establishes the connection to semantic
vector models.

The formulation of functional logic in a biproduct dagger compact closed
category has been chosen to facilitate a comparison with quantum logic. It
is based on [Abramsky and Coecke, 2004], casting quantum mechanics in the
abstract setting of a biproduct dagger compact closed category. The result is an
embedding of functional two-sorted first order logic into the lattice of projectors
of concept spaces.

Section (2) introduces the semantical and syntactical categories. The cate-
gory of two-sorted functions follows in Section 3 with its two-sorted first order

2

logic. An embedding transfers them to an arbitrary bicategory dagger compact
closed category.

The algorithm in Section 4 composing meanings of strings from meanings of
words is based on syntactical analysis. Examples from natural language provide
the graphs depicting the computation of the meaning by ‘information flow’.

Concept spaces and the logical properties of their intrinsic projectors are
investigated in Section 5. Subsections 5.1 and 5.2 deal with propositional logic
and predicate logic. The truth preserving one-one correspondence between pred-
icates on and intrinsic projectors of concept spaces is the subject of 5.3. This
correspondence is used in Section 5.4 to compute the meaning of strings di-
rectly in concept spaces and to view arbitrary word vectors as a probabilistic
approximation of concepts.

2 Notations, basic properties

Natural language processing involves both syntactical analysis and logical rep-
resentation. Both can be formulated in the language of compact bicategories,
also known as non-symmetric star autonomous categories.

Throughout this paper, the syntactical category is a freely generated compact
bicategory. It is not symmetric.

The semantic category C is any biproduct dagger compact closed category
in which all objects have a chosen finite basis, for example the category IR of
free semi-modules generated by finite sets over the lattice of the real interval
[0, 1] .

2.1 The syntactical category

The syntactical category C2(B) is the free compact bicategory generated by a
category B. It is notationally convenient to replace the canonical associativity
and unit isomorphisms by identities, for example A⊗ (B ⊗ C) = (A⊗B)⊗ C,
A⊗I = A = I⊗A . Strictly speaking, the bicategory is treated like a 2 -category .

Saying that aa bicategory is compact means that every 1-cell A has a left
adjoint Aℓ and a right adjoint Ar. Let ηA : I → Ar ⊗ A be the unit and
ǫA : A ⊗ Ar → I the counit for the right adjoint. Then A ≃ Aℓr is a right
adjoint to Aℓ so that ηAℓ : I → A ⊗ Aℓ and ǫAℓ : Aℓ ⊗ A → I act as unit and
counit for the right adjunction of A to Aℓ and to the left adjunction of Aℓ to A.

Starting with any 1-cell A that is an object of B, one obtains the iterated
right adjoints Aℓ, Aℓℓ, Aℓℓℓ, . . . and the iterated left adjoints Ar, Arr, Arrr, . . .

of A, but no mixed adjoints, because Aℓr and Arℓ are both isomorphic to A.
The morphisms, i.e. the 2-cells of C2(B), are represented by graphs where

the vertices are objects of B and the oriented links are labelled by morphisms

3

of B. Examples are

ηA =

I

1A
##

Ar ⊗ A

, ηAℓ =

I

}}
1A

A ⊗ Aℓ

, ǫA =

I

1A

;;A ⊗ Ar

, ǫAℓ =

I

ee
1A

Aℓ ⊗ A

NOTE: graphs display the domain of the morphism above, the codomain below.
In the case where the label is an identity, it is in general omitted. An

arbitrary f : A → B ∈ B also creates labels for links, for example

pfq =

I

f

##
Ar ⊗ B

, (f ⊗ 1Aℓ) ◦ ηAℓ =

I

}}
f

B ⊗ Aℓ

, xfy =

I

f

;;A ⊗ Br

, etc.

NOTE: The labels of the links are morphisms of B . Stripping the tail of the
link of its adjoints, we obtain the domain of the label in B . Similarly, the head
without the adjoints is the codomain of the label.

Composition of morphism is computed by connecting the graphs at the joint
interface and walking paths, picking up and composing the labels in the order
in which they appear.

Here are few examples where f : A → B, g : B → C

f ℓ =

Aℓ

Bℓ

f

OO

= Bℓ ⊗ B ⊗ Aℓ

Bℓ

Aℓ

??
�������

ee
~~

f

>>

~~
~~

~~
~

= (ǫBℓ ⊗ 1Aℓ) ◦ (1Bℓ ⊗ ((f ⊗ 1Aℓ) ◦ ηAℓ))

Recall: the domain of the morphism f ℓ represented by the graph is the top line,
the codomain is the bottom line, i.e. f ℓ : Bℓ → Aℓ .

ǫBℓ ◦ (1Bℓ ⊗ f) =

I

eeBℓ ⊗ B

Bℓ ⊗ AOO

f

�� =

I

ee
f

Bℓ ⊗ A

=

I

eeAℓ ⊗ A

Bℓ ⊗ A

f

OO

�� = ǫAℓ ◦ (f ℓ ⊗ 1A)

An equality of graphs is far easier to compute than the equality of the cor-
responding algebraic expressions. For example, the equality (xfy⊗ 1C) ◦ (1A ⊗

4

pgq) = g ◦ f = (1C ⊗ (ǫBℓ ◦ (1Bℓ ⊗ f))) ◦ (((g ⊗ 1Bℓ) ◦ ηBℓ) ⊗ 1A) : A → C is
proved thus

A ⊗ Br ⊗ C

A

����
��

��
��

f

;;

g

""

C
����

��
��

=

A

C

g◦f

��

= C ⊗ Bℓ ⊗ A

A

��9
99

99
99

9

��
g

aa

f

C
��=

==
==

=
.

NOTE: Links do not cross in the graphs representing morphisms of the
syntactical category.

The benefit of orienting and labelling links will become evident through the
examples of natural language processing in Section 4.1.

2.2 The semantic category

The general definitions and properties of biproduct dagger compact closed cat-
egories can be found in [Selinger, 2007]or [Abramsky and Coecke, 2004]. Here
they are used in particular in IR, which is tailored to natural language seman-
tics.

Denote IR the category of free semi-modules over the lattice of the real
interval [0, 1] generated by finite sets. Its importance to natural language pro-
cessing resides in the fact that the coordinates of word vectors are obtained by
frequency counts of co-occurrences of words in text-windows.

Recall that the linear order on the real numbers in [0, 1] induces a distributive
and implication-complemented lattice structure on [0, 1], namely

α ∨ β = max {α, β} and α ∧ β = min {α, β}
α → β = max {γ ∈ I : α ∧ γ ≤ β}

¬α = α → 0 .

This lattice is not Boolean, because ¬¬α = 1 6= α for 0 < α < 1 . The set {0, 1},
however, forms a Boolean algebra.

The lattice operations define a semiring structure on [0, 1] with neutral ele-
ment 0 and unit 1 by

α+ β = α ∨ β α · β = α ∧ β .

Basic properties

Objects of an arbitrary biproduct dagger compact closed category are called
spaces, morphisms linear maps, and linear maps v : I → V vectors of V . Write
v ∈ V for vectors v : I → V and f(v) ∈ W for f ◦v : I → W , where f : V → W .

Vectors b1, . . . , bn of V form a basis of V if every vector of V can be written
in a unique way as a linear combination of the vectors b1, . . . , bn . A space is

5

n-dimensional if it has a basis of cardinality n. The dimension is unique. A
space with chosen basis B = b1, . . . , bn is denoted VB .

All spaces are assumed to be finite dimensional from now on.
Linear maps identify with matrices such that multiplication of matrices

corresponds to composition of maps. Indeed, let A = a1, . . . , am and B =
b1, . . . , bn . A linear map f : VA → VB is determined by its values on the basis
vectors a1, . . . , am ∈ A and is characterized by the matrix (φij) where φij ∈ I

is the i-th coordinate of f(aj) =
∑n

i=1 φijbi . Such matrices can be identified
with vectors in VA⊗WB , because the tensor product VA⊗WB has basis vectors
ai ⊗ bj , for i = 1, . . . ,m and j = 1, . . . , n .

The inner product 〈v|w〉 of vectors v =
∑m

j=1 αjaj and u =
∑m

j=1 βjaj in
RI is given by

〈v|u〉 = 〈
m
∑

j=1

αjaj |
m
∑

j=1

βjaj〉 =
m
∑

j=1

α
†
jβj .

Vectors are orthogonal if 〈v|u〉 = 0 . In the case of RI, we have α = α† for
all scalars α ∈ [0, 1] . Hence vectors with coordinates in [0, 1] are orthogonal in
RI exactly when they are orthogonal in the category of Hilbert spaces.

The category of semimodules IR is a biproduct dagger compact closed cat-
egory with monoidal unit I = [0, 1] . Every object V of RI has a unique finite
basis A, which we express by V = VA . It is its own adjoint, VA = V ∗

A. The unit
ηVA

: I → VA ⊗ VA and counit εVA
: VA ⊗ VA → I of the adjunction are given

by

ηVA
(1) =

∑

a∈A

a⊗ a εVA
(a⊗ b) =

{

1 if a = b

0 else
= 〈a|b〉 .

The name and coname of f : VA → VB are defined by

pfq(1) =
∑

a∈A a⊗ f(a)
xfy(a⊗ b) = 〈f(a)|b〉 for a ∈ A, b ∈ B .

By definition, VA = V
†
A . The adjoint of f : VA → VB is the morphism f∗ = f†

induced by the transpose of the matrix of f .

The logic of vectors

Vectors of any space VB inRI are partially ordered by the product order of [0,1] .

The null vector
−→
0 (with coordinates all equal to 0) is the smallest and the full

vector
−→
1 (with coordinates all equal to 1) the largest vector. Accordingly, the

logical connectives defined on [0,1] introduce logical connectives on VB , defined
coordinate by coordinate

¬
n
∑

i=1

αibi =

n
∑

i=1

(¬αi)bi, (
∑

i

αibi) ∧ (
∑

j

βjbj) =
∑

i

(αi ∧ βi)bi etc. (1)

6

Lemma 1. The vector connectives define a distributive, implication comple-
mented lattice structure on VB such that the following equivalences hold

¬¬v = v ⇐⇒ v ∨ ¬v =
−→
1 ⇐⇒ the coordinates of v are 0 or 1 . (2)

Definition 1 (Boolean vector). A vector v =
∑n

i=1 αibi is Boolean if αi ∈
{0, 1}, for i = 1, . . . , n .

Vector connectives can be defined on Boolean vectors in any semantic cate-
gory. The scalars 0, 1 identify with 00I : 0 → I and 1I : I → I. The connectives
¬, ∧ etc. are explicitly defined operators on the set {0, 1} by

¬0 = 1,¬1 = 0 and 1 ∧ 1 = 1, 0 ∧ 0 = 1 ∧ 0 = 0 ∧ 1 = 0, etc.

They lift to the Boolean vectors as indicated in (1). The following properties
hold in all semantic categories
1. the Boolean vectors together with the logical vector connectives form a

Boolean algebra
2. every Boolean v defines a unique subset K ⊆ B such that v =

∑

b∈K b and
vice versa

3. the linear map ∧ : VB ⊗ VB → VB satisfying

∧(b⊗ b) = b, ∧(b⊗ b′) =
−→
0 , for b 6= b′ ∈ B

coincides with vector conjunction on all Boolean vectors.
In RI, vector conjunction coincides everywhere with the linear map defined in
Item 3.

The logic of projectors

Let C be any semantic category and E an n-dimensional space with chosen basis
B = b1, . . . , bn .

Recall that a morphism p : E → E is a projector if it is idempotent and
self-adjoint

p ◦ p = p, p† = p .

In RI, the latter equality means that the matrix of p is symmetric.
Every projector p determines a subspace, namely the set of vectors invariant

under p
Ep = {w : w = p(w)} = p(E) .

The subspaces of Hilbert spaces are in one-one correspondence with projec-
tors. Hence the quantum connectives are defined on the set of projectors/subspaces
thus

¬Ep = E⊥
p , Ep ∨ Eq = Ep + Eq, Ep ∧ Eq = Ep◦q,

Ep → Eq = {u : q(p(u)) = p(u)} .

They induce a lattice structure on the set of projectors such that p ≤ q is equiv-
alent to p∧ q = q, see [Rijsbergen, 2004]. Thinking of projectors as propositions

7

and of 1E as the true proposition, the equality p → q = 1E is read as ‘p implies
q’. This lattice is not distributive in general.

This approach is not possible in the general case. A two-dimensional space
of V{a1,a2} in IR has subspaces that are not image of any projector. An example
is the subspace generated by the vectors u = αa1, v = βa2, w = γa1 + βa2,
where 0 < β < α < γ ≤ 1 . We need a property that connects subspaces and
projectors in an arbitrary semantic category.

Definition 2 (Intrinsic morphism). A linear map of C is intrinsic if it sends
every basis vector to a basis vector or to the null vector.

Intrinsic linear maps are closed under composition.

Lemma 2. A projector p : E → E is intrinsic if and only if

p(bi) = bi or p(bi) =
−→
0 , for i = 1, . . . , n . (3)

Proof. Let p be an intrinsic projector and (πij) its matrix. This matrix is
symmetric, because p is self-adjoint and the entries πij are 0 or 1 .

We must show that p(bk) = bl implies k = l . From p(bk) = bl follows
p(bl) = bl, because p is idempotent. The latter equality implies πll = 1 and
πil = 0 for i 6= l . Moreover, p(bk) = bl implies πlk = 1 and πik = 0 for i 6= l .
By symmetry, πkl = 1. Hence k = l .

One consequence is that every intrinsic projector has the form
∑

k∈K |bk〉〈bk|
where K ⊆ {1, . . . , n}. Recall that |bi〉〈bi| maps bi to itself and every other basis
vector to the null vector, for i = 1, . . . , n.

Intrinsic projectors map Boolean vectors to Boolean vectors. The composi-
tion q ◦ p of intrinsic projectors p : E → E and q : E → E is again an intrinsic
projector satisfying

(q ◦ p)(x) = q(x) ∧ p(x), for all x ∈ B .

Intrinsic projectors behave well: there is a one-one correspondence between
intrinsic projectors, subspaces generated by a subset of basis vectors and Boolean
vectors.

Let v = α1b1 + · · ·+ αnbn be a Boolean vector of E. Define the linear map
pv : E → E by its values on the basis vectors

pv(bi) = αibi, for i = 1, . . . , n . (4)

Remark 1.

1. pv is an intrinsic projector

2. pv(w) = v ∧ w for every Boolean vector w; in particular pv(
−→
1) = v

3. the map v 7→ pv is one-one
4. p−→

1
= 1E

Lemma 3. For every intrinsic projector p there is a Boolean vector v such that
p = pv . For every Boolean vector v, the subspace Epv

of vectors invariant under
pv coincides with the subspace generated by the basis vectors bi satisfying bi ≤ v .

8

Proof. Let p be an intrinsic projector. Define

K = {k : p(bk) = bk &1 ≤ k ≤ n} and v =
∑

k∈K

bk .

Then p(bi) = pv(bi), for i = 1, . . . , n . Hence the map v 7→ pv is onto the
intrinsic projectors of E. Moreover, Ep is generated by the set of basis vectors
{bk : k ∈ K} and bi ≤ v if and only if i ∈ K .

Theorem 1. The map v 7→ pv is a negation preserving lattice isomorphism H

from the Boolean vectors onto the intrinsic projectors of E such that H(
−→
1) =

1E .

Proof. Writing Ev = Epv
, we must prove that

Ev
⊥ = E¬v, Ev ∨ Ew = Ev∨w, pv ◦ pw = pv∧w, Ev → Ew = Ev→w .

The first two equalities are straight forward. The third equality pv ◦ pw = pv∧w

is equivalent to pv ◦pw(
−→
1) = pv∧w(

−→
1), which follows from Remark 1. To prove

the last equality, let v =
∑n

i=1 αibi, w =
∑n

i=1 βibi be Boolean vectors. Then
v → w =

∑n

i=1 (¬αi ∨ βi)bi . Let u =
∑n

i=1 γibi ∈ Ev→w be arbitrary. Then
u = pv→w(u) . The latter equality is equivalent to the condition ‘if αi = 1 and
βi = 0 then γi = 0, for i = 1, . . . , n’. On the other hand, u ∈ Ev → Ew =
{u : pw(pv(u)) = pv(u)} if and only if αiγi = αiβiγi for i = 1, . . . , n .

It follows that the sublattice of intrinsic projectors is Boolean. Moreover,
intrinsic projectors are monotone increasing on Boolean vectors.

If E is a space of IR the equalities (4) define a projector for every vector v
of E. The intrinsic projectors are exactly those defined by Boolean vectors.

3 Two-sorted first order logic in compact closed

categories

The relevance of two-sorted first order logic for natural language is due to the
fact that it is equivalent to second order logic with general models, see [Benthem
and Doets, 1983], and a wide spread belief that second order logic suffices for
natural language semantics.

3.1 The category of two-sorted functions

Two-sorted functions are tailored to natural language in the sense that they
accept both elements (sort 1) and sets (sort 2) as arguments. In a similar way,
verbs accept both singulars and plurals. Functions in two-sorted first order logic
were introduced in [Preller, 2007]. The presentation below follows [Preller and
Sadrzadeh, 2011].

9

Definition 3 (Two-sorted function). A function f : A → B is two-sorted if
it maps elements and subsets of A to elements or subsets of B and satisfies

f({a}) = f(a) for a ∈ A

f(∅) = ∅
f(X ∪ Y) = f(X) ∪ f(Y) for X,Y ⊆ A .

(5)

Obviously, a two-sorted function defined on a finite set is determined by its
values on the elements. An example is the two-sorted identity

1A(a) = a, for a ∈ A

1A(X) = X, for X ⊆ A .

Lemma 4. The category 2SF of finite sets and two-sorted functions is a dagger
biproduct compact closed category.

Proof. The biproduct is the disjoint union of sets. Hence VA = A for every
finite set A .

The monoidal structure is given by the cartesian product of sets. A two-
sorted notation for the Cartesian product brings the same notational advantages
as the tensor product

a×2 b = 〈a, b〉
a×2 B = {a} ×B

A×2 b = A× {b}
A×2 B = A×B .

The two-sorted product f×2 g : A×2C → B×2D for f : A → B and g : C → D

is determined by it values on the elements of A×2 C, namely

(f ×2 g)(a×2 b) = f(a)×2 g(b), for a ∈ A, b ∈ C .

The monoidal unit is the singleton set I = {a0} .
Every object is its own adjoint, A = A∗ = A†, the unit ηA : I → A×A and

counit εA : A×A → I of the adjunction are given by

ηA(a0) = {a×2 a : a ∈ A} εA(a×2 b) =

{

a0 if a = b

∅ else

The name, coname, dual and dagger of f : A → B are given by

pfq(a0) = {a×2 b : f(a) = b or b ∈ f(a), a ∈ A, b ∈ B}

xfy(a×2 b) =

{

a0 if f(a) = b or b ∈ f(a)

∅ else

f∗(b) = {a ∈ A : f(a) = b or b ∈ f(a)} = f†(b) .

The category 2SF has an abundance of projectors. Here is an example.

10

Example 1. A two-sorted projector that is not intrinsic.

The two-sorted function p : {a, b} → {a, b} defined by

p(a) = {a, b} and p(b) = {a, b}

is a projector in 2SF . The corresponding matrix is

(πij) =

(

1 1
1 1

)

.

The same matrix induces an endomorphism in any two-dimensional space. It is
again a projector in RI, but not in a Hilbert space, because it is not idempotent
when viewed as a linear map of Hilbert spaces.

Luckily, the semantics of natural language only involves intrinsic projectors
which live in every semantic category. The characterization of intrinsic projec-
tors (3) is equivalent in 2SF to

p(Y) = {x ∈ B : p(x) = x} ∩ Y, for every Y ⊆ B . (6)

3.2 The embedding

Given a set A = {a1, . . . , am}, define a map JA defined for elements and subsets
of A with values in the space VA by declaring for X ⊆ A and a ∈ A

JA(X) =
∑

a∈X

a, JA(a) = a . (7)

The map JA has an inverse J−1
A that sends a sum of distinct basis vectors

in VA to the corresponding subset of A, i.e. for {i1, . . . , ik} ⊆ {1, . . . , n}

J−1
A (

∑

j=1,...,k

aij) = {ai1 , . . . , aik} . (8)

The following holds for every Boolean vector v ∈ VA and every X ⊆ A

J−1
A ◦ JA(X) = X

JA ◦ J−1
A (v) = v .

In fact, JA is an isomorphism of Boolean algebras that maps subsets of A
onto Boolean vectors of VA . Indeed, JA commutes with the logical connectives

JA(X ∪ Y) = JA(X) ∨ JA(Y)
JA(X ∩ Y) = JA(X) ∧ JA(Y)
JA(A \X) = ¬JA(X)

, for X,Y ⊆ A

Finally, for any finite set A
J (A) = VA , (9)

11

for any two-sorted function f : A → B the linear map J (f) : VA → VB is
defined by

J (f)(a)=JB(f(a)) for a ∈ A . (10)

The restriction of J (f) : VA → VB to Boolean vectors is a Boolean homo-
morphism in RI, because vector disjunction coincides with vector addition in
this category .

Definitions (7) -(10) make sense in the category of finite dimensional Hilbert
spaces as well. The maps JA are Boolean isomorphisms, but the linear map
J (f) is not a homomorphism when restricted to Boolean vectors.

The following Embedding Lemma is one of the reasons why RI is especially
appropriate for natural language semantics.

Lemma 5 (Embedding Lemma). The map J : 2SF → RI is a one-one functor
that preserves the biproduct dagger compact closed structures and the logical
connectives.

The restriction of J to the subcategory of intrinsic maps is a functor in an
arbitrary semantic category.

Proof. The proof is straight forward and essentially that given in [Preller and
Sadrzadeh, 2011].

Only the equality J (g ◦ f) = J (g) ◦J (f), which holds in RI, does not hold
in an arbitrary semantic category unless both f and g are intrinsic.

Indeed, let f ′(a) = f(a) if f(a) is a set and f ′(a) = {f(a)} if f(a) is an
element. Define g′(b) similarly and let K =

⋃

b∈f ′(a) g
′(b) . Then on one hand,

(g ◦ f)(a) =
⋃

b∈f ′(a)

⋃

c∈g′(b)

{c} =
⋃

c∈K

{c} and therefore J (g ◦ f)(a) =
∑

c∈K

c .

On the other hand, J (f)(a) = JB(f(a)) =
∑

b∈f ′(a) b . Hence

J (g) ◦ J (f)(a) =
∑

b∈f ′(a)

J (g)(b) =
∑

b∈f ′(a)

∑

c∈g′(b)

c =
∑

c∈K

c . (11)

The rightmost equality of (11) holds in RI, because vector addition is idem-
potent. This is not the case in an arbitrary semantic category, see Example
1.

If f and g are intrinsic, however, they map elements to elements or to the
empty set. Hence the sets f ′(a) and g′(b) are either empty or singleton sets and
the equalities (11) above hold. Hence again J (g) ◦ J (f) = J (g ◦ f) .

3.3 Two-sorted truth

Let S be a fixed two-dimensional space of the semantic category C and ⊤ and
⊥ its two basis vectors. Think of ⊤ as ‘true’ and of ⊥ as ‘false’. The Boolean
vectors of S are called two-sorted truth-values. The basis vectors are of sort 1,

the null-vector
−→
0 and the full vector

−→
1 = ⊤ + ⊥ of sort 2. The null-vector

12

stands for ‘neither true nor false’ and ⊤ + ⊥ for ‘partly true and partly false’.
Two-sorted truth-values reflect second order properties of natural language, see
Subsection 4.3 for examples.

The two-sorted connectives on S are linear maps, which are determined by
their values on basis vectors. They are intrinsic and thus live in every compact
closed category with biproducts.

The two-sorted conjunction andS : S ⊗ S → S, the two-sorted disjunction
orS : S ⊗ S → S and the two-sorted negation notS : S → S are given by

andS(⊤⊗⊤) = ⊤, andS(⊥⊗⊤) = andS(⊤⊗⊥) = andS(⊥⊗⊥) = ⊥
orS(⊥⊗⊥) = ⊥, orS(⊥⊗⊤) = orS(⊤⊗⊥) = orS(⊤⊗⊤) = ⊤

notS(⊤) = ⊥, notS(⊥) = ⊤ .

The two-sorted connectives, when restricted to basis vectors a, b of S satisfy

notS ◦ notS ◦ a = a

orS ◦ (notS ⊗ notS) ◦ (a⊗ b) = notS ◦ andS ◦ (a⊗ b) .
(12)

Two-sorted negation coincides with vector negation on basis vectors, but
they are not identical. In fact, notS is the symmetry isomorphism that ex-
changes the two basis vectors of S, whereas vector negation is not even an
endomorphism of S

notS(⊤) = ⊥ = ¬⊤, notS(⊥) = ⊤ = ¬⊥

notS(
−→
0) =

−→
0 , whereas ¬

−→
0 =

−→
1 .

In general, the two-sorted connectives differ from the vector connectives, even
on basis vectors. For example

andS(⊥⊗⊤) = ⊥, whereas ⊥ ∧⊤ =
−→
0 .

Natural language chooses the two-sorted connectives on S, a fact acknowledged
by the notation.

3.4 Two-sorted predicates

Let E be any object of C, think of the basis vectors of E as ‘individuals’.
Abbreviate the n-fold tensor product of E by En = E ⊗ . . .⊗E with n factors.

Definition 4 (Two-sorted predicate). A two-sorted predicate is an intrinsic
morphism with codomain S.

A two-sorted predicate on E is a two-sorted predicate that maps basis vectors
of E to basis vectors of S .

An n-ary two-sorted predicate on E is a two-sorted predicate on En.

Lemma 6. The n-ary predicates on E together with the two-sorted connectives
form a Boolean algebra.

13

More precisely, assume that p : En → S and r : En → S are n-ary two-sorted
predicates on E. Then the linear maps

notS ◦ p, andS ◦ (p⊗ r), orS ◦ (p⊗ r), andS ◦ (p⊗ r) ◦ 2En , orS ◦ (p⊗ r) ◦ 2En

are again two-sorted predicates on E such that

notS ◦ notS ◦ p = p

notS ◦ andS ◦ (p⊗ r) = orS ◦ ((notS ◦ p)⊗ (notS ◦ r))
notS ◦ andS ◦ (p⊗ r) ◦ 2En = orS ◦ ((notS ◦ p)⊗ (notS ◦ r)) ◦ 2En .

(13)

Proof. It suffices to check the equalities (13) for basis vectors, which follows
from (12).

Two-sorted predicates coincide with one-sorted predicates on individuals.
For sets they may take four different values. The following lemma tells us
when.

Lemma 7. [Fundamental Property]
Let p : VB → S be a two-sorted predicate on VB and Y ⊆ B a subset of basis
vectors. The following equivalences hold

p(
∑

x∈Y x) =
−→
0 ⇔ Y = ∅

p(
∑

x∈Y x) = ⊤ ⇔ ∀x(x ∈ Y ⇒ p(x) = ⊤) and Y 6= ∅
p(
∑

x∈Y x) = ⊥ ⇔ ∀x(x ∈ Y ⇒ p(x) = ⊥) and Y 6= ∅

p(
∑

x∈Y x) =
−→
1 ⇔ ∃x∈Y ∃y∈Y (p(x) = ⊤ and p(y) = ⊥) .

(14)

Proof. By linearity, p(
∑

x∈Y x) =
∑

x∈Y p(x) . For the last equivalence, use
−→
1 = ⊤+⊥ .

Corollary 1. For any element x

p(x) = ⊥ ⇔ p(x) 6= ⊤ ⇔ notS(p(x)) = ⊤ .

For any non-empty subset Y of B

p(Y) = ⊥ ⇔ notS(p(Y)) = ⊤ . (15)

In general, however, p(Y) 6= ⊤ does not imply p(Y) = ⊥ .

Proof. The equivalence p(Y) = ⊥ ⇔ notS(p(Y)) = ⊤ follows from the definition
of the two-sorted negation.

By the fundamental property, p(Y) = ⊥ is equivalent to ∀x(x ∈ Y ⇒ p(x) =
⊥) for a non-empty set Y . Now assume that Y has two distinct elements x and

y and that p(x) = ⊤ and p(y) = ⊥. Then p(Y) = {⊤,⊥} =
−→
1 6= ⊥ .

In the context of natural language, use different font shapes to distinguish the
set X ⊆ B from the vector JB(X) by using italic for the former and typewriter
for the latter. For example, if Bank ⊆ B

bank =
∑

x∈Bank

x = JB(Bank) .

14

The same applies when distinguishing a one-sorted predicate on B and the cor-
responding two-sorted predicate on VB . For example, the one-sorted predicate
Rich corresponding to rich : VB → S satisfies

x ∈ Rich ⇔ Rich(x) ⇔ rich(x) = ⊤, for all x ∈ B .

Here are a few examples how two-sorted predicates work in an arbitrary
semantic category.

Note: the individuals designated by a noun form a non-empty set.

Example 2. The following are equivalent

rich(bank) = ⊤
∀x(x ∈ Bank ⇒ Rich(x)) .

Proof. The Fundamental Property (7) implies rich(bank) = ⊤ if and only if
∀x(x ∈ Bank ⇒ rich(x) = ⊤) . The latter is equivalent to ∀x(x ∈ Bank ⇒
Rich(x)) by definition of Rich.

Example 3. The following are equivalent

notS(rich(bank)) = ⊤
rich(bank) = ⊥

∀x(x ∈ Bank ⇒ x 6∈ Rich) .

Proof. The equivalence of the first two equalities is a special case of (15). The
second equality equality is equivalent to ∀x(x ∈ Bank ⇒ rich(x) = ⊥) by the
Fundamental Property. Hence to ∀x(x ∈ Bank ⇒ x 6∈ Rich) .

Important: The first order formula in Example 3 is not the negation of the
first order formula in Example 2. But then, the equality rich(bank) = ⊥ is not
the negation of the equality rich(bank) = ⊤, because there are more than two
truth values.

4 Semantics via pregroup grammars

Let E be a finite dimensional space with basis B . Call its basis vectors indi-
viduals. Basis vectors of E correspond to singulars and sums of several basis
vectors to plurals of natural language. Examples below concern unary predi-
cates only. The generalization to ordered pairs, triples etc. of individuals is
straight forward. The space S is the two-dimensional space of two-sorted truth
introduced in 3.3.

15

4.1 The computation of meanings

Like every other categorial grammar, a pregroup grammar is given by a lexicon
and a logical calculus. Syntactical analysis consists in a proof in the logical
calculus. The pregroup calculus is compact bilinear logic where proofs identify
with morphisms in the free compact bicategory C2(B) generated by a partially
ordered set B.

The 1-cells are called types and the tensor product is concatenation. Hence,
a type is a string of simple types, where a simple type is either an element of
x, y, · · · ∈ B or an iterated adjoint xℓ, yℓ, . . . , xℓℓ, yℓℓ, . . . , xr, yr, . . . , xrr, yrr, . . .

etc. The types x, y, · · · ∈ B are called basic types. They stand for grammatical
notions.

As a consequence, every functor from B into a semantic category C extends
into a functor from C2(B) to C preserving the structure of compact bicategories.

A lexicon is a finite list of entries. An entry is a triple w : T :: m, where w

is a word, T a type and m a meaning expression.
This description differs from the original one in [Lambek, 1999]. There,

only pregroup ‘dictionaries‘ are considered where the entries are pairs w : T ,
without meaning expressions. The latter must be added explicitly, because the
functional semantics that the higher order types confer to categorial grammars
has been lost by the pregroup types.

The meaning in the entry is a formal expression m : I → V in the language
of compact closed categories or, equivalently, a string of two-sorted functions.
It depends functionally on the word and the type in the entry.

Consider the following entries

no : ssℓn2c2
ℓ:: I

no
−→ S ⊗ S∗ ⊗ E ⊗ E∗

are : n2
r
ss

ℓ
n̄ :: I

are
−−→ E∗ ⊗ S ⊗ S∗ ⊗ E

and : srssℓ :: I
andS−−→ S∗ ⊗ S ⊗ S∗

some : n2c2
ℓ:: I

some
−−−→ E ⊗ E∗

big : c2c2
ℓ :: I

big
−−→ E ⊗ E∗

banks: c2 :: I
bank
−−−→ E

rich : n̄r
s :: I

rich
−−−→ E∗ ⊗ S

The basic types c2,n2, n̄, s, stand for ‘plural count noun’, ‘plural noun phrase’,
‘dummy noun phrase’,‘sentence’ in that order. Moreover, c2 < n2 .

The properties of the meaning vector m in w : T :: m depend on the logical
content of the word, given in due course, and on the type.

The lexicon defines a canonical functor from B into the compact closed cat-
egory C. For example, in the list of entries above, the basic type s is interpreted
by S and each of the basic types c2,n2, n̄ by E . The canonical functor maps
the inequality c2 < n2 to the identity 1E and left and right adjoints to ‘the’
adjoint space, because right and left adjoints may be identified in a symmetric
monoidal category.

All meanings are names of morphisms, up to a symmetry isomorphism that
arranges the factors of the tensor product in the order given by the simple types.
For example, big = σE∗,E ◦ pbigq : 1 → E ⊗ E∗ where big : E → E.

The meaning of grammatical strings involves both the meaning vectors of
the words and a syntactical analysis of the string by the grammar.

16

A string of words w1 . . . wn is grammatical if there are entries w1 : T1 ::
m1, . . . , wn : Tn :: mn and a basic type b such that

T1 . . . Tn ⊢ b

is provable in compact bilinear logic. Otherwise said, if there is a morphism
f : T1 . . . Tn → b in the syntactic category. Due to a theorem in [Lambek, 1999]
the graph of the proof involves only underlinks and is called a reduction.

For example, the reduction corresponding to the graph on the left below
analyses big banks as a noun-phrase. The graph on the right is the corresponding
morphism in the semantic category.

1c2
⊗ ǫc2

=

big banks
(c2 c2

ℓ) (c2)dd

c2

��

r1 = 1E ⊗ ǫE =

(E ⊗ E∗)⊗ Ecc

E
��

The reason why the syntactic category may not be symmetric is obvious in
this example. The type c2c2c2

ℓ of the non-grammatical string banks big has no
reduction to a basic type. If we had symmetry all order variants of a grammatical
string would be grammatical.

The meaning vector of a lexical entry also identifies with a graph, for example

I
big
−−→ E ⊗ E∗ =

big

I

}}
E ⊗ E∗

bank : I → E =

I

E

bank

��
.

Again, the domain of the morphism is at the top of the graph, the codomain at
the bottom.

For a grammatical string w1 . . . wn, there is a choice of entries w1 : T1 ::
m1, . . . , wn : Tn :: mn and a reduction of T1 . . . Tn to a basic type. The corre-
sponding meaning is

r ◦ (m1 ⊗ . . .⊗mn) ,

where the linear map r is obtained by applying the canonical functor to the
reduction. Hence, the meaning of a string involves both the tensor product of
the words and a reduction.

The meaning of a string can be computed graphically. Connect the graphs
at there joint interface and follow the paths from top to bottom picking up the
labels along the way. For example, the graphs

big⊗ bank =

(E ⊗ E∗)⊗ (E)
||

big
bank

��<
<<

<<
<<

<I ⊗ I

r1 =

(E ⊗ E∗)⊗ (E)cc

E
��

17

when connected at there joint interface compute to

r1 ◦ (big⊗ bank) =
(E ⊗ E∗)⊗ (E)
||

big

ee

E
��

I

bank

��7
77

77
77

77

=

I

S

big◦bank

��

= big ◦ bank .

The meaning vector are : I → E∗⊗S⊗S∗⊗E is up to a symmetry isomorphism
the name of the linear map are : E ⊗ S → E ⊗ S.
The logical property of the word are is rendered by

are = 1E ⊗ 1S : E ⊗ S → E ⊗ S .

Hence of the graph of are is

are =

I

1E

 ~~
1S

E∗ ⊗ S ⊗ S∗ ⊗ E

=

I

 ~~
E∗ ⊗ S ⊗ S∗ ⊗ E

.

The meaning vector rich : I → E∗ ⊗ S is represented by the graph

rich =

I

rich

!!
E∗ ⊗ S

,

where rich : E → S is a unary two-sorted predicate.
The reduction of the sentence big banks are rich is the graph

r =

big banks are rich
99dd

s
��

cc ??(c2 c2
ℓ) (c2) (n2

r
s s

ℓ
n̄) (n̄r

s)

.

Compute the meaning by composing the tensor product of the word vectors

18

with the reduction

r ◦ (big⊗ bank⊗ are⊗ rich)

=
99

��
big

ee
��

I

bank

��

""

S
��

dd ;;
��
rich

(E ⊗ E∗)⊗ (E)⊗ (E∗ ⊗ S ⊗ S∗ ⊗ E)⊗ (E∗ ⊗ S) =

I

S

rich◦big◦bank

��

= rich ◦ big ◦ bank .

The sentence All banks are rich is computed by the same graph except that the
label big is replaced by the label all. A similar remark applies to the sentence
Some banks are rich.

The last example concerns the computation of the meaning vector of the
sentence no banks are rich.

- the reduction of the sentence is

s
��

gg 88ee dd
no banks are rich

(s s
ℓ

n2 c2
ℓ) (c2) (n2

r
s a

ℓ) (a)

- the meaning vector no : I → S ⊗ S∗ ⊗ E ⊗ E∗ is defined as the matrix of
notS ⊗ 1E : S ⊗ E → S ⊗ E with the corresponding graph

I

��
notS

��
S ⊗ S∗ ⊗ E ⊗ E∗

- the meaning of the sentence no banks are rich is

r ◦ (no⊗ bank⊗ are⊗ rich)

= ��
notS

S
��

gg 88
��

ff

I

bank

����
��
��
��

$$��
::

rich

ff(S ⊗ S∗ ⊗ E ⊗ E∗)⊗ (E)⊗ (E∗ ⊗ S ⊗ S∗ ⊗ E)⊗ (E∗ ⊗ S)

= notS ◦ rich ◦ bank .

‘Walking graphs’ makes the computation linear in the number of links. The
number of links is proportional to the length of the string of words, because the
lexicon is finite and thus the length of its types is bounded.

19

4.2 The logical content of words

The preceding examples mention the logical content of some words. More gen-
erally, the description of the logical content can be organized according to the
type of the words. We postulate
1. Any f : En → S occurring in a lexical entry is an n-ary two-sorted predicate.
2. Any f : E → E occurring in a lexical entry is an intrinsic projector.
3. Any f : I → E occurring in a lexical entry is a Boolean vector.
For example, adjectives in predicative position and intransitive verbs are unary
two-sorted predicates. Adjectives in attributive position and determiners like
the, some, all, have lexical entries of the form det : nic

ℓ
i :: det : I → E ⊗ E∗,

with a corresponding meaning map det : E → E . By the postulate above, they
are intrinsic projectors. The universal determiner satisfies an even stronger
property

all = 1E .

Assume word : E → E is an intrinsic projector occurring in the lexicon. Use
the abbreviation

Word = word(B) .

This abbreviation, combined with Equality (6) implies

word(Y) = Word ∩ Y . (16)

For example, Big = big(B) and big(Bank) = Big ∩ Bank

4.3 Examples

The examples below concern sentences and their meaning vectors. Represent
the truth of a sentence by the fact that the meaning vector computes to ⊤ .
Then show that this representation coincides with the ‘usual’ translation of the
sentence in logic.

Example 4. All banks are rich / rich(all(bank))

The following are equivalent

∀x(x ∈ Bank ⇒ Rich(x))
rich(all(bank)) = ⊤ .

Proof. Recall that all = 1E . Hence rich(all(bank)) = rich(bank) . For the
proof of the equivalence of rich(bank) = ⊤ with ∀x(x ∈ Bank ⇒ Rich(x))
confer to Example 2.

Example 5. Big banks are rich / rich(big(bank))

The following are equivalent

∀x(x ∈ Big ∩ Bank ⇒ Rich(x))
rich(big(bank)) = ⊤ .

20

Proof. Recall that bank =
∑

x∈Bank
x and therefore the vector big(bank) is

identified with the set big(Bank) = Big ∩ Bank by (16). The equivalence now
follows from the Fundamental Property (7).

Example 6. No banks are rich / notS(rich(bank))

The following are equivalent

notS(rich(bank)) = ⊤
∀x(x ∈ Bank ⇒ x 6∈ Rich)

Proof. See Example 3.

Example 7. Some banks are rich/rich(some(bank))

The implication

rich(some(bank)) = ⊤ ⇒ ∃x(x ∈ Bank &Rich(x))

holds, but its converse does not hold in general.

Proof. The equality rich(some(bank)) = ⊤ implies some(bank) 6= ∅ and ∀x(x ∈
some(bank) ⇒ rich(x) = ⊤), by the Fundamental Property. The first order
formula follows, because some(bank) ⊆ bank .

If the first order formula holds, take a witness b ∈ Bank for which Rich(b)
holds. Let someb be the intrinsic projector that maps b to itself and every other
individual to the null vector. Clearly someb(bank) = b and rich(b) = ⊤ . Hence,

rich(someb(bank)) = ⊤ ,

but this does not imply that the particular intrinsic projector someb coincides
with the original some .

Natural language confronts us with a problem. On one hand, the interpre-
tation of ‘some Y ’ changes from occurrence to occurrence, like in Some banks
are rich and some banks are not rich. On the other hand, ‘some Y ’ acts like a
name for a well determined set. In Some banks are rich. They scare me, the
personal pronoun they refers to the set some banks of the preceding sentence.

The interpretation of some given above may vary from occurrence to occur-
rence and in the same time it defines a set at each occurrence, which is available
for later reference, e.g. they = some(bank).

The interpretation by a generalized quantifier, see [Barwise and Cooper,
2002], takes into account the change of meaning in different occurrences, but it
does not construct the set to which the noun phrase refers.

5 Compositional semantics in concept spaces

Quantum logic stands for ‘logic of projectors in a concept space’ and concept
for ‘Boolean vector in a concept space’.

21

5.1 Classical propositional calculus in concept spaces

Let P = {p1, . . . , pd} be a non-empty set. Call compound system or concept
space the tensor product

C(P) = C(p1)⊗ . . .⊗ C(pd) ,

where C(pi) is a 2-dimensional space with basis vectors pi⊤, pi⊥, for i = 1, . . . , d .
The space C(pi) is a ‘basic variable’ in quantum protocols and a ‘basic

concept’ in semantics for natural language. For example, key-words of Roget’s
(or the speaker’s mental) thesaurus provide sets of basic concepts.

Any basis vector bf of C(P) is a tensor product of basis vectors of the factors

bf = f(1)⊗ . . .⊗ f(d), where f ∈
d
∏

i=1

{pi⊤, pi⊥} .

Due to the fine-grained structure of the basis vectors, the Boolean algebra
of intrinsic projectors of a concept space is isomorphic to the Boolean algebra
freely generated by the set P . The rest of this subsection is devoted to the
proof of this fact.

For every i = 1, . . . , d, define the two so-called elementary vectors

−→pi =
−→
1 ⊗ . . .⊗

−→
1 ⊗ pi⊤ ⊗

−→
1 ⊗ . . .⊗

−→
1 =

∑

f,f(i)=pi⊤
bf

−→¬pi =
−→
1 ⊗ . . .⊗

−→
1 ⊗ pi⊥ ⊗

−→
1 ⊗ . . .⊗

−→
1 =

∑

f,f(i)=pi⊥
bf .

The two elementary vectors defined by pi ∈ P are orthogonal to each other.
In fact, one is the negation of the other

¬−→pi =
−→¬pi and ¬(−→¬pi) =

−→pi .

Every Boolean vector can be written as a disjunction of conjunctions of
elementary vectors. Indeed, let {j1, . . . , jk} be a subset of {1, . . . , d} . Assume

that g ∈
∏d

i=1

{

pi⊤, pi⊥,
−→
1
}

satisfies for i = 1, . . . , d

g(i) ∈ {pi⊤, pi⊥} if and only if i ∈ {j1, . . . , jk} . (17)

The partial choice vector associated to g is

vg = g(1)⊗ . . .⊗ g(d) .

Lemma 8. Every partial choice vector vg is a conjunction of elementary vectors.
In particular, every basis vector is a conjunction of elementary vectors.

Proof. Assume that g satisfies(17). Let qjl = g(jl) ∈ {pjl⊤, pjl⊥}, l = 1, . . . , k,

and G =
{

f ∈
∏d

i=1 {pi⊤, pi⊥} : f(jl) = qjl , for l = 1, . . . , k
}

. Then

vg =
∑

f∈G

bf = −→qj1 ∧ · · · ∧ −→qjk . (18)

22

Theorem 2. The free Boolean algebra generated by P is isomorphic to the lat-
tice of intrinsic projectors of C(P) . The map p 7→ −→p extends to an isomorphism
K from B(P) onto the lattice of Boolean vectors of C(P).

Proof. Partial choice vectors are Boolean vectors by (18). Hence, the map
p 7→ −→p extends to a unique Boolean homomorphism K from B(P) into the
Boolean algebra of Boolean vectors of C(P) . A classical theorem, [?], states
that the free Boolean algebra B(P) is isomorphic to the set algebra generated

by the following subsets of
∏d

j=1 {0, 1}

pi ≃

h ∈
d
∏

j=1

{0, 1} : h(i) = 1

, ¬pi ≃

h ∈
d
∏

j=1

{0, 1} : h(i) = 0

,

where i varies from 1 to d. Every singleton set {h} can be written as a conjunc-
tion of subsets of the form pi or ¬pi. Therefore the homomorphism K maps {h}
to the corresponding basis vector in C(P) . It follows that the homomorphism
K is onto and one-one, because every Boolean vector can be written uniquely
as a sum of basis vectors.

Compose K with the isomorphismH of Theorem 1 to obtain the isomorphism
H ◦ K onto the lattice of intrinsic projectors.

By Theorem 2, the elementary projectors p−→pi
and p¬−→pi

play an important
role in the lattice of projectors of C(P) :
1. Every intrinsic projector is a finite disjunction of finite conjunctions of ele-

mentary projectors
2. The lattice of intrinsic projectors in a compound system is the classical

propositional calculus modulo equiderivability.
3. One can use induction on the complexity of propositions for defining and

proving properties of Boolean vectors/intrinsic projectors.
Propositional complexity creates a somewhat unusual hierarchy on subspaces:
The elementary subspace E−→pi

has complexity 0 respectively ¬E−→pi
= E¬−→pi

has

complexity 1, but both have dimension 2d−1. The one-dimensional subspace
generated by a single basis vector bf has complexity d − 1 if f(i) = pi for
i = 1, . . . , d and complexity d otherwise.

5.2 Concept spaces and two-sorted truth

A classification system consists of
1. a set B (of individuals, pairs of individuals etc.)
2. a set P = {p1, . . . , pd} (of properties)
3. a relation |= ⊆ B × P

Read x |= p as ‘x satisfies p’ .

23

Extend the relation |= to arbitrary concepts in C(P) = C(P1)⊗ . . .⊗C(Pd)
for every individual x ∈ B using induction on the complexity of concepts

x |= −→pi if and only if x |= pi
x |= ¬v if and only if x 6|= v

x |= v ∧ w if and only if x |= v & x |= w

x |= v ∨ w if and only if |= v or x |= w .

Clearly, either x |= v or x |= ¬v holds for every individual x ∈ B and every
concept v ∈ C(P).

Extend satisfaction to every non-empty subset Y of B and every concept v

Y |= v if and only if x |= v for all x ∈ Y . (19)

Read Y |= v as ‘Y has property v in general’.
Note that Y 6|= v and Y 6|= ¬v may hold simultaneously. It suffices that Y

has an element satisfying v and another one that does not satisfy v .
The satisfaction system induces a representation of (sets of) individuals by

concepts in C(P) . For any x ∈ B let

q(x)i = pi⊤ if x |= pi
q(x)i = pi⊥ if x 6|= pi ,

for i = 1, . . . , d . This choice determines a basis vector, the concept internalizing
x,

vx = q(x)1 ⊗ . . .⊗ q(x)d .

For any non-empty subset Y ⊆ B define the concept internalizing Y

vY =
∑

x∈Y

vx .

Different individuals may be internalized by the same basis vector. This
means that they are indiscernible by the properties listed in P .

Lemma 9. For any concept c ∈ C(P) and any individual x ∈ B

x |= c if and only if vx ≤ c . (20)

In particular, for any basis vector bf ∈ C(P)

x |= bf if and only if vx = bf . (21)

For Y 6= ∅
Y |= c if and only if vY ≤ c . (22)

Proof. Show (20), the equivalence concerning individuals, by induction on the
propositional complexity of c. Equivalence (21) is a particular case of (20).

The equivalence concerning sets, (22), now follows from the equivalence for
individuals.

24

One consequence of the lemma above is that satisfaction in a classification
system coincides with the conditional logic for Boolean vectors/projectors. In-

deed, the inequality v ≤ w is equivalent to v → w =
−→
1 , where the full vector

−→
1 stands for ‘true’.

Another consequence is that the concept vx is the best possible description
of the individual x in the classification system and the same holds for vY and
the set Y .

5.3 Intrinsic projectors and two-sorted predicates

Let E be a space with basis B and (B,P = {p1, . . . , pd} , |=) a satisfaction
system. For any p ∈ P , define a two sorted predicate p(.) : E → S by the
condition

p(x) =

{

⊤ if x |= p

⊥ if x 6|= p
, for all x ∈ B .

Conversely, given a set of two-sorted predicates P = p1, . . . , pd on E, define a
satisfaction relation |=⊆ B × P such that

x |= p if and only if p(x) = ⊤ , for all x ∈ B, p ∈ P .

Recall that x |= v is equivalent to vx ≤ v . The expressiveness of the logic
remains unchanged if the individuals are replaced by the basis vectors internal-
izing them. Indeed, individuals x, y for which vx = vy are indiscernible in the
logic.

The compound system C(P) is endowed with a canonical satisfaction system,
namely

P = {p1, . . . , pd}

B =
{

bf : f ∈
∏d

i=1 {pi⊤, pi⊥}
}

x |= p ⇔ x ≤ −→p , for all x ∈ B, p ∈ P .

In the canonical satisfaction system, a basis vector can be both an individual
and a concept. More generally, every Boolean vector is both a set of individuals
and a concept. For example, bank =

∑

x∈Bank
x = JB(Bank) and vBank =

bank .
Define a map −→p 7→ −→p (.) from the elementary vectors −→p ∈ C(P) to two-

sorted predicates on C(P) by stipulating

−→p (x) = ⊤ ⇔ x ≤ −→p
−→p (x) = ⊥ ⇔ x 6≤ −→p

, for all x ∈ B . (23)

Theorem 3. The map −→p 7→ p(.) extends to a Boolean isomorphism L from
the Boolean vectors of C(P) onto the Boolean algebra of two-sorted predicates
on C(P) satisfying for L(v) = v(.)

(notS ◦ v)(.) = (¬v)(.)
andS ◦ (v(.)⊗ w(.)) ◦ 2E = (v ∧ w)(.) .

(24)

25

Moreover, the following equivalences hold if w 6=
−→
0

v(w) = ⊤ ⇔ w ≤ v

v(w) = ⊥ ⇔ w ≤ ¬v .
(25)

Proof. The existence of the Boolean homomorphism v 7→ v(.) satisfying (24) is
guaranteed by Theorem 2 .

Start the proof of (25) by showing first that

v(x) = ⊤ ⇔ x ≤ v

v(x) = ⊥ ⇔ x ≤ ¬v
, for all x ∈ B . (26)

Use induction on the propositional complexity of v . If the complexity is 0
v = −→p . The two equivalences of (26) hold for v = −→p by the stipulations (23)
and the fact that x ≤ ¬−→p if and only if x 6≤ −→p .

For the induction step, assume that (25) holds for v . Recall that notS is the
symmetry isomorphism that exchanges the two basis vectors ⊤ and ⊥. Thus

⊤ = (¬v)(x) = (notS ◦ v)(x) ⇔ v(x) = ⊥ ⇔ x ≤ ¬v ,

because v(x) = ⊥ ⇔ x ≤ ¬v by assumption.
Next, assume that (26) holds for the concepts v and w . Then

(v ∧ w)(x) = (andS ◦ (v ⊗ w) ◦ 2E)(x) = andS ◦ (v(x)⊗ w(x)) .

Therefore, assuming (v ∧ w)(x) = ⊤ is the same as assuming v(x) = ⊤ and
w(x) = ⊤, according to the definition of andS . The latter two equalities are
equivalent to x ≤ v and x ≤ w by induction hypothesis. Hence (v ∧w)(x) = ⊤
is equivalent to x ≤ v∧w . The proof of the equivalence (v∧w)(x) = ⊥ ⇔ x ≤
¬(v ∧ w) is similar. This concludes the proof by induction of (26).

Let w 6=
−→
0 be an arbitrary Boolean vector. Then v(w) = ⊤ if and only if

x ≤ w implies v(x) = ⊤ for all x ∈ B if and only if x ≤ w implies x ≤ v for all
x ∈ B if and only if w ≤ v . Thus (25) holds.

Next, (26) implies that the homorphism v 7→ v(.) is one-one. Finally, for
the proof that is also onto, let r : C(P) → S be any two-sorted predicate
on C(P) . Let K = {x ∈ B : r(x) = ⊤} and v =

∑

x∈K x . Recall that a
two-sorted predicate maps basis vectors to basis vectors. Hence, r(x) = ⊥
for all basis vectors x 6∈ K . Thus r(x) = ⊤ if and only if x ≤ v and r(x) =
⊥ if and only if x ≤

∑

x∈B\K x = ¬v . Therefore r = v(.) by (25).

This theorem has a generalization to an arbitrary space of individuals. The
homomorphism L is defined and satisfies (24) - (26). It is still one-one, but it
is not necessarily onto.

Note that the homomorphism L maps the full vector
−→
1 ∈ C(P) to the pred-

icate that maps every basis vector to ⊤ and the null vector
−→
0 to the predicate

that takes value ⊥ for all basis vectors in B .

26

Switching from Boolean vectors to intrinsic projectors, identify the intrinsic
projector pv with the two-sorted predicate v(.) via the isomorphism L ◦ H−1 .
The equalities (24) and (25) become for all Boolean vectors v, w ∈ C(P)

(notS ◦ v)(.) = p⊥v , andS ◦ (v(.)⊗ w(.)) ◦ 2C(P) = pv ◦ pw

v(w) = ⊤ ⇔ pv(w) = w

v(w) = ⊥ ⇔ pv(w) = w

v(w) = ⊥ ⇔ p⊥v (w) =
−→
0

, for w 6=
−→
0 .

The third possible value ⊤+⊥ of two-sorted predicates leads to the following
characterization in terms of projectors.

Lemma 10. Let v(.) be a two-sorted predicate and pv the corresponding pro-
jector. Then for any Boolean vector w

v(w) = ⊤+⊥ ⇔ (pv(w) 6=
−→
0 & p⊥v (w) 6=

−→
0) .

Proof. Let W be the set of basis vectors for which w =
∑

z∈W z . Assume the
lefthand equality. By the Fundamental Property (7), this means that the two-
sorted predicate v takes some x ∈ W to ⊤ and some y ∈ W to ⊥ . Replace the
equality v(x) = ⊤ by the corresponding projector equality pv(x) = x. Similarly,
v(y) = ⊥ may be read as p⊥v (y) = y .

Theorems 1 and 3 bring a new understanding to projectors in a compound
system C(P). Boolean vectors, intrinsic projectors of C(P) and two-sorted
predicates on C(P) are interchangeable. All sentences expressible in two-sorted
first order logic are expressible in quantum logic. It suffices to make E = C(P)
in Subsection 4.1.

The sample sentences of Section (4.3) have two interpretations in C(P) .
One is a two-sorted predicate and the other one a projector. The former equals
⊤ exactly when the latter equals 1C(P). Similarly, the former equals ⊥ exactly
when the latter equals 0C(P) .
All banks are rich / rich(all(bank)) / pbank → prich

rich(all(bank)) = ⊤ if and only if pbank → prich = 1C(P) .

Big banks are rich / pbig ◦ pbank → prich

rich(big(bank)) = ⊤ if and only if pbig ◦ pbank → prich = 1C(P) .

No banks are rich / notS(rich(bank)) / pbank → p⊥rich

notS(rich(bank)) = ⊤ if and only if pbank → p⊥rich = 1C(P) .

Some banks are rich / rich(some(bank)) / psome(bank) → prich

rich(some(bank)) = ⊤ if and only if psome(bank) → prich = 1C(P) .

These equivalences concern Boolean vectors. The next subsection deals with
non Boolean vectors.

27

5.4 States in a concept space

In this Section, C is the category of finite dimensional real Hilbert spaces.
A satisfaction relation requires a yes or no answer for every individual and

every basic property pi . For practical reason such a precise information may
not be available. Assume that real numbers αiY ∈ [0, 1] are given for a set
of individuals Y and i = 1, . . . , d . Interpret αiY as the probability that an
arbitrary individual in Y has property pi.

Let 0 ≤ αiY ≤ 1 and βiY = 1−αiY for i = 1, . . . , d . The set Y is represented
in C(p1)⊗ . . .⊗ C(pd) by its state vector

µY = (α1Y p1⊤ + β1Y p1⊥)⊗ . . .⊗ (αdY pd⊤ + βdY pd⊥) .

Lemma 11. The coordinates of µY define a probability on the event space B(P)
generated by the −→pi ’s. Moreover, αi is equal to the sum of the coordinates of
−→pi ∧ µY and βi to the sum of the coordinates of ¬−→pi ∧ µY .

Proof. Let γf be the coordinate of µY for f ∈
∏d

i=1 {pi⊤, pi⊥} . Then
−→pi ∧µY =

∑

f, f(i)=pd⊤
γfbf . Hence the assertions follow from the equalities

∑

f

γf = 1, αi =
∑

f(i)=pi⊤

γf , βi =
∑

f(i)=pi⊥

γf .

Prove the first equality by induction on d. The case d = 1 is trivial. For the
induction step, let d′ = d− 1, P ′ = {1, . . . , d′} and

µ′
Y = (α1Y p1⊤ + β1Y p1⊥)⊗ . . .⊗ (αd′Y pd′⊤ + βd′Y pd′⊥) .

Let δg be the coordinate of µ′
Y in C(P ′), i.e. µ′

Y =
∑

g∈
∏

d′

i=1
{pi⊤,pi⊥}

δgbg . Then
∑

g δg = 1 by induction hypothesis. We have

µY = µ′
Y ⊗ (αdY pd⊤ + βdY pd⊥) =

∑

g

δgαdY (bg ⊗ pd⊤) +
∑

g

δgβdY (bg ⊗ pd⊥) .

This finishes the proof, because for every basis vector bf ∈ C(P) there is a

unique g ∈
∏d−1

i=1 {pi⊤, pi⊥} such that either bf = bg⊗pd⊤ or bf = bg⊗pd⊥ .

The projector p−→pi
of C(P) maps the state vector µY to a vector p−→pi

(µY) =
−→pi ∧ µY , the coordinates of which sum up to αi. Hence the p−→pi

returns the
probability that an arbitrary individual in Y satisfies pi .

Return to vector semantics in information retrieval systems. Choose a set
P = p1, . . . , pd of basic properties, for example the most frequent words in a
(set of) document(s). Represent words by vectors in the d-dimensional space
VP , where the coordinate γi of word w is the frequency of co-occurrence with
pi. The projection onto the one-dimensional subspace of VP generated by pi is
the vector γipi .

The scalar γi may be interpreted as the similarity of the word with pi,
but not as the probability that an arbitrary individual designated by w has

28

property pi, because positive and negative occurrences like some banks are safe,
some banks are not safe contribute both to γi . ‘Reasoning by probability’
based on frequency counts requires a distinction between positive and negative
occurrences.

The opposite of a property implies with high probability the property. Intu-
itively, this explains why opposites are similar in frequency counts that do not
distinguish between positive and negative occurrences.

6 Conclusion

New in this approach is that two separate notions of truth, one for concepts and
one for sentences, are handled formally inside a single mathematical frame with
a resulting equivalence of the two representations. The geometrical properties
of quantum logic and the functional application of logic are preserved.

On a technical level, both the tensor product and syntactical analysis inter-
vene when composing meanings.

Many interesting questions have not been addressed. For example, biprod-
ucts of concept spaces are necessary to handle predicates of an arbitrary arity
simultaneously. Ambiguous words as well live in a biproduct of different con-
cept spaces. Disambiguation by context uses the probability that the meaning
factors through one branch rather than the other of the biproduct.

The most challenging questions belong to the probabilistic approach to nat-
ural language semantics and its relation to compositionality. How to distinguish
between opposites? (The usual probabilistic approach confounds them.) How
to capture the intuitive interaction of statistical learning of concepts and their
logical use?

References

Samson Abramsky and Bob Coecke. A categorical semantics of quantum proto-
cols. In Proceedings of the 19th Annual IEEE Symposium on Logic in Com-
puter Science, pages 415–425, 2004.

Jon Barwise and Robin Cooper. Formal Semantics: the essential readings,
chapter Generalized Quantifiers and Natural Language, pages 76–125. Wiley-
Blackwell, 2002.

Johan van Benthem and Kees Doets. Handbook of Philosophical Logic, chapter
Higher-Order Logic, pages 275–329. Reidel Publishing Company, Dordrecht,
1983.

Stephen Clark and S. Pulman. Combining symbolic and distributional models
of meaning. In Proceedings of the AAAI Spring Symposium on Quantum
Interaction, 2007.

29

Stephen Clark, Bob Coecke, and Mehrnoosh Sadrzadeh. A compositional dis-
tributional model of meaning. In W. Lawless P. Bruza and J. van Rijsbergen,
editors, Proceedings of Conference on Quantum Interactions. University of
Oxford, College Publications, 2008.

Joachim Lambek. The mathematics of sentence structure. American Mathe-
matical Monthly, 65:154–170, 1958.

Joachim Lambek. Substructural Logics, chapter From categorial grammar to
bilinear logic, pages 207–237. Oxford University Press, 1993.

Joachim Lambek. Type grammar revisited. In Alain et al. Lecomte, editor,
Logical Aspects of Computational Linguistics, volume 1582 of LNAI, pages
1–27, Heidelberg, 1999. Springer.

Anne Preller. Category theoretical semantics for pregroup grammars. In
Philippe Blache and Edward Stabler, editors, Logical Aspects of Computa-
tional Linguistics, volume 3492 of Lecture Notes in Artificial Intelligence,
pages 254–270, 2005.

Anne Preller. Toward discourse representation via pregroup grammars.
Journal of Logic, Language and Information, 16:173–194, 2007. doi:
http://dx.doi.org/10.1007/s10849-006-9033-y.

Anne Preller and Joachim Lambek. Free compact 2 -categories. Math-
ematical Structures for Computer Sciences, 17(1):1–32, 2007. doi:
http://dx.doi.org/10.1017/S0960129506005901.

Anne Preller and Mehrnoosh Sadrzadeh. Semantic vector models and functional
models for pregroup grammars. Journal of Logic, Language and Information,
20(4):419–423, 2011. doi: http://dx.doi.org/10.1007/s10849-011-9132-2.

C.J. van Rijsbergen. The Geometry of Information Retrieval. Cambridge Uni-
versity Press, 2004.

Peter Selinger. Dagger compact closed categories and completely positive maps
(extended abstract). In Proceedings of the 3rd International Workshop on
Quantum Programming Languages (QPL 2005, pages 139–163, 2007. doi:
http://dx.doi.org/10.1016/j.entcs.2006.12.018.

Paul Smolensky. Connectionism, constituency and language of thought. In
Robert Cummins and Denise Dellarosa Cummins, editors, Minds, Brains,
and Computers, pages 284–308, 1988.

Dominic Widdows. Geometry and Meaning. Number 172 in CSLI lecture notes.
CSLI Publications, 2004.

30

