
HAL Id: lirmm-00635866
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00635866v2

Submitted on 22 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Sentence to Concept
Anne Preller

To cite this version:
Anne Preller. From Sentence to Concept. E. Grefenstette, C. Heunen, and M. Sadrzadeh. Categorical
Information Flow in Physics and Linguistics, Oxford University Press, pp.247–271, 2012. �lirmm-
00635866v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00635866v2
https://hal.archives-ouvertes.fr


From Sentence to Concept∗

Anne Preller
Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier †

Abstract

The compositional functional logical models of natural language are
recast as compact closed categories. Composition is based on the geomet-
rical representation of information flow characteristic for these categories.
The functional logical interpretation of (strings of) words is carried over
to projectors in a finite tensor product of 2-dimensional spaces such that
the truth of a sentence is equivalent to the truth of the corresponding
projector.

Examples include sentences with compound noun phrases involving
quantifiers, adjectives and negation.

Keywords: Compact closed categories, quantum logic, concept spaces, two-sorted first order

logic, compositional semantics, pregroup grammars, proof graphs, compound noun-phrases

1 Introduction

The present work attempts to relate two semantic representations of natural
language, the functional logical models and the distributional vector models.
The former deals with individuals and their properties, the latter with concepts
and how they can be approximated.

Montague semantics and similar functional logical models for natural lan-
guage are extensional and compositional. Meaningful expressions designate in-
dividuals, sets of individuals, functions from and to (sets of) individuals, truth-
value functions and so on. The meaning of a grammatical string of words is
computed from the meanings of the constituents using functional application or
composition. This semantics requires prior grammatical analysis where every
word contributes to the meaning, including ‘noise’ like negation, determiners,
quantifiers, relative pronouns , etc.

The semantic vector models are based on the principle that the content of
a word is measured in relation to the content of other words. They handle
probabilistic estimations of concepts. Words, with the exclusion of ‘noise’, are
represented by vectors in a finite dimensional space over the field of real numbers.

∗chapter 9 of Categorical Information Flow in Physics and Linguistics, pp. 249 -271, Oxford
University Press 2012
†E-mail: preller@lirmm.fr

1



Frequency counts of co-occurrences with other words determine the coordinates
of a word. Semantic vector models excel in detecting similarity of words. They
confound opposites.

Compositionality of vector semantics remains an open question and is subject
of intensive research.

One approach to compositionality is quantum logic on the lattice of projec-
tors of Hilbert spaces, see [Rijsbergen, 2004] for an overview oriented towards
information retrieval or [Widdows, 2004] for a discussion of geometric properties
of meaning. There is, however, no general algorithm that transforms a string
of word into a vector respecting the logic. Another approach is composition of
vectors by the tensor product, [Smolensky, 1988] invoking computational prin-
ciples of cognitive science, or [Clark and Pulman, 2007] and [Clark et al., 2008]
using syntactical analysis. Again, ‘noise’ is not included in composition.

The present work outlines a method that takes into account the logical con-
tent of ‘noise’ and transforms the compositional extensional representation into
a conceptual representation. Both representations are based on biproduct dag-
ger compact closed categories.

On one hand, a concept space, that is to say a tensor product of two-
dimensional spaces, hosts both the words (concepts) and their probabilistic ap-
proximations. Concept spaces are the linguistic pendent to compound systems
in quantum mechanics.

On the other hand, the logical functional representations of (strings of) words
are also recast as vectors. These vectors are, roughly speaking, the names of
the functions representing the words. Their construction involves syntactical
analysis.

The examples presented here are analysed via pregroup grammars, [Lambek,
1999], based on compact bilinear logic, [Lambek, 1993]. The pregroup calculus
is a simplification of the syntactic calculus by the same author, [Lambek, 1958].
Compact bilinear logic ‘compacts’ the higher order of categorial grammars into
second order logic with general models, or equivalently, into two-sorted first
order logic, [Benthem and Doets, 1983]. Moreover, the category of types and
proofs of compact bilinear logic is the free compact 2 -category , [Preller and
Lambek, 2007].

Categorical semantics in compact 2-categories for pregroup grammars was
first proposed in [Preller, 2005], reformulated in [Preller, 2007] in terms of func-
tions in two-sorted first order logic. This reformulation rests on the fact that sets
and two-sorted functions form a compact closed category. The embedding of
the category of two-sorted functions in the category of semimodules over a real
interval, [Preller and Sadrzadeh, 2011], establishes the connection to semantic
vector models.

The formulation of functional logic in a biproduct dagger compact closed
category has been chosen to facilitate a comparison with quantum logic. It
is based on [Abramsky and Coecke, 2004], casting quantum mechanics in the
abstract setting of a biproduct dagger compact closed category. The result is an
embedding of functional two-sorted first order logic into the lattice of projectors
of concept spaces.

2



Section (2) introduces the semantical and syntactical categories. The cate-
gory of two-sorted functions follows in Section 3 with its two-sorted first order
logic. An embedding transfers them to an arbitrary bicategory dagger compact
closed category.

The algorithm in Section 4, constructing meanings of strings from meanings
of words, is based on syntactical analysis. Examples from natural language
provide the graphs depicting the computation of the meaning by ‘information
flow’.

Concept spaces and the logical properties of their intrinsic projectors are
investigated in Section 5. Subsection 5.1 deals with propositional logic and
Subsection 5.2 with predicate logic. The truth preserving one-to-one correspon-
dence between predicates on and intrinsic projectors of concept spaces is the
subject of 5.3. This correspondence is used in Section 5.4 to compute the mean-
ing of strings directly in concept spaces and to view arbitrary word vectors as
a probabilistic approximation of concepts.

2 Notations, basic properties

Natural language processing involves both syntactical analysis and logical rep-
resentation. Both can be formulated in the language of compact bicategories,
also known as non-symmetric star autonomous categories.

Throughout this paper, the syntactical category is the compact bicategory
freely generated by a ‘basic’ category. It is not symmetric.

The semantic category C is any biproduct dagger compact closed category in
which all objects have a chosen finite basis, for example the category RI of free
semimodules generated by finite sets over the lattice of the real interval [0, 1] .

2.1 The syntactical category

The syntactical category C2(B) is the free compact bicategory generated by a
category B. It is notationally convenient to replace the canonical associativity
and unit isomorphisms by identities, for example A⊗ (B ⊗ C) = (A⊗B)⊗ C,
A⊗I = A = I⊗A . Strictly speaking, the bicategory is treated like a 2 -category .

Saying that a bicategory is compact means that every 1-cell A has a left
adjoint A` and a right adjoint Ar. Let ηA : I −→ Ar ⊗ A be the unit and
εA : A ⊗ Ar → I the counit for the right adjoint. Then A ' A`r is a right
adjoint to A` so that ηA` : I −→ A⊗A` and εA` : A` ⊗A −→ I act as unit and
counit for the left adjunction of A` to A.

Starting with any 1-cell A that is an object of B, one obtains the iterated
right adjoints A`, A``, A```, . . . and the iterated left adjoints Ar, Arr, Arrr, . . .
of A, but no mixed adjoints, because A`r and Ar` are both isomorphic to A.

The morphisms, i.e. the 2-cells of C2(B), are represented by graphs where
the vertices are objects of B and the oriented links are labelled by morphisms

3



of B. Examples are

ηA =

I

1A
##

Ar ⊗ A

, ηA` =

I

}}
1A

A ⊗ A`

, εA =

I

1A

;;A ⊗ Ar

, εA` =

I

ee
1A

A` ⊗ A

NOTE: graphs display the domain of the morphism above, the codomain below.
In the case where the label is an identity, it is in general omitted. An

arbitrary f : A −→ B ∈ B also creates labels for links, for example

pfq =

I

f

##
Ar ⊗ B

, (f ⊗ 1A`) ◦ ηA` =

I

}}
f

B ⊗ A`

, xfy =

I

f

;;A ⊗ Br

, etc

NOTE: The labels of the links are morphisms of B . Stripping the tail of the
link of its adjoints, we obtain the domain of the label in B . Similarly, the head
without the adjoints is the codomain of the label.

Composition of morphism is computed by connecting the graphs at the joint
interface and walking paths, picking up and composing the labels in the order
in which they are encountered.

Here are few examples involving f : A −→ B, g : B −→ C

f ` =

A`

B`

f

OO

= B` ⊗ B ⊗ A`

B`

A`

??
�������

ee
~~

f

>>

~~~~~~~
= (εB` ⊗ 1A`) ◦ (1B` ⊗ ((f ⊗ 1A`) ◦ ηA`))

Recall: The domain of the morphism f ` is the top line in the graph, the
codomain is the bottom line, i.e. f ` : B` −→ A` .

εB` ◦ (1B` ⊗ f) =

I

eeB` ⊗ B

B` ⊗ AOO
f

�� =

I

ee
f

B` ⊗ A

=

I

eeA` ⊗ A

B` ⊗ A

f

OO

�� = εA` ◦ (f ` ⊗ 1A)

An equality of graphs is far easier to compute than the equality of the cor-
responding algebraic expressions. For example, the equality (xfy⊗ 1C) ◦ (1A ⊗

4



pgq) = g ◦ f = (1C ⊗ (εB` ◦ (1B` ⊗ f))) ◦ (((g ⊗ 1B`) ◦ ηB`) ⊗ 1A) : A −→ C is
proved thus

A ⊗ Br ⊗ C

A

����������

f

;;

g

""

C
��������

=

A

C

g◦f

��

= C ⊗ B` ⊗ A

A

��99999999

��
g

aa

f

C
��======

.

NOTE: Links do not cross in the graphs of the syntactical category.
The benefit of orienting and labelling links will become evident through the

examples of natural language processing in Section 4.1.

2.2 The semantic category

The general definitions and properties of biproduct dagger compact closed cat-
egories can be found in [Selinger, 2007] or [Abramsky and Coecke, 2004]. Two
semantic categories are specially tailored to natural language semantics, namely
the category 2SF of two-sorted functions, Subsection 3.1, and the category RI
of free semimodules over the lattice of the real interval [0, 1] generated by finite
sets.

Its importance to natural language processing resides in the fact that se-
mantic vector models interpret words as vectors the coordinates of which are
obtained by frequency counts of co-occurrences in context-windows. Without
loss of generality, one may assume that the coordinates belong to the real inter-
val [0, 1] .

Recall that the linear order on the real numbers in [0, 1] induces a distributive
and implication-complemented lattice structure on [0, 1], namely

α ∨ β = max {α, β} and α ∧ β = min {α, β}
α→ β = max {γ ∈ I : α ∧ γ ≤ β}

¬α = α→ 0 .

This lattice is not Boolean, because ¬¬α = 1 6= α for 0 < α < 1 . The subset
{0, 1}, however, forms a Boolean algebra.

The lattice operations define a semiring structure on [0, 1] with neutral ele-
ment 0 and unit 1 by

α+ β = α ∨ β α · β = α ∧ β .

Basic properties of biproduct dagger compact closed categories

Objects of an arbitrary biproduct dagger compact closed category are called
spaces, morphisms linear maps. A morphism v : I −→ V , where I is the unit of
the tensor product, is called a vector of V . Write v ∈ V for vectors v : I −→ V
and f(v) ∈W for f ◦ v : I −→W , where f : V −→W .

5



Vectors b1, . . . , bn of V form a basis of V if every vector of V can be written
in a unique way as a linear combination of the vectors b1, . . . , bn . A space is
n-dimensional if it has a basis of cardinality n. The dimension is unique. A
space with chosen basis B = b1, . . . , bn is denoted VB .

All spaces are assumed to be finite dimensional from now on.
Linear maps identify with matrices such that multiplication of matrices

corresponds to composition of maps. Indeed, let A = a1, . . . , am and B =
b1, . . . , bn . A linear map f : VA −→ VB is determined by its values on the
basis vectors a1, . . . , am ∈ A and is characterized by the matrix (φij) where
φij ∈ I is the i-th coordinate of f(aj) =

∑n
i=1 φijbi . Such matrices can

be identified with vectors in VA ⊗ WB . The basis vectors of the latter are
aj ⊗ bi, for j = 1, . . . ,m and i = 1, . . . , n .

The inner product 〈v|w〉 of vectors v =
∑m

j=1 αjaj and u =
∑m

j=1 βjaj in
RI is given by

〈v|u〉 = 〈
m∑
j=1

αjaj |
m∑
j=1

βjaj〉 =

m∑
j=1

α†jβj .

Vectors are orthogonal if 〈v|u〉 = 0 . In the case of RI, we have α = α† for
all scalars α ∈ [0, 1] . Hence vectors with coordinates in [0, 1] are orthogonal in
RI exactly when they are orthogonal in the category of Hilbert spaces.

The category of semimodules RI is a biproduct dagger compact closed cat-
egory with monoidal unit I = [0, 1] . Every object V of RI has a unique finite
basis A, which we express by V = VA . It is its own adjoint, VA = V ∗A. The unit
ηVA

: I −→ VA ⊗ VA and counit εVA
: VA ⊗ VA → I of the adjunction are given

by

ηVA
(1) =

∑
a∈A

a⊗ a εVA
(a⊗ b) =

{
1 if a = b

0 else
= 〈a|b〉 .

The name and coname of f : VA −→ VB are defined by

pfq(1) =
∑

a∈A a⊗ f(a)
xfy(a⊗ b) = 〈f(a)|b〉 for a ∈ A, b ∈ B .

By definition, VA = V †A . The adjoint of f : VA −→ VB is the morphism f∗ = f†

induced by the transpose of the matrix of f .

The logic of vectors

Definition 1 (Boolean vector). Let C be any semantic category, 0 = 00I :
0→ I, 1 = 1I : I → I and VB any space in C . A vector v =

∑n
i=1 αibi ∈ VB is

Boolean if αi ∈ {0, 1}, for i = 1, . . . , n .

The connectives ¬, ∧ etc. are operators on the set {0, 1} satisfying

¬0 = 1,¬1 = 0 and 1 ∧ 1 = 1, 0 ∧ 0 = 1 ∧ 0 = 0 ∧ 1 = 0 etc.

6



They lift to the Boolean vectors, where they are defined coordinate by coordinate

¬
n∑

i=1

αibi =

n∑
i=1

(¬αi)bi, (
∑
i

αibi) ∧ (
∑
j

βjbj) =
∑
i

(αi ∧ βi)bi etc. (1)

and induce a partial order by the postulate

v ≤ w if and only if v ∧ w = v .

We have
1. the Boolean vectors together with the logical vector connectives form a

Boolean algebra
2. every Boolean v defines a unique subset K ⊆ B such that v =

∑
b∈K b and

vice versa
3. the null vector

−→
0 (with coordinates all equal to 0) is the smallest and the

full vector
−→
1 (with coordinates all equal to 1) the largest vector.

Lemma 1. If VB is a space of RI the equalities (1) define a distributive, impli-
cation complemented lattice structure on VB such that the following equivalences
hold

¬¬v = v ⇐⇒ v ∨ ¬v =
−→
1 ⇐⇒ the coordinates of v are 0 or 1 . (2)

Moreover, vector conjunction is the linear map ∧ : VB ⊗ VB −→ VB defined on
the basis vectors by

∧(b⊗ b) = b, ∧(b⊗ b′) =
−→
0 , for b 6= b′ ∈ B .

The logic of projectors

Let C be any semantic category and E an n-dimensional space with chosen basis
B = b1, . . . , bn .

Recall that a morphism p : E −→ E is a projector if it is idempotent and
self-adjoint

p ◦ p = p, p† = p .

In RI, the latter equality means that the matrix of p is symmetric.
A projector p of a Hilbert space determines a subspace, namely the set of

vectors invariant under p

Ep = {w : w = p(w)} = p(E) .

These subspaces are in one-to-one correspondence with the projectors. Hence
the quantum connectives are defined on the set of projectors/subspaces, see
[Rijsbergen, 2004], by

¬Ep = E⊥p , Ep ∨ Eq = Ep + Eq, Ep ∧ Eq = Ep◦q,
Ep → Eq = {u : q(p(u)) = p(u)} .

7



The quantum connectives induce a not necessarily distributive lattice structure
on the set of projectors such that p ≤ q is equivalent to p ∧ q = q. Thinking
of projectors as propositions and of 1E as the true proposition, the equality
p→ q = 1E is read as ‘p implies q’.

This approach is not possible in an arbitrary semantic category. Any two-
dimensional space V{a1,a2} of RI has subspaces that are not image of any pro-
jector. An example is the span of the vectors u = αa1, v = βa2, w = γa1 +βa2,
where 0 < β < α < γ ≤ 1 . We need a property that connects subspaces and
projectors in an arbitrary semantic category.

Definition 2 (Intrinsic morphism). A linear map of C is intrinsic if it sends
every basis vector to a basis vector or to the null vector.

Intrinsic linear maps are closed under composition.

Lemma 2. A projector p : VB −→ VB is intrinsic if and only if

p(bi) = bi or p(bi) =
−→
0 , for i = 1, . . . , n . (3)

Proof. Let p be an intrinsic projector and (πij) its matrix. This matrix is
symmetric, because p is self-adjoint and the entries πij are 0 or 1 .

We must show that p(bk) = bl implies k = l . From p(bk) = bl follows
p(bl) = bl, because p is idempotent. The latter equality implies πll = 1 and
πil = 0 for i 6= l . Moreover, p(bk) = bl implies πlk = 1 and πik = 0 for i 6= l .
By symmetry, πkl = 1. Hence k = l .

Hence, every intrinsic projector has the form
∑

k∈K |bk〉〈bk| where K ⊆
{1, . . . , n}, where |bi〉〈bi| maps bi to itself and every other basis vector to the
null vector. The composition q ◦ p of intrinsic projectors p : VB −→ VB and
q : VB −→ VB is again an intrinsic projector satisfying

(q ◦ p)(x) = q(x) ∧ p(x), for all x ∈ B .

Intrinsic projectors are in one-to-one correspondence with Boolean vectors.
Indeed, let v = α1b1 + · · · + αnbn be a vector of VB . Define the linear map
pv : VB −→ VB by its values on the basis vectors

pv(bi) = αibi, for i = 1, . . . , n . (4)

If v is Boolean some obvious properties are
1. pv is an intrinsic projector

2. pv(w) = v ∧ w for every Boolean vector w; in particular pv(
−→
1 ) = v

3. the map v 7→ pv is one-to-one
4. p−→

1
= 1VB

Lemma 3. For every intrinsic projector p there is a Boolean vector v such that
p = pv . For every Boolean vector v, the subspace Epv of vectors invariant under
pv coincides with the subspace generated by the basis vectors bi satisfying bi ≤ v .
Every subspace generated by a subset of basis vectors is the invariance space of
an intrinsic projector.

8



Proof. Let p be an intrinsic projector. Define

K = {k : p(bk) = bk & 1 ≤ k ≤ n} and v =
∑
k∈K

bk .

Then p(bi) = pv(bi), for i = 1, . . . , n . Hence the map v 7→ pv is onto the set
of intrinsic projectors. Moreover, Ep is generated by the set of basis vectors
{bk : k ∈ K} and bi ≤ v if and only if i ∈ K .

Theorem 1. The map v 7→ pv is a negation preserving lattice isomorphism H
from the Boolean vectors onto the intrinsic projectors of VB .

Proof. Writing Ev = Epv
, we must prove that

Ev
⊥ = E¬v, Ev ∨ Ew = Ev∨w, pv ◦ pw = pv∧w, Ev → Ew = Ev→w . (5)

The first three equalities follow immediately from Property 2. and Property 4.
above.

To prove the last equality, let v =
∑n

i=1 αibi, w =
∑n

i=1 βibi be Boolean vec-
tors and u =

∑n
i=1 γibi be any vector. By definition, v → w =

∑n
i=1 (¬αi ∨ βi)bi .

On one hand,

u ∈ Ev→w ⇔ u = pv→w(u)
⇔ γi = (¬αi ∨ βi)γi, for i = 1, . . . , n .

On the other hand, recall that Ev → Ew = {u : pw(pv(u)) = pv(u)} . Hence,

u ∈ Ev → Ew ⇔ αiγi = αiβiγi for i = 1, . . . , n .

The equalities γi = (¬αi ∨ βi)γi and αiγi = αiβiγi both hold trivially if αi = 0
or βi = 1. In the case where αi = 1 and βi = 0 they are both equivalent to the
equality γi = 0 .

It follows that the sublattice of intrinsic projectors is Boolean. Moreover, in-
trinsic projectors are monotone increasing on Boolean vectors.

The linear map defined by Equalities (4) is a projector inRI for an arbitrary
vector and Equalities (5) hold for all vectors.

3 Two-sorted first order logic in compact closed
categories

The relevance of two-sorted first order logic for natural language resides in the
fact that it is equivalent to second order logic with general models, see [Benthem
and Doets, 1983], and a wide spread belief that second order logic suffices for
natural language semantics.

9



3.1 The category of two-sorted functions

Two-sorted functions are tailored to natural language, because they accept ele-
ments (sort 1) as well as sets (sort 2) as arguments. In a similar way, verbs accept
both singulars and plurals. Functions in two-sorted first order logic were first
used in [Preller, 2007]. The presentation below follows [Preller and Sadrzadeh,
2011].

Definition 3 (Two-sorted function). A function f : A −→ B is two-sorted
if it maps elements and subsets of A to elements or subsets of B and satisfies

f({a}) = f(a) for a ∈ A
f(∅) = ∅

f(X ∪ Y ) = f(X) ∪ f(Y ) for X,Y ⊆ A .
(6)

Obviously, a two-sorted function defined on a finite set is determined by
its values on the elements. Examples are the two-sorted identity 1A and the
two-sorted diagonal 2A defined by

1A(a) = a, for a ∈ A 2A(a) = 〈a, a〉, for a ∈ A .

Lemma 4. The category 2SF of finite sets and two-sorted functions is a dagger
biproduct compact closed category.

Proof. The biproduct is the disjoint union of sets. Hence VA = A for every
finite set A .

The monoidal structure is given by the cartesian product of sets. A two-
sorted notation for the Cartesian product brings the same notational advantages
as the tensor product

a×2 b = 〈a, b〉
a×2 B = {a} ×B
A×2 b = A× {b}
A×2 B = A×B .

The two-sorted product f ×2 g : A ×2 C −→ B ×2 D for f : A −→ B and
g : C → D is determined by it values on the elements of A×2 C, namely

(f ×2 g)(a×2 b) = f(a)×2 g(b), for a ∈ A, b ∈ C .

The monoidal unit is a distinguished singleton set I = {a0} .
Every object is its own adjoint, A = A∗ = A†, the unit ηA : I −→ A × A

and counit εA : A×A→ I of the adjunction are given by

ηA(a0) = {a×2 a : a ∈ A} εA(a×2 b) =

{
a0 if a = b

∅ else

The name, coname, dual and dagger of f : A −→ B are

pfq(a0) = {a×2 b : f(a) = b or b ∈ f(a), a ∈ A, b ∈ B}

xfy(a×2 b) =

{
a0 if f(a) = b or b ∈ f(a)

∅ else

f∗(b) = {a ∈ A : f(a) = b or b ∈ f(a)} = f†(b) .

10



The category 2SF has an abundance of projectors. Here is one, which is not
a projector in the category of Hilbert spaces.

Example 1. A two-sorted projector that is not intrinsic.

The two-sorted function p : {a, b} −→ {a, b} defined by

p(a) = {a, b} and p(b) = {a, b}

is a projector in 2SF . The corresponding matrix is

(πij) =

(
1 1
1 1

)
.

The same matrix induces an endomorphism in any semantic category. This
endomorphism is again a projector in RI, but not in general when addition is
not idempotent.

Luckily, the semantics of natural language only involves projectors that live
in every semantic category, namely the intrinsic projectors. The characterization
(3) of intrinsic projectors is equivalent in 2SF to

p(Y ) = {x ∈ B : p(x) = x} ∩ Y, for every Y ⊆ B . (7)

3.2 The embedding

Given a set A = {a1, . . . , am}, the map JA is defined for elements a ∈ A and
subsets X ⊆ A thus

JA(a) = a ∈ VA, JA(X) =
∑
a∈X

a ∈ VA . (8)

The map JA has an inverse J−1A that sends a sum of distinct basis vectors
in VA to the corresponding subset of A, i.e. for {i1, . . . , ik} ⊆ {1, . . . , n}

J−1A (
∑

j=1,...,k

aij ) = {ai1 , . . . , aik} . (9)

The following holds for every Boolean vector v ∈ VA and every X ⊆ A

J−1A ◦ JA(X) = X
JA ◦ J−1A (v) = v .

In fact, JA is an isomorphism of Boolean algebras that maps subsets of A
onto Boolean vectors of VA . Indeed, JA commutes with the logical connectives

JA(X ∪ Y ) = JA(X) ∨ JA(Y )
JA(X ∩ Y ) = JA(X) ∧ JA(Y )
JA(A \X) = ¬JA(X)

, for X,Y ⊆ A

11



Finally, for any finite set A let

J (A) = VA

and for any two-sorted function f : A −→ B let J (f) : VA −→ VB be the linear
map satisfying

J (f)(a)=JB(f(a)) for a ∈ A . (10)

The restriction of J (f) : VA −→ VB to Boolean vectors is a Boolean homo-
morphism in RI, because vector disjunction coincides with vector addition in
this category .

Definitions (8) -(10) make sense in the category of finite dimensional Hilbert
spaces as well. The maps JA are Boolean isomorphisms, but the linear map
J (f) is not a Boolean homomorphism when restricted to Boolean vectors.

The following Embedding Lemma is one of the reasons why RI is especially
appropriate for natural language semantics.

Lemma 5 (Embedding Lemma). The map J : 2SF → RI is a one-to-one
functor that preserves the biproduct dagger compact closed structures and the
logical connectives.

The restriction of J to the subcategory of intrinsic maps is a functor in an
arbitrary semantic category.

Proof. The proof is straight forward and essentially that given in [Preller and
Sadrzadeh, 2011].

Only the equality J (g ◦ f) = J (g) ◦J (f), which holds in RI, does not hold
in an arbitrary semantic category unless both f and g are intrinsic.

Indeed, let f ′(a) = f(a) if f(a) is a set and f ′(a) = {f(a)} if f(a) is an
element. Define g′(b) similarly and let K =

⋃
b∈f ′(a) g

′(b) . Then on one hand,

(g ◦ f)(a) =
⋃

b∈f ′(a)

⋃
c∈g′(b)

{c} =
⋃
c∈K
{c} and therefore J (g ◦ f)(a) =

∑
c∈K

c .

On the other hand, J (f)(a) = JB(f(a)) =
∑

b∈f ′(a) b . Hence

J (g) ◦ J (f)(a) =
∑

b∈f ′(a)

J (g)(b) =
∑

b∈f ′(a)

∑
c∈g′(b)

c =
∑
c∈K

c . (11)

The rightmost equality of (11) holds in RI, because vector addition is idem-
potent. This is not the case in an arbitrary semantic category, Example 1, unless
f and g are intrinsic. If they are intrinsic, however, the sets f ′(a) and g′(b) are
either empty or singleton sets and the equalities (11) above hold. Hence again
J (g) ◦ J (f) = J (g ◦ f) .

12



3.3 Two-sorted truth

Let S be a fixed two-dimensional space of the semantic category C with basis
vectors > and ⊥ . Think of > as ‘true’ and of ⊥ as ‘false’. The Boolean vectors
of S are called two-sorted truth-values. The basis vectors are of sort 1, the null-

vector
−→
0 and the full vector

−→
1 = > + ⊥ of sort 2. The null-vector stands for

‘neither true nor false’ and >+⊥ for ‘partly true and partly false’. Two-sorted
truth-values reflect second order properties of natural language, Subsection 4.3
provides some examples.

The two-sorted connectives on S are linear maps, which are determined by
their values on basis vectors. They are intrinsic and thus live in every compact
closed category with biproducts.

The two-sorted conjunction andS : S ⊗ S −→ S, the two-sorted disjunction
orS : S ⊗ S −→ S and the two-sorted negation notS : S −→ S are given by

andS(>⊗>) = >, andS(⊥⊗>) = andS(>⊗⊥) = andS(⊥⊗⊥) = ⊥
orS(⊥⊗⊥) = ⊥, orS(⊥⊗>) = orS(>⊗⊥) = orS(>⊗>) = >

notS(>) = ⊥, notS(⊥) = > .

The two-sorted connectives are Boolean operators on S, because

notS ◦ notS = 1S
orS ◦ (notS ⊗ notS) = notS ◦ andS .

(12)

Two-sorted negation coincides with vector negation on basis vectors, but
they are not identical. In fact, notS is the symmetry isomorphism that ex-
changes the two basis vectors of S, whereas vector negation is not even an
endomorphism of S

notS(>) = ¬>, notS(⊥) = ¬⊥, notS(
−→
0 ) =

−→
0 ,

whereas ¬−→0 =
−→
1 .

In general, the two-sorted connectives differ from the vector connectives, even
on basis vectors. For example

andS(⊥⊗>) = ⊥, whereas ⊥ ∧> =
−→
0 .

Natural language prefers the two-sorted connectives on S, a fact relected by the
notation.

3.4 Two-sorted predicates

Let E be any object of C, think of the basis vectors of E as ‘individuals’.
Abbreviate the n-fold tensor product of E by En = E ⊗ . . .⊗ E .

Definition 4 (Two-sorted predicate). A two-sorted predicate is an intrinsic
morphism with codomain S.

A two-sorted predicate on E is a two-sorted predicate that maps basis vectors
of E to basis vectors of S .

An n-ary two-sorted predicate on E is a two-sorted predicate on En.

13



Lemma 6. The n-ary predicates on E together with the two-sorted connectives
form a Boolean algebra.

More precisely, assume that p : En −→ S and r : En −→ S are n-ary
two-sorted predicates on E. Then the linear maps

notS ◦ p, andS ◦ (p⊗ r), orS ◦ (p⊗ r), andS ◦ (p⊗ r) ◦ 2En , orS ◦ (p⊗ r) ◦ 2En

are again two-sorted predicates on E such that

notS ◦ notS ◦ p = p
notS ◦ andS ◦ (p⊗ r) = orS ◦ ((notS ◦ p)⊗ (notS ◦ r)) .

(13)

Proof. It suffices to check the equalities (13) for basis vectors, which follows
from (12).

Two-sorted predicates have two possible values for individuals. For sets,
however, they have a wider range of values. The following lemma tells us when.

Lemma 7. [Fundamental Property] Let p : VB −→ S be a two-sorted predicate
on VB and A = {bi1 , . . . , bik} a subset of k basis vectors. Then there is a non-
negative integer k1 ≤ k such that

p(bi1 + · · ·+ bik) = k1 · >+ (k − k1) · ⊥

holds. In particular, the following equivalences hold in the categories 2SF and
RI

p(
∑

x∈A x) =
−→
0 ⇔ A = ∅

p(
∑

x∈A x) = > ⇔ p(x) = > for all x ∈ A and A 6= ∅
p(
∑

x∈A x) = ⊥ ⇔ p(x) = ⊥ for all x ∈ A and A 6= ∅
p(
∑

x∈A x) =
−→
1 ⇔ p(x) = > and p(y) = ⊥ for some x, y ∈ A .

(14)

Proof. Let k1 be the number of elements of the set A1 = {x ∈ A : p(x) = >} .
Then k−k1 is the number of elements of A2 = {x ∈ A : p(x) = ⊥} . By linearity,
p(
∑

x∈A x) =
∑

x∈A1
p(x) +

∑
x∈A2

p(x) = k1 · >+ (k− k1) · ⊥ . The particular
case follows because addition is idempotent.

In Hilbert spaces, the value a two-sorted predicate assigns to the vector∑
x∈A x is the result of two ‘counts’. One counts the elements of A for which

the predicate is true, the other one those for which the predicate is false. It
suffices to divide by the number of elements k in the set A, to obtain a frequency
distribution. The step from two-sorted predicates to probabilities is minimal.

Corollary 1. The following equivalences hold in the categories 2SF and RI,
for any element x and any subset Y of B

p(x) = ⊥ ⇔ p(x) 6= > ⇔ notS(p(x)) = >

p(Y ) = ⊥ ⇔ notS(p(Y )) = > . (15)

In general, however, p(Y ) 6= > does not imply p(Y ) = ⊥ .

14



Proof. The equivalence p(Y ) = ⊥ ⇔ notS(p(Y )) = > follows from the definition
of the two-sorted negation.

By the fundamental property, p(Y ) = ⊥ is equivalent to ∀x(x ∈ Y ⇒ p(x) =
⊥) for a non-empty set Y . Now assume that Y has two distinct elements x and

y and that p(x) = > and p(y) = ⊥. Then p(Y ) = {>,⊥} =
−→
1 6= ⊥ .

In the context of natural language, different font shapes help to distinguish
the set X ⊆ B from the vector JB(X), namely italic font for the former and
typewriter font for the latter. For example, if Bank ⊆ B

bank =
∑

x∈Bank

x = JB(Bank) .

The same applies when distinguishing a one-sorted predicate on B and the cor-
responding two-sorted predicate on VB . For example, the one-sorted predicate
Rich corresponding to rich : VB −→ S satisfies

x ∈ Rich ⇔ Rich(x)⇔ rich(x) = >, for all x ∈ B .

Here are a few examples how two-sorted predicates work in an arbitrary
semantic category.

Under the assumption that a noun designates a non-empty set of individuals,
the following equivalences hold in 2SF andRI . The proofs are straight forward
via the Fundamental Property (14)

Example 2. The following are equivalent

rich(bank) = >
∀x(x ∈ Bank⇒ x ∈ Rich) .

Example 3. The following are equivalent

notS(rich(bank)) = >
∀x(x ∈ Bank ⇒ x 6∈ Rich) .

Important: The first order formula in Example 3 is not the negation of the first
order formula in Example 2. But then, the equality rich(bank) = ⊥ is not the
negation of the equality rich(bank) = >, because there are more than two truth
values.

4 Semantics via pregroup grammars

Let E be a finite dimensional space with basis B . Call its basis vectors indi-
viduals. Single basis vectors of E correspond to singulars and sums to plurals
of natural language. The examples below concern unary predicates only. The
generalization to ordered pairs, triples etc. of individuals is straight forward.
The space S is the two-dimensional space of two-sorted truth introduced in 3.3.

15



4.1 The computation of meanings

Like every other categorial grammar, a pregroup grammar is given by a lexicon
and a calculus. The pregroup calculus is compact bilinear logic where proofs
identify with morphisms in the free compact bicategory C2(B) generated by a
partially ordered set B.

The 1-cells are called types and the tensor product is written as concatena-
tion. Hence, a type is a string of simple types, where a simple type is either an
element of x, y, · · · ∈ B or an iterated adjoint x`, y`, . . . , x``, y``, . . . , xr, yr, . . . ,
xrr, yrr, . . . etc. The types x, y, · · · ∈ B are called basic types. They stand for
grammatical notions.

As a consequence, every functor from B into a semantic category C extends
into a functor from C2(B) to C preserving the structure of compact bicategories.

A lexicon is a finite list of entries. An entry is a triple w : T :: m, where w
is a word, T a type and m a meaning expression.

This description differs from the original one in [Lambek, 1999]. There,
only pregroup ‘dictionaries‘ are considered where the entries are pairs w : T ,
without meaning expressions. The latter must be added explicitly, because the
functional semantics of categorial grammars with higher order types has been
lost by the pregroup types.

The meaning in the entry is a formal expression m : I −→ V in the language
of compact closed categories or, equivalently, a string of two-sorted functions.
It depends functionally on the pair w : T .

Consider the following entries

no : ss`n2c2
`:: I

no−→ S ⊗ S∗ ⊗ E ⊗ E∗

are : n2
rss`n̄ :: I

are−−→ E∗ ⊗ S ⊗ S∗ ⊗ E
and : srss` :: I

andS−−→ S∗ ⊗ S ⊗ S∗

some : n2c2
`:: I

some−−−→ E ⊗ E∗

big : c2c2
` :: I

big−−→ E ⊗ E∗

banks: c2 :: I
bank−−−→ E

rich : n̄rs :: I
rich−−−→ E∗ ⊗ S

The basic types c2,n2, n̄, s, stand for ‘plural count noun’, ‘plural noun phrase’,
‘dummy noun phrase’ and ‘sentence’, in that order. Moreover, c2 < n2 .

The properties of the meaning vector m in the entry w : T :: m depend on
the logical content of the word, given in due course, and on the type.

The lexicon defines a canonical functor from B into the compact closed cat-
egory C. For example, in the list of entries above, the basic type s is interpreted
by S and each of the basic types c2,n2, n̄ by E . The canonical functor maps
the inequality c2 < n2 to the identity 1E and left and right adjoints of a type
to ‘the’ adjoint space, because right and left adjoints may be identified in a
symmetric monoidal category.

All meanings are presented in the form of names, up to a symmetry iso-
morphism that arranges the factors of the tensor product in the order given
by the simple types. For example, big = σE∗,E ◦ pbigq : 1 −→ E ⊗ E∗ where
big : E −→ E.

The meaning of a grammatical string involves both the meanings of the words

16



and the syntactical analysis of the string. An ambiguous string with several
parsings has several meanings. A non-grammatical string has no meaning.

A string of words w1 . . . wn is grammatical if there are entries w1 : T1 ::
m1, . . . , wn : Tn :: mn and a basic type b such that

T1 . . . Tn ` b

is provable in compact bilinear logic. Otherwise said, if there is a morphism
f : T1 . . . Tn → b in the syntactic category. Due to a theorem in [Lambek, 1999]
the graph of the proof involves only underlinks and is called a reduction.

For example, the reduction corresponding to the graph on the left below
analyses big banks as a plural noun-phrase. The graph on the right is the
corresponding morphism in the semantic category.

1c2 ⊗ εc2 =

big banks
( c2 c2

` ) ( c2)dd

c2
��

r1 = 1E ⊗ εE =

(E ⊗ E∗)⊗ Ecc

E
��

The reason why the syntactic category must not be symmetric is obvious in
this example. The type c2c2c2

` of the non-grammatical string banks big has no
reduction to a basic type. If we had symmetry all order variants of a grammatical
string would be grammatical.

The meaning vector of a lexical entry also identifies with a graph, for example

I
big−−→ E ⊗ E∗ =

big

I

}}
E ⊗ E∗

bank : I −→ E =

I

E

bank

��
.

Again, the domain of the morphism is at the top of the graph, the codomain at
the bottom.

For a grammatical string w1 . . . wn, let w1 : T1 :: m1, . . . , wn : Tn :: mn be a
choice of entries and r a reduction of T1 . . . Tn to a basic type. The corresponding
meaning is

r ◦ (m1 ⊗ . . .⊗mn) ,

where now r denotes the linear map obtained by applying the canonical functor
to the reduction.

The meaning of a string can be computed graphically. Connect the graphs
at their joint interface and follow the paths from top to bottom picking up the
labels along the way. For example, the graphs

big⊗ bank =

(E ⊗ E∗)⊗ (E)
||

big
bank

��<<<<<<<<I ⊗ I

r1 =

(E ⊗ E∗)⊗ (E)cc

E
��

17



when connected at there joint interface compute to

r1 ◦ (big⊗ bank) =
(E ⊗ E∗)⊗ (E)
||

big

ee

E
��

I

bank

��777777777

=

I

S

big◦bank

��

= big ◦ bank .

The meaning vector are : I −→ E∗ ⊗ S ⊗ S∗ ⊗ E is up to a symmetry
isomorphism the name of the linear map are : E ⊗ S −→ E ⊗ S. The following
postulate renders the logical property of the word are

are = 1E ⊗ 1S .

Hence the graph of are is

are =

I

  ~~
E∗ ⊗ S ⊗ S∗ ⊗ E

.

The lexicon assigns to the pair rich : n̄rs a meaning vector rich : I −→
E∗ ⊗ S . Its graph has the form

rich =

I

rich

!!
E∗ ⊗ S

, where rich : E −→ S .

The reduction of the sentence big banks are rich is the graph

r =

big banks are rich
99dd

s
��

cc ??(c2 c2
`) (c2 ) (n2

r s s` n̄) (n̄r s)

.

Compute the meaning by composing the tensor product of the word vectors

18



with the reduction

r ◦ (big⊗ bank⊗ are⊗ rich)

= 99
��
big

ee
��

I

bank

��










""

S
��

dd ;;
��
rich

(E ⊗ E∗)⊗ (E )⊗ (E∗ ⊗ S ⊗ S∗ ⊗ E)⊗ (E∗ ⊗ S) =

I

S

rich◦big◦bank

��

= rich ◦ big ◦ bank .

The sentence All banks are rich is computed by the same graph except that the
label big is replaced by the label all. A similar remark applies to the sentence
Some banks are rich.

The last example concerns the computation of the meaning vector of the
sentence no banks are rich.

- the reduction of the sentence is

s
��

gg 88ee dd
no banks are rich

(s s` n2 c2
`) (c2) (n2

r s a`) (a)

- the meaning vector no : I −→ S ⊗ S∗ ⊗ E ⊗ E∗ is defined as the name of
notS ⊗ 1E : S ⊗ E −→ S ⊗ E with the corresponding graph

no =

I

��
notS

��
S ⊗ S∗ ⊗ E ⊗ E∗

- the meaning of the sentence no banks are rich is

r ◦ (no⊗ bank⊗ are⊗ rich)

= ��
notS

S
��

gg 88
��
ff

I

bank

����������

$$��
::

rich

  
ff(S ⊗ S∗ ⊗ E ⊗ E∗)⊗ (E )⊗ (E∗ ⊗ S ⊗ S∗ ⊗ E)⊗ (E∗ ⊗ S)

= notS ◦ rich ◦ bank .

‘Walking graphs’ makes the computation linear in the number of links. The
latter is proportional to the length of the string of words, because the lexicon is
finite and thus the length of its types is bounded.

19



4.2 The logical content of words

The preceding examples mention the logical content of some words. More gen-
erally, the description of the logical content can be organized according to the
type of the words. We postulate
1. Any f : En −→ S occurring in a lexical entry is an n-ary two-sorted predi-

cate.
2. Any f : E −→ E occurring in a lexical entry is an intrinsic projector.
3. Any f : I −→ E occurring in a lexical entry is a Boolean vector.

Under these postulates, adjectives in predicative position and intransitive verbs
are unary two-sorted predicates. The meaning map word : E −→ E in word :
nic

`
i :: word : I −→ E⊗E∗ interpreting an adjective in attributive position or a

determiner is an intrinsic projector. The universal determiner satisfies an even
stronger property

all = 1E .

Recall that B is the canonical basis of E and that any subset Y of B is
identified with a Boolean vector, by Equality (8). Assume that word : E −→ E
is an intrinsic projector occurring in the lexicon. Use the abbreviation

Word = word(B) .

Combine this abbreviation with Equality (7) to obtain the equality

word(Y ) = Word ∩ Y, for Y ⊆ B . (16)

For example, Bank = bank(B) and big(Bank) = Big ∩ Bank

4.3 Examples

The examples below concern sentences and their meaning vectors in the cate-
gories 2SF and RI . Represent the truth of a sentence by the fact that the
meaning vector computes to > . Then show that this representation coincides
with the ‘usual’ translation of the sentence in logic.

Example 4. All banks are rich / rich(all(bank))

The following are equivalent

∀x(x ∈ Bank⇒ Rich(x ))
rich(all(bank)) = > .

Proof. Recall that all = 1E . Hence rich(all(bank)) = rich(bank) . For the
proof of the equivalence of rich(bank) = > with ∀x(x ∈ Bank ⇒ Rich(x))
confer to Example 2.

Example 5. Big banks are rich / rich(big(bank))

20



The following are equivalent

∀x(x ∈ Big ∩ Bank⇒ Rich(x))
rich(big(bank)) = > .

Proof. Recall that bank =
∑

x∈Bank x and therefore the vector big(bank) is
identified with the set big(Bank) = Big ∩ Bank by (16). The equivalence now
follows from the Fundamental Property (14).

Example 6. No banks are rich / notS(rich(bank))

The following are equivalent

notS(rich(bank)) = >
∀x(x ∈ Bank ⇒ x 6∈ Rich)

Proof. See Example 3.

Example 7. Some banks are rich/rich(some(bank))

The implication

rich(some(bank)) = > ⇒ ∃x(x ∈ Bank & Rich(x))

holds, but its converse does not hold in general.

Proof. The equality rich(some(bank)) = > implies some(bank) 6= ∅ and ∀x(x ∈
some(bank) ⇒ rich(x) = >), by the Fundamental Property. The first order
formula follows, because some(bank) ⊆ bank .

If the first order formula holds, take a witness b ∈ Bank for which Rich(b)
holds. Let someb be the intrinsic projector that maps b to itself and every other
individual to the null vector. Clearly someb(bank) = b and rich(b) = > . Hence,

rich(someb(bank)) = > ,

but this does not imply that the particular intrinsic projector someb coincides
with the original some .

Natural language confronts us with a problem. On one hand, the interpre-
tation of ‘some Y ’ changes from occurrence to occurrence, like in Some banks
are rich and some banks are not rich. On the other hand, ‘some Y ’ acts like
a well determined reference set. In Some banks are rich. They scare me, the
personal pronoun they refers to the set some banks of the preceding sentence.

The interpretation of some given above may vary from occurrence to occur-
rence and in the same time it defines a set at each occurrence, which is available
for later reference, e.g. they = some(bank).

The interpretation by a generalized quantifier, see [Barwise and Cooper,
2002], takes into account the change of meaning in different occurrences, but it
does not construct the set to which the noun phrase refers.

21



5 Compositional semantics in concept spaces

Quantum logic stands for ‘logic of projectors in a concept space’ and concept
for ‘Boolean vector in a concept space’.

5.1 Classical propositional calculus in concept spaces

Let P = {p1, . . . , pd} be a non-empty set. Call compound system or concept
space the tensor product

C(P ) = C(p1)⊗ . . .⊗ C(pd) ,

where C(pi) is a 2-dimensional space with basis vectors pi>, pi⊥, for i = 1, . . . , d .
The space C(pi) is a ‘basic variable’ in quantum protocols and a ‘basic

concept’ in semantics for natural language. For example, key-words of Roget’s
(or the speaker’s mental) thesaurus provide sets of basic concepts.

Any basis vector bf of C(P ) is a tensor product of basis vectors of the factors

bf = f(1)⊗ . . .⊗ f(d), where f ∈
d∏

i=1

{pi>, pi⊥} .

Due to the fine-grained structure of the basis vectors, the Boolean algebra
of intrinsic projectors of a concept space is isomorphic to the Boolean algebra
freely generated by the set P . The rest of this subsection is devoted to the
proof of this fact.

For every i = 1, . . . , d, define the two so-called primitive vectors

−→pi =
−→
1 ⊗ . . .⊗−→1 ⊗ pi> ⊗

−→
1 ⊗ . . .⊗−→1 =

∑
f,f(i)=pi>

bf
−→¬pi =

−→
1 ⊗ . . .⊗−→1 ⊗ pi⊥ ⊗

−→
1 ⊗ . . .⊗−→1 =

∑
f,f(i)=pi⊥

bf .

The two primitive vectors defined by pi ∈ P are orthogonal to each other.
In fact, each is the negation of the other one

¬−→pi = −→¬pi and ¬(−→¬pi) = −→pi .

Every Boolean vector can be written as a disjunction of conjunctions of
primitive vectors. Indeed, let {j1, . . . , jk} be a subset of {1, . . . , d} . Assume

that g ∈
∏d

i=1

{
pi>, pi⊥,

−→
1
}

satisfies for i = 1, . . . , d

g(i) ∈ {pi>, pi⊥} if and only if i ∈ {j1, . . . , jk} . (17)

The partial choice vector associated to g is

vg = g(1)⊗ . . .⊗ g(d) .

Lemma 8. Every partial choice vector vg is a conjunction of primitive vectors.
In particular, every basis vector is a conjunction of primitive vectors.

22



Proof. Assume that g satisfies(17). Let qjl = g(jl) ∈ {pjl>, pjl⊥}, l = 1, . . . , k,

and G =
{
f ∈

∏d
i=1 {pi>, pi⊥} : f(jl) = qjl , for l = 1, . . . , k

}
. Then

vg =
∑
f∈G

bf = −→qj1 ∧ · · · ∧ −→qjk . (18)

Theorem 2. The free Boolean algebra generated by P is isomorphic to the lat-
tice of intrinsic projectors of C(P ) . The map p 7→ −→p extends to an isomorphism
K from B(P ) onto the lattice of Boolean vectors of C(P ).

Proof. Partial choice vectors are Boolean vectors by (18). Hence, the map
p 7→ −→p extends to a unique Boolean homomorphism K from B(P ) into the
Boolean algebra of Boolean vectors of C(P ) . A classical theorem, [Halmos,
1974], states that the free Boolean algebra B(P ) is isomorphic to the set algebra

generated by the following subsets of
∏d

j=1 {0, 1}

pi '

h ∈
d∏

j=1

{0, 1} : h(i) = 1

 , ¬pi '

h ∈
d∏

j=1

{0, 1} : h(i) = 0

 ,

where i varies from 1 to d. Every singleton set {h} can be written as a conjunc-
tion of subsets of the form pi or ¬pi. Therefore the homomorphism K maps {h}
to the corresponding basis vector in C(P ) . It follows that the homomorphism K
maps B(P ) onto the lattice of Boolean vectors. It is one-to-one, because every
Boolean vector can be written uniquely as a sum of basis vectors.

Compose K with the isomorphismH of Theorem 1 to obtain the isomorphism
H ◦ K onto the lattice of intrinsic projectors.

By Theorem 2, the primitive projectors p−→pi
and p¬−→pi

play an important role
in the lattice of projectors of C(P ) :
1. Every intrinsic projector is a finite disjunction of finite conjunctions of prim-

itive projectors
2. The lattice of intrinsic projectors in a compound system is the classical

propositional calculus modulo equiderivability.
3. One can use induction on the complexity of propositions for defining and

proving properties of Boolean vectors/intrinsic projectors.
Propositional complexity creates a somewhat unusual hierarchy on subspaces.
Recall that com(pi) = 0, com(¬p) = 1 + com(p), and com(p ∧ q) = 1 +
max (com(p), com(q)) . The primitive subspace E−→pi

has complexity 0 and E¬−→pi

has complexity 1, but both have dimension 2d−1. The one-dimensional sub-
space generated by a single basis vector bf has complexity d− 1 if f(i) = pi for
i = 1, . . . , d, and complexity d otherwise.

23



5.2 Concept spaces and two-sorted truth

A classification system consists of
1. a set B (of individuals, pairs of individuals etc.)
2. a set P = {p1, . . . , pd} (of properties)
3. a relation |= ⊆ B × P

Read x |= p as ‘x satisfies p’ .
Extend the relation |= to arbitrary concepts in C(P ) = C(P1)⊗ . . .⊗C(Pd)

for every individual x ∈ B using induction on the complexity of concepts

x |= −→pi if and only if x |= pi
x |= ¬v if and only if x 6|= v
x |= v ∧ w if and only if x |= v & x |= w
x |= v ∨ w if and only if |= v or x |= w .

Clearly, either x |= v or x |= ¬v holds for every individual x ∈ B and every
concept v ∈ C(P ).

Extend satisfaction to every non-empty subset Y of B and every concept v

Y |= v if and only if x |= v for all x ∈ Y . (19)

Read Y |= v as ‘Y has property v in general’.
Note that Y 6|= v and Y 6|= ¬v may hold simultaneously. It suffices that Y

has an element satisfying v and another one that does not satisfy v .
The satisfaction system induces a representation of (sets of) individuals by

concepts in C(P ) . For any x ∈ B let

q(x)i = pi> if x |= pi
q(x)i = pi⊥ if x 6|= pi ,

for i = 1, . . . , d . This choice determines a basis vector, the concept vx internal-
izing x,

vx = q(x)1 ⊗ . . .⊗ q(x)d .

For any non-empty subset Y ⊆ B define the concept vY internalizing Y

vY =
∑
x∈Y

vx .

Different individuals may be internalized by the same basis vector. This
means that they are indiscernible by the properties listed in P .

Lemma 9. For any concept c ∈ C(P ) and any individual x ∈ B

x |= c if and only if vx ≤ c . (20)

In particular, for any basis vector bf ∈ C(P )

x |= bf if and only if vx = bf . (21)

For Y 6= ∅
Y |= c if and only if vY ≤ c . (22)

24



Proof. Show (20), the equivalence concerning individuals, by induction on the
propositional complexity of c. Equivalence (21) is a particular case of (20).

The equivalence concerning sets, (22), now follows from the equivalence for
individuals.

One consequence of the lemma above is that satisfaction in a classification
system coincides with the conditional logic for Boolean vectors/projectors. In-

deed, the inequality v ≤ w is equivalent to v → w =
−→
1 , where the full vector−→

1 stands for ‘true’.
Another consequence is that the concept vx is the best possible description

of the individual x in the classification system and the same holds for vY and
the set Y .

5.3 Intrinsic projectors and two-sorted predicates

Let E be a space with basis B . One can think of any satisfaction system
(B,P = {p1, . . . , pd} , |=) as a model of the language generated by P . It suffices
to think of p ∈ P as the two-sorted predicate p( . ) : E −→ S satisfying

p(x) =

{
> if x |= p

⊥ if x 6|= p
, for all x ∈ B .

Recall that x |= v is equivalent to vx ≤ v . The expressiveness of the logic
remains unchanged if the individuals in B are replaced by the basis vectors
internalizing them. Indeed, individuals x, y for which vx = vy are indiscernible
in the logic.

The compound system C(P ) is endowed with a canonical satisfaction system,
namely

P = {p1, . . . , pd}
B =

{
bf : f ∈

∏d
i=1 {pi>, pi⊥}

}
x |= p ⇔ x ≤ −→p , for all x ∈ B, p ∈ P .

In the canonical satisfaction system, a basis vector can be both an individual
and a concept. More generally, every Boolean vector is both a set of individuals
and a concept.

Given p ∈ P , define a two-sorted predicate L(−→p ) on C(P ) by stipulating

L(−→p )(x) = > ⇔ x ≤ −→p
L(−→p )p(x) = ⊥ ⇔ x 6≤ −→p , for all x ∈ B . (23)

Theorem 3. [Definability of predicates] The map −→p 7→ L(−→p ) extends to a
Boolean isomorphism from the lattice of concepts of C(P ) onto the Boolean
algebra of two-sorted predicates on C(P ) satisfying

L(¬v) = notS ◦ L(v)
L(v ∧ w) = andS ◦ (L(v)⊗ L(w)) ◦ 2E .

(24)

25



Moreover, if K is a non-empty subset of k basis vectors and w =
∑

x∈K the
following equivalences hold

L(v)(w) = k · > ⇔ w ≤ v
L(v)(w) = k · ⊥ ⇔ w ≤ ¬v . (25)

Proof. The extension of L to all Boolean vectors such that (24) holds is guar-
anteed by Theorem 2 .

Next, prove (25) in the particular case where K consists of a single basis
vector, i.e. prove that

L(v)(x) = > ⇔ x ≤ v
L(v)(x) = ⊥ ⇔ x ≤ ¬v , for all x ∈ B . (26)

Use induction on the propositional complexity of v . If the complexity is 0 then
v = −→p , for some p ∈ P . The two equivalences of (26) hold for −→p by (23) and
the fact that x ≤ ¬−→p if and only if x 6≤ −→p .

For the induction step, assume that (26) holds for v . Recall that notS is the
symmetry isomorphism that exchanges the two basis vectors > and ⊥. Thus

L(¬v)(x) = notS ◦ L(v)(x) = > ⇔ L(v)(x) = ⊥ .

The righthand equality above is equivalent to x ≤ ¬v by induction hypothesis.
The equivalence L(¬v)(x) = > ⇔ x ≤ ¬v follows.

Next, assume that (26) holds for the concepts v and w . Then

L(v ∧ w)(x) = andS ◦ (L(v)(x)⊗ L(w)(x)) .

Therefore, L(v∧w)(x) = > holds exactly if both L(v)(x) = > and L(w)(x) = >
hold, by definition of andS . The latter two equalities are equivalent to x ≤ v
and x ≤ w by induction hypothesis, and to x ≤ v∧w by the definition of vector
conjunction. This terminates the proof that the first equivalence of (26) holds
for v ∧ w . The proof of the second equivalence is similar. Hence the particular
case (26) holds for all Boolean vectors.

Next, (26) implies that L is one-to-one. Indeed, if v and w are different
Boolean vectors there is a basis vector x such that x ≤ v and x ≤ ¬w .

Next, for showing that L is onto, assume that r : C(P ) −→ S is an arbitrary
two-sorted predicate on C(P ) . Let K = {x ∈ B : r(x) = >} and v =

∑
x∈K x .

Then r(x) = ⊥ for all basis vectors x 6∈ K, because ⊥ is the only other possible
value of r for a basis vector. Thus r(x) = > if and only if x ≤ v and r(x) =
⊥ if and only if x ≤

∑
x∈B\K x = ¬v . The equality r = L(v) follows by (26).

To show (25) in the general case, let K be a non-empty subset of k basis
vectors and w =

∑
x∈K . Then L(v)(w) = k · > if and only if v(x) = > for all

x ∈ K . The latter is equivalent to w ≤ v, because of (26). The proof of the
second equivalence of (25) is similar.

A succinct summary of the theorem above says that every predicate on C(P )
can be expressed as a Boolean combination of the predicates L(−→p ) for p ∈ P .

26



The fact that the space of indivuals is the concept space C(P ) is essential here.
Assume that a and b are distinct individuals of some space E that indiscernible
by the properties pi ∈ P . Then the two-sorted predicate r on E that maps x
to > if and only if x = b is not definable by a concept of C(P ) .

Note that the homomorphism L maps the full vector
−→
1 ∈ C(P ) to the pred-

icate that is ‘everywhere’ true, where ‘everywhere’ means ‘for all basis vectors’ .
Switching from Boolean vectors to intrinsic projectors, identify the intrinsic
projector pv with the two-sorted predicate L(v) . In particular, 1C(P ) = p−→

1
identifies with the predicate that is ‘everywhere’ true. The equalities (24), re-
cast in terms of projectors, connect predicate logic and projector logic thus

notS ◦ L(v) = p⊥v , andS ◦ (L(v)⊗ L(w)) ◦ 2C(P ) = pv ◦ pw .

Theorems 1 and 3 bring a new understanding to projectors in a compound
system C(P ). The slogans ‘negation is orthogonality’, ‘conjunction is compo-
sition of projectors’ can be extended to ‘every grammatical string corresponds
to a projector such that predicate logic becomes quantum logic’. It suffices to
make E = C(P ) in Subsection 4.1 to compute the projector.

Thus, the sample sentences of Section (4.3) have two interpretations in C(P ) .
One is a two-sorted predicate and the other one a projector. Assuming that we
evaluate the former in 2SF orRI, we have the following equivalences concerning
the two interpretations

All banks are rich / rich(all(bank)) / pbank → prich

rich(all(bank)) = > ⇔ (pbank → prich) = 1C(P ) .

Big banks are rich / rich(big(bank)) / pbig ◦ pbank → prich

rich(big(bank)) = > ⇔ (pbig ◦ pbank → prich) = 1C(P ) .

No banks are rich / notS(rich(bank)) / pbank → p⊥rich

notS(rich(bank)) = > ⇔ (pbank → p⊥rich) = 1C(P ) .

Some banks are rich / rich(some(bank)) / psome(bank) → prich

rich(some(bank)) = > ⇔ (psome(bank) → prich) = 1C(P ) .

This means that projector equalities translate to quantified formulas of two-
sorted first order logic. Otherwise said, quantum logic includes two-sorted first
order logic. For example,

(pbank → p⊥rich) = 1C(P ) ⇔ ∀x(x ∈ Bank⇒ x 6∈ Rich) .

These equivalences concern the categories 2SF or RI, where predicates
cannot count but only assert. The next subsection deals with Hilbert spaces,
where predicate count the elements that satisfy them.

27



5.4 States in a concept space

In this subsection, C is the category of finite dimensional real Hilbert spaces.
A satisfaction relation requires a yes or no answer for every individual and

every basic property pi . For practical reasons such a precise information may
not be available. Instead, real numbers αiY ∈ [0, 1] are available representing
the probability that an arbitrary individual in Y has property pi, i = 1, . . . , d .

Let 0 ≤ αiY ≤ 1 and βiY = 1−αiY for i = 1, . . . , d . The set Y is represented
in C(p1)⊗ . . .⊗ C(pd) by its state vector

µY = (α1Y p1> + β1Y p1⊥)⊗ . . .⊗ (αdY pd> + βdY pd⊥) .

Lemma 10. The coordinates of µY define a probability on the event space B(P )
generated by the −→pi ’s. Moreover, αi is equal to the sum of the coordinates of
−→pi ∧ µY and βi to the sum of the coordinates of ¬−→pi ∧ µY .

Proof. Let γf be the coordinate of µY for f ∈
∏d

i=1 {pi>, pi⊥} . Then −→pi ∧µY =∑
f, f(i)=pi>

γfbf . Hence the assertions follow from the equalities∑
f

γf = 1, αi =
∑

f(i)=pi>

γf , βi =
∑

f(i)=pi⊥

γf .

Prove the first equality by induction on d. The case d = 1 is trivial. For the
induction step, let d′ = d− 1, P ′ = {1, . . . , d′} and

µ′Y = (α1Y p1> + β1Y p1⊥)⊗ . . .⊗ (αd′Y pd′> + βd′Y pd′⊥) .

Let δg be the coordinate of µ′Y in C(P ′), i.e. µ′Y =
∑

g∈
∏d′

i=1{pi>,pi⊥} δgbg . Then∑
g δg = 1 by induction hypothesis. We have

µY = µ′Y ⊗ (αdY pd> + βdY pd⊥) =
∑
g

δgαdY (bg ⊗ pd>) +
∑
g

δgβdY (bg ⊗ pd⊥) .

This finishes the proof, because for every basis vector bf ∈ C(P ) there is a

unique g ∈
∏d−1

i=1 {pi>, pi⊥} such that either bf = bg⊗pd> or bf = bg⊗pd⊥ .

The projector p−→pi
of C(P ) maps the state vector µY to a vector p−→pi

(µY ) =
−→pi ∧ µY , the coordinates of which sum up to αi. Hence the projector p−→pi

,
equivalently, the two-sorted predicate L(−→pi ), returns for µY the probability that
an arbitrary individual in Y satisfies pi .

Return to vector semantics in information retrieval systems. Choose a set
P = p1, . . . , pd of basic properties, for example the most frequent words in a
(set of) document(s). Represent words by vectors in the d-dimensional space
VP , where the coordinate γi of word w is the frequency of co-occurrence with
pi. The projection onto the one-dimensional subspace of VP generated by pi is
the vector γipi .

The scalar γi may be interpreted as the similarity of the word with pi,
but not as the probability that an arbitrary individual designated by w has

28



property pi, because positive and negative occurrences like some banks are safe,
some banks are not safe contribute both to γi . ‘Reasoning by probability’
based on frequency counts requires a distinction between positive and negative
occurrences.

6 Conclusion

New in this approach is that two separate notions of truth, one for concepts and
one for sentences, are handled formally inside a single mathematical frame with
a resulting equivalence of the two representations. The geometrical properties
of quantum logic and the functional application of logic are preserved.

On a technical level, both the tensor product and syntactical analysis inter-
vene when composing meanings.

Many interesting questions have not been addressed. For example, biprod-
ucts of concept spaces are necessary to handle predicates of an arbitrary arity
simultaneously. Ambiguous words as well live in a biproduct of different con-
cept spaces. Disambiguation by context uses the probability that the meaning
factors through one branch rather than the other of the biproduct.

The most challenging questions belong to the probabilistic approach to nat-
ural language semantics and its relation to compositionality. How to distinguish
between opposites? (The usual probabilistic approach confounds them.) How
to capture the intuitive interaction of statistical learning of concepts and their
logical use?

References

Samson Abramsky and Bob Coecke. A categorical semantics of quantum proto-
cols. In Proceedings of the 19th Annual IEEE Symposium on Logic in Com-
puter Science, pages 415–425, 2004.

Jon Barwise and Robin Cooper. Formal Semantics: the essential readings,
chapter Generalized Quantifiers and Natural Language, pages 76–125. Wiley-
Blackwell, 2002.

Johan van Benthem and Kees Doets. Handbook of Philosophical Logic, chapter
Higher-Order Logic, pages 275–329. Reidel Publishing Company, Dordrecht,
1983.

Stephen Clark and S. Pulman. Combining symbolic and distributional models
of meaning. In Proceedings of the AAAI Spring Symposium on Quantum
Interaction, 2007.

Stephen Clark, Bob Coecke, and Mehrnoosh Sadrzadeh. A compositional dis-
tributional model of meaning. In W. Lawless P. Bruza and J. van Rijsbergen,
editors, Proceedings of Conference on Quantum Interactions. University of
Oxford, College Publications, 2008.

29



Paul Halmos. Lectures on Boolean algebras. Springer, 1974.

Joachim Lambek. The mathematics of sentence structure. American Mathe-
matical Monthly, 65:154–170, 1958.

Joachim Lambek. Substructural Logics, chapter From categorial grammar to
bilinear logic, pages 207–237. Oxford University Press, 1993.

Joachim Lambek. Type grammar revisited. In Alain et al. Lecomte, editor,
Logical Aspects of Computational Linguistics, volume 1582 of LNAI, pages
1–27, Heidelberg, 1999. Springer.

Anne Preller. Category theoretical semantics for pregroup grammars. In
Philippe Blache and Edward Stabler, editors, Logical Aspects of Computa-
tional Linguistics, volume 3492 of Lecture Notes in Artificial Intelligence,
pages 254–270, 2005.

Anne Preller. Toward discourse representation via pregroup grammars.
Journal of Logic, Language and Information, 16:173–194, 2007. doi:
http://dx.doi.org/10.1007/s10849-006-9033-y.

Anne Preller and Joachim Lambek. Free compact 2 -categories. Math-
ematical Structures for Computer Sciences, 17(1):1–32, 2007. doi:
http://dx.doi.org/10.1017/S0960129506005901.

Anne Preller and Mehrnoosh Sadrzadeh. Semantic vector models and functional
models for pregroup grammars. Journal of Logic, Language and Information,
20(4):419–423, 2011. doi: http://dx.doi.org/10.1007/s10849-011-9132-2.

C.J. van Rijsbergen. The Geometry of Information Retrieval. Cambridge Uni-
versity Press, 2004.

Peter Selinger. Dagger compact closed categories and completely positive maps
(extended abstract). In Proceedings of the 3rd International Workshop on
Quantum Programming Languages (QPL 2005, pages 139–163, 2007. doi:
http://dx.doi.org/10.1016/j.entcs.2006.12.018.

Paul Smolensky. Connectionism, constituency and language of thought. In
Robert Cummins and Denise Dellarosa Cummins, editors, Minds, Brains,
and Computers, pages 284–308, 1988.

Dominic Widdows. Geometry and Meaning. Number 172 in CSLI lecture notes.
CSLI Publications, 2004.

30


