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The compositional functional logical models of natural language are recast as compact closed categories. Composition is based on the geometrical representation of information flow characteristic for these categories. The functional logical interpretation of (strings of) words is carried over to projectors in a finite tensor product of 2-dimensional spaces such that the truth of a sentence is equivalent to the truth of the corresponding projector.

Examples include sentences with compound noun phrases involving quantifiers, adjectives and negation.

Introduction

The present work attempts to relate two semantic representations of natural language, the functional logical models and the distributional vector models. The former deals with individuals and their properties, the latter with concepts and how they can be approximated.

Montague semantics and similar functional logical models for natural language are extensional and compositional. Meaningful expressions designate individuals, sets of individuals, functions from and to (sets of) individuals, truthvalue functions and so on. The meaning of a grammatical string of words is computed from the meanings of the constituents using functional application or composition. This semantics requires prior grammatical analysis where every word contributes to the meaning, including 'noise' like negation, determiners, quantifiers, relative pronouns , etc.

The semantic vector models are based on the principle that the content of a word is measured in relation to the content of other words. They handle probabilistic estimations of concepts. Words, with the exclusion of 'noise', are represented by vectors in a finite dimensional space over the field of real numbers.

1 Frequency counts of co-occurrences with other words determine the coordinates of a word. Semantic vector models excel in detecting similarity of words. They confound opposites.

Compositionality of vector semantics remains an open question and is subject of intensive research.

One approach to compositionality is quantum logic on the lattice of projectors of Hilbert spaces, see [START_REF] Van Rijsbergen | The Geometry of Information Retrieval[END_REF] for an overview oriented towards information retrieval or [START_REF] Widdows | Geometry and Meaning[END_REF] for a discussion of geometric properties of meaning. There is, however, no general algorithm that transforms a string of word into a vector respecting the logic. Another approach is composition of vectors by the tensor product, [START_REF] Smolensky | Connectionism, constituency and language of thought[END_REF] invoking computational principles of cognitive science, or [START_REF] Clark | Combining symbolic and distributional models of meaning[END_REF] and [START_REF] Clark | A compositional distributional model of meaning[END_REF] using syntactical analysis. Again, 'noise' is not included in composition.

The present work outlines a method that takes into account the logical content of 'noise' and transforms the compositional extensional representation into a conceptual representation. Both representations are based on biproduct dagger compact closed categories.

On one hand, a concept space, that is to say a tensor product of twodimensional spaces, hosts both the words (concepts) and their probabilistic approximations. Concept spaces are the linguistic pendent to compound systems in quantum mechanics.

On the other hand, the logical functional representations of (strings of) words are also recast as vectors. These vectors are, roughly speaking, the names of the functions representing the words. Their construction involves syntactical analysis.

The examples presented here are analysed via pregroup grammars, [START_REF] Lambek | Type grammar revisited[END_REF], based on compact bilinear logic, [START_REF] Lambek | Substructural Logics, chapter From categorial grammar to bilinear logic[END_REF]. The pregroup calculus is a simplification of the syntactic calculus by the same author, [START_REF] Lambek | The mathematics of sentence structure[END_REF]. Compact bilinear logic 'compacts' the higher order of categorial grammars into second order logic with general models, or equivalently, into two-sorted first order logic, [Benthem and Doets, 1983]. Moreover, the category of types and proofs of compact bilinear logic is the free compact 2 -category , [START_REF] Preller | Free compact 2 -categories[END_REF].

Categorical semantics in compact 2-categories for pregroup grammars was first proposed in [START_REF] Preller | Category theoretical semantics for pregroup grammars[END_REF], reformulated in [START_REF] Preller | Toward discourse representation via pregroup grammars[END_REF] in terms of functions in two-sorted first order logic. This reformulation rests on the fact that sets and two-sorted functions form a compact closed category. The embedding of the category of two-sorted functions in the category of semimodules over a real interval, [START_REF] Preller | Semantic vector models and functional models for pregroup grammars[END_REF], establishes the connection to semantic vector models.

The formulation of functional logic in a biproduct dagger compact closed category has been chosen to facilitate a comparison with quantum logic. It is based on [START_REF] Abramsky | A categorical semantics of quantum protocols[END_REF], casting quantum mechanics in the abstract setting of a biproduct dagger compact closed category. The result is an embedding of functional two-sorted first order logic into the lattice of projectors of concept spaces. Section (2) introduces the semantical and syntactical categories. The category of two-sorted functions follows in Section 3 with its two-sorted first order logic. An embedding transfers them to an arbitrary bicategory dagger compact closed category.

The algorithm in Section 4, constructing meanings of strings from meanings of words, is based on syntactical analysis. Examples from natural language provide the graphs depicting the computation of the meaning by 'information flow'.

Concept spaces and the logical properties of their intrinsic projectors are investigated in Section 5. Subsection 5.1 deals with propositional logic and Subsection 5.2 with predicate logic. The truth preserving one-to-one correspondence between predicates on and intrinsic projectors of concept spaces is the subject of 5.3. This correspondence is used in Section 5.4 to compute the meaning of strings directly in concept spaces and to view arbitrary word vectors as a probabilistic approximation of concepts.

Notations, basic properties

Natural language processing involves both syntactical analysis and logical representation. Both can be formulated in the language of compact bicategories, also known as non-symmetric star autonomous categories.

Throughout this paper, the syntactical category is the compact bicategory freely generated by a 'basic' category. It is not symmetric.

The semantic category C is any biproduct dagger compact closed category in which all objects have a chosen finite basis, for example the category RI of free semimodules generated by finite sets over the lattice of the real interval [0, 1] .

The syntactical category

The syntactical category C2(B) is the free compact bicategory generated by a category B. It is notationally convenient to replace the canonical associativity and unit isomorphisms by identities, for example A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C, A⊗I = A = I ⊗A . Strictly speaking, the bicategory is treated like a 2 -category .

Saying that a bicategory is compact means that every 1-cell A has a left adjoint A and a right adjoint A r . Let η A : I -→ A r ⊗ A be the unit and A : A ⊗ A r → I the counit for the right adjoint. Then A A r is a right adjoint to A so that η A : I -→ A ⊗ A and A : A ⊗ A -→ I act as unit and counit for the left adjunction of A to A.

Starting with any 1-cell A that is an object of B, one obtains the iterated right adjoints A , A , A , . . . and the iterated left adjoints A r , A rr , A rrr , . . . of A, but no mixed adjoints, because A r and A r are both isomorphic to A.

The morphisms, i.e. the 2-cells of C2(B), are represented by graphs where the vertices are objects of B and the oriented links are labelled by morphisms of B. Examples are

η A = I 1 A 5 5 A r ⊗ A , η A = I } } 1 A A ⊗ A , A = I 1 A Y Y A ⊗ A r , A = I e e 1 A
A ⊗ A NOTE: graphs display the domain of the morphism above, the codomain below.

In the case where the label is an identity, it is in general omitted. An arbitrary f : A -→ B ∈ B also creates labels for links, for example

f = I f 5 5 A r ⊗ B , (f ⊗ 1 A ) • η A = I } } f B ⊗ A , f = I f Y Y A ⊗ B r
, etc NOTE: The labels of the links are morphisms of B . Stripping the tail of the link of its adjoints, we obtain the domain of the label in B . Similarly, the head without the adjoints is the codomain of the label.

Composition of morphism is computed by connecting the graphs at the joint interface and walking paths, picking up and composing the labels in the order in which they are encountered.

Here are few examples involving f :

A -→ B, g : B -→ C f = A B f y y = B ⊗ B ⊗ A B A c c e e ~f b b ~~~~~~~= ( B ⊗ 1 A ) • (1 B ⊗ ((f ⊗ 1 A ) • η A ))
Recall: The domain of the morphism f is the top line in the graph, the codomain is the bottom line, i.e. f :

B -→ A . B • (1 B ⊗ f ) = I e e B ⊗ B B ⊗ A y y f = I e e f B ⊗ A = I e e A ⊗ A B ⊗ A f y y = A • (f ⊗ 1 A )
An equality of graphs is far easier to compute than the equality of the corresponding algebraic expressions. For example, the equality (

f ⊗ 1 C ) • (1 A ⊗ g ) = g • f = (1 C ⊗ ( B • (1 B ⊗ f ))) • (((g ⊗ 1 B ) • η B ) ⊗ 1 A ) : A -→ C is proved thus A ⊗ B r ⊗ C A Ò Ò Õ Õ Õ Õ Õ Õ Õ Õ f Y Y g 4 4 C Ð Ð Ñ Ñ Ñ Ñ Ñ Ñ = A C g•f = C ⊗ B ⊗ A A ( ( W W W W W W W W Ð Ð g f C 0 0 a a a a a a
.

NOTE: Links do not cross in the graphs of the syntactical category.

The benefit of orienting and labelling links will become evident through the examples of natural language processing in Section 4.1.

The semantic category

The general definitions and properties of biproduct dagger compact closed categories can be found in [START_REF] Selinger | Dagger compact closed categories and completely positive maps (extended abstract)[END_REF] or [START_REF] Abramsky | A categorical semantics of quantum protocols[END_REF]. Two semantic categories are specially tailored to natural language semantics, namely the category 2SF of two-sorted functions, Subsection 3.1, and the category RI of free semimodules over the lattice of the real interval [0, 1] generated by finite sets.

Its importance to natural language processing resides in the fact that semantic vector models interpret words as vectors the coordinates of which are obtained by frequency counts of co-occurrences in context-windows. Without loss of generality, one may assume that the coordinates belong to the real interval [0, 1] .

Recall that the linear order on the real numbers in [0, 1] induces a distributive and implication-complemented lattice structure on [0, 1], namely

α ∨ β = max {α, β} and α ∧ β = min {α, β} α → β = max {γ ∈ I : α ∧ γ ≤ β} ¬α = α → 0 .
This lattice is not Boolean, because ¬¬α = 1 = α for 0 < α < 1 . The subset {0, 1}, however, forms a Boolean algebra.

The lattice operations define a semiring structure on [0, 1] with neutral element 0 and unit 1 by

α + β = α ∨ β α • β = α ∧ β .

Basic properties of biproduct dagger compact closed categories

Objects of an arbitrary biproduct dagger compact closed category are called spaces, morphisms linear maps. A morphism v : I -→ V , where I is the unit of the tensor product, is called a vector of V . Write v ∈ V for vectors v :

I -→ V and f (v) ∈ W for f • v : I -→ W , where f : V -→ W .
Vectors b 1 , . . . , b n of V form a basis of V if every vector of V can be written in a unique way as a linear combination of the vectors b 1 , . . . , b n . A space is n-dimensional if it has a basis of cardinality n. The dimension is unique. A space with chosen basis

B = b 1 , . . . , b n is denoted V B .
All spaces are assumed to be finite dimensional from now on. Linear maps identify with matrices such that multiplication of matrices corresponds to composition of maps. Indeed, let A = a 1 , . . . , a m and B = b 1 , . . . , b n . A linear map f : V A -→ V B is determined by its values on the basis vectors a 1 , . . . , a m ∈ A and is characterized by the matrix (φ ij ) where

φ ij ∈ I is the i-th coordinate of f (a j ) = n i=1 φ ij b i . Such matrices can be identified with vectors in V A ⊗ W B .
The basis vectors of the latter are a j ⊗ b i , for j = 1, . . . , m and i = 1, . . . , n .

The inner product v|w of vectors v = m j=1 α j a j and u = m j=1 β j a j in RI is given by

v|u = m j=1 α j a j | m j=1 β j a j = m j=1 α † j β j .
Vectors are orthogonal if v|u = 0 . In the case of RI, we have α = α † for all scalars α ∈ [0, 1] . Hence vectors with coordinates in [0, 1] are orthogonal in RI exactly when they are orthogonal in the category of Hilbert spaces.

The category of semimodules RI is a biproduct dagger compact closed category with monoidal unit

I = [0, 1] . Every object V of RI has a unique finite basis A, which we express by V = V A . It is its own adjoint, V A = V * A . The unit η V A : I -→ V A ⊗ V A and counit V A : V A ⊗ V A → I of the adjunction are given by η V A (1) = a∈A a ⊗ a V A (a ⊗ b) = 1 if a = b 0 else = a|b .
The name and coname of f :

V A -→ V B are defined by f (1) = a∈A a ⊗ f (a) f (a ⊗ b) = f (a)|b for a ∈ A, b ∈ B . By definition, V A = V † A . The adjoint of f : V A -→ V B is the morphism f * = f † induced by the transpose of the matrix of f .
The logic of vectors Definition 1 (Boolean vector). Let C be any semantic category, 0 = 0 0I :

0 → I, 1 = 1 I : I → I and V B any space in C . A vector v = n i=1 α i b i ∈ V B is Boolean if α i ∈ {0, 1}, for i = 1, . . . , n .
The connectives ¬, ∧ etc. are operators on the set {0, 1} satisfying

¬0 = 1, ¬1 = 0 and 1 ∧ 1 = 1, 0 ∧ 0 = 1 ∧ 0 = 0 ∧ 1 = 0 etc.
They lift to the Boolean vectors, where they are defined coordinate by coordinate

¬ n i=1 α i b i = n i=1 (¬α i )b i , ( i α i b i ) ∧ ( j β j b j ) = i (α i ∧ β i )b i etc.
(1)

and induce a partial order by the postulate

v ≤ w if and only if v ∧ w = v .
We have 1. the Boolean vectors together with the logical vector connectives form a Boolean algebra 2. every Boolean v defines a unique subset K ⊆ B such that v = b∈K b and vice versa 3. the null vector -→ 0 (with coordinates all equal to 0) is the smallest and the full vector -→ 1 (with coordinates all equal to 1) the largest vector.

Lemma 1. If V B is a space of RI the equalities (1) define a distributive, implication complemented lattice structure on V B such that the following equivalences hold

¬¬v = v ⇐⇒ v ∨ ¬v = - → 1 ⇐⇒ the coordinates of v are 0 or 1 . (2) 
Moreover, vector conjunction is the linear map ∧ :

V B ⊗ V B -→ V B defined on the basis vectors by ∧(b ⊗ b) = b, ∧(b ⊗ b ) = - → 0 , for b = b ∈ B .

The logic of projectors

Let C be any semantic category and E an n-dimensional space with chosen basis

B = b 1 , . . . , b n . Recall that a morphism p : E -→ E is a projector if it is idempotent and self-adjoint p • p = p, p † = p .
In RI, the latter equality means that the matrix of p is symmetric.

A projector p of a Hilbert space determines a subspace, namely the set of vectors invariant under p

E p = {w : w = p(w)} = p(E) .
These subspaces are in one-to-one correspondence with the projectors. Hence the quantum connectives are defined on the set of projectors/subspaces, see [START_REF] Van Rijsbergen | The Geometry of Information Retrieval[END_REF], by

¬E p = E ⊥ p , E p ∨ E q = E p + E q , E p ∧ E q = E p•q , E p → E q = {u : q(p(u)) = p(u)} .
The quantum connectives induce a not necessarily distributive lattice structure on the set of projectors such that p ≤ q is equivalent to p ∧ q = q. Thinking of projectors as propositions and of 1 E as the true proposition, the equality p → q = 1 E is read as 'p implies q'. This approach is not possible in an arbitrary semantic category. Any twodimensional space V {a1,a2} of RI has subspaces that are not image of any projector. An example is the span of the vectors u = αa 1 , v = βa 2 , w = γa 1 + βa 2 , where 0 < β < α < γ ≤ 1 . We need a property that connects subspaces and projectors in an arbitrary semantic category.

Definition 2 (Intrinsic morphism). A linear map of C is intrinsic if it sends every basis vector to a basis vector or to the null vector.

Intrinsic linear maps are closed under composition.

Lemma 2. A projector p : V B -→ V B is intrinsic if and only if p(b i ) = b i or p(b i ) = - → 0 , for i = 1, . . . , n . (3) 
Proof. Let p be an intrinsic projector and (π ij ) its matrix. This matrix is symmetric, because p is self-adjoint and the entries π ij are 0 or 1 . We must show that p

(b k ) = b l implies k = l . From p(b k ) = b l follows p(b l ) = b l , because p is idempotent. The latter equality implies π ll = 1 and π il = 0 for i = l . Moreover, p(b k ) = b l implies π lk = 1 and π ik = 0 for i = l . By symmetry, π kl = 1. Hence k = l .
Hence, every intrinsic projector has the form k∈K |b k b k | where K ⊆ {1, . . . , n}, where |b i b i | maps b i to itself and every other basis vector to the null vector. The composition q • p of intrinsic projectors p : V B -→ V B and q : V B -→ V B is again an intrinsic projector satisfying

(q • p)(x) = q(x) ∧ p(x), for all x ∈ B .
Intrinsic projectors are in one-to-one correspondence with Boolean vectors.

Indeed, let v = α 1 b 1 + • • • + α n b n be a vector of V B . Define the linear map p v : V B -→ V B by its values on the basis vectors p v (b i ) = α i b i , for i = 1, . . . , n . ( 4 
)
If v is Boolean some obvious properties are 1. p v is an intrinsic projector 2. p v (w) = v ∧ w for every Boolean vector w; in particular

p v ( - → 1 ) = v 3. the map v → p v is one-to-one 4. p-→ 1 = 1 V B
Lemma 3. For every intrinsic projector p there is a Boolean vector v such that p = p v . For every Boolean vector v, the subspace E pv of vectors invariant under p v coincides with the subspace generated by the basis vectors b i satisfying b i ≤ v . Every subspace generated by a subset of basis vectors is the invariance space of an intrinsic projector.

Proof. Let p be an intrinsic projector. Define

K = {k : p(b k ) = b k & 1 ≤ k ≤ n} and v = k∈K b k .
Then p(b i ) = p v (b i ), for i = 1, . . . , n . Hence the map v → p v is onto the set of intrinsic projectors. Moreover, E p is generated by the set of basis vectors

{b k : k ∈ K} and b i ≤ v if and only if i ∈ K . Theorem 1. The map v → p v is a negation preserving lattice isomorphism H from the Boolean vectors onto the intrinsic projectors of V B . Proof. Writing E v = E pv , we must prove that E v ⊥ = E ¬v , E v ∨ E w = E v∨w , p v • p w = p v∧w , E v → E w = E v→w . (5) 
The first three equalities follow immediately from Property 2. and Property 4. above.

To prove the last equality,

let v = n i=1 α i b i , w = n i=1 β i b i be Boolean vec- tors and u = n i=1 γ i b i be any vector. By definition, v → w = n i=1 (¬α i ∨ β i )b i . On one hand, u ∈ E v→w ⇔ u = p v→w (u) ⇔ γ i = (¬α i ∨ β i )γ i , for i = 1, . . . , n .
On the other hand, recall that

E v → E w = {u : p w (p v (u)) = p v (u)} . Hence, u ∈ E v → E w ⇔ α i γ i = α i β i γ i for i = 1, . . . , n .
The equalities γ i = (¬α i ∨ β i )γ i and α i γ i = α i β i γ i both hold trivially if α i = 0 or β i = 1. In the case where α i = 1 and β i = 0 they are both equivalent to the equality γ i = 0 .

It follows that the sublattice of intrinsic projectors is Boolean. Moreover, intrinsic projectors are monotone increasing on Boolean vectors. The linear map defined by Equalities ( 4) is a projector in RI for an arbitrary vector and Equalities (5) hold for all vectors.

3 Two-sorted first order logic in compact closed categories

The relevance of two-sorted first order logic for natural language resides in the fact that it is equivalent to second order logic with general models, see [Benthem and Doets, 1983], and a wide spread belief that second order logic suffices for natural language semantics.

The category of two-sorted functions

Two-sorted functions are tailored to natural language, because they accept elements (sort 1) as well as sets (sort 2) as arguments. In a similar way, verbs accept both singulars and plurals. Functions in two-sorted first order logic were first used in [START_REF] Preller | Toward discourse representation via pregroup grammars[END_REF]. The presentation below follows [START_REF] Preller | Semantic vector models and functional models for pregroup grammars[END_REF].

Definition 3 (Two-sorted function). A function f : A -→ B is two-sorted if it maps elements and subsets of A to elements or subsets of B and satisfies

f ({a}) = f (a) for a ∈ A f (∅) = ∅ f (X ∪ Y ) = f (X) ∪ f (Y ) for X, Y ⊆ A . (6)
Obviously, a two-sorted function defined on a finite set is determined by its values on the elements. Examples are the two-sorted identity 1 A and the two-sorted diagonal 2 A defined by

1 A (a) = a, for a ∈ A 2 A (a) = a, a , for a ∈ A .
Lemma 4. The category 2SF of finite sets and two-sorted functions is a dagger biproduct compact closed category.

Proof. The biproduct is the disjoint union of sets. Hence V A = A for every finite set A .

The monoidal structure is given by the cartesian product of sets. A twosorted notation for the Cartesian product brings the same notational advantages as the tensor product

a × 2 b = a, b a × 2 B = {a} × B A × 2 b = A × {b} A × 2 B = A × B . The two-sorted product f × 2 g : A × 2 C -→ B × 2 D for f : A -→ B and g : C → D is determined by it values on the elements of A × 2 C, namely (f × 2 g)(a × 2 b) = f (a) × 2 g(b), for a ∈ A, b ∈ C .
The monoidal unit is a distinguished singleton set I = {a 0 } .

Every object is its own adjoint, A = A * = A † , the unit η A : I -→ A × A and counit A : A × A → I of the adjunction are given by

η A (a 0 ) = {a × 2 a : a ∈ A} A (a × 2 b) = a 0 if a = b ∅ else
The name, coname, dual and dagger of f :

A -→ B are f (a 0 ) = {a × 2 b : f (a) = b or b ∈ f (a), a ∈ A, b ∈ B} f (a × 2 b) = a 0 if f (a) = b or b ∈ f (a) ∅ else f * (b) = {a ∈ A : f (a) = b or b ∈ f (a)} = f † (b) .
The category 2SF has an abundance of projectors. Here is one, which is not a projector in the category of Hilbert spaces.

Example 1. A two-sorted projector that is not intrinsic.

The two-sorted function p : {a, b} -→ {a, b} defined by p(a) = {a, b} and p(b) = {a, b} is a projector in 2SF. The corresponding matrix is

(π ij ) = 1 1 1 1 .
The same matrix induces an endomorphism in any semantic category. This endomorphism is again a projector in RI, but not in general when addition is not idempotent.

Luckily, the semantics of natural language only involves projectors that live in every semantic category, namely the intrinsic projectors. The characterization (3) of intrinsic projectors is equivalent in 2SF to

p(Y ) = {x ∈ B : p(x) = x} ∩ Y, for every Y ⊆ B . (7) 

The embedding

Given a set A = {a 1 , . . . , a m }, the map J A is defined for elements a ∈ A and subsets X ⊆ A thus

J A (a) = a ∈ V A , J A (X) = a∈X a ∈ V A . (8) 
The map J A has an inverse J -1 A that sends a sum of distinct basis vectors in V A to the corresponding subset of A, i.e. for {i 1 , . . . , i k } ⊆ {1, . . . , n}

J -1 A ( j=1,...,k a ij ) = {a i1 , . . . , a i k } . (9) 
The following holds for every Boolean vector v ∈ V A and every X ⊆ A

J -1 A • J A (X) = X J A • J -1 A (v) = v .
In fact, J A is an isomorphism of Boolean algebras that maps subsets of A onto Boolean vectors of V A . Indeed, J A commutes with the logical connectives

J A (X ∪ Y ) = J A (X) ∨ J A (Y ) J A (X ∩ Y ) = J A (X) ∧ J A (Y ) J A (A \ X) = ¬J A (X)
, for X, Y ⊆ A Finally, for any finite set A let

J (A) = V A
and for any two-sorted function f :

A -→ B let J (f ) : V A -→ V B be the linear map satisfying J (f )(a)=J B (f (a)) for a ∈ A . ( 10 
)
The restriction of J (f ) : V A -→ V B to Boolean vectors is a Boolean homomorphism in RI, because vector disjunction coincides with vector addition in this category .

Definitions ( 8) -( 10) make sense in the category of finite dimensional Hilbert spaces as well. The maps J A are Boolean isomorphisms, but the linear map J (f ) is not a Boolean homomorphism when restricted to Boolean vectors.

The following Embedding Lemma is one of the reasons why RI is especially appropriate for natural language semantics. Lemma 5 (Embedding Lemma). The map J : 2SF → RI is a one-to-one functor that preserves the biproduct dagger compact closed structures and the logical connectives.

The restriction of J to the subcategory of intrinsic maps is a functor in an arbitrary semantic category.

Proof. The proof is straight forward and essentially that given in [START_REF] Preller | Semantic vector models and functional models for pregroup grammars[END_REF].

Only the equality J (g • f ) = J (g) • J (f ), which holds in RI, does not hold in an arbitrary semantic category unless both f and g are intrinsic.

Indeed On the other hand,

J (f )(a) = J B (f (a)) = b∈f (a) b . Hence J (g) • J (f )(a) = b∈f (a) J (g)(b) = b∈f (a) c∈g (b) c = c∈K c . ( 11 
)
The rightmost equality of (11) holds in RI, because vector addition is idempotent. This is not the case in an arbitrary semantic category, Example 1, unless f and g are intrinsic. If they are intrinsic, however, the sets f (a) and g (b) are either empty or singleton sets and the equalities (11) above hold. Hence again J (g) • J (f ) = J (g • f ) .

Two-sorted truth

Let S be a fixed two-dimensional space of the semantic category C with basis vectors and ⊥ . Think of as 'true' and of ⊥ as 'false'. The Boolean vectors of S are called two-sorted truth-values. The basis vectors are of sort 1, the nullvector -→ 0 and the full vector -→ 1 = + ⊥ of sort 2. The null-vector stands for 'neither true nor false' and + ⊥ for 'partly true and partly false'. Two-sorted truth-values reflect second order properties of natural language, Subsection 4.3 provides some examples.

The two-sorted connectives on S are linear maps, which are determined by their values on basis vectors. They are intrinsic and thus live in every compact closed category with biproducts.

The two-sorted conjunction and S : S ⊗ S -→ S, the two-sorted disjunction or S : S ⊗ S -→ S and the two-sorted negation not S : S -→ S are given by and S ( ⊗ ) = , and S (⊥ ⊗ ) = and S ( ⊗ ⊥) = and S (⊥

⊗ ⊥) = ⊥ or S (⊥ ⊗ ⊥) = ⊥, or S (⊥ ⊗ ) = or S ( ⊗ ⊥) = or S ( ⊗ ) = not S ( ) = ⊥, not S (⊥) = .
The two-sorted connectives are Boolean operators on S, because

not S • not S = 1 S or S • (not S ⊗ not S ) = not S • and S . (12) 
Two-sorted negation coincides with vector negation on basis vectors, but they are not identical. In fact, not S is the symmetry isomorphism that exchanges the two basis vectors of S, whereas vector negation is not even an endomorphism of S

not S ( ) = ¬ , not S (⊥) = ¬⊥, not S ( - → 0 ) = - → 0 , whereas ¬ - → 0 = - → 1 .
In general, the two-sorted connectives differ from the vector connectives, even on basis vectors. For example and S (⊥ ⊗ ) = ⊥, whereas ⊥ ∧ = -→ 0 .

Natural language prefers the two-sorted connectives on S, a fact relected by the notation.

Two-sorted predicates

Let E be any object of C, think of the basis vectors of E as 'individuals'. Abbreviate the n-fold tensor product of E by E n = E ⊗ . . . ⊗ E .

Definition 4 (Two-sorted predicate). A two-sorted predicate is an intrinsic morphism with codomain S.

A two-sorted predicate on E is a two-sorted predicate that maps basis vectors of E to basis vectors of S .

An n-ary two-sorted predicate on E is a two-sorted predicate on E n .

Lemma 6. The n-ary predicates on E together with the two-sorted connectives form a Boolean algebra. More precisely, assume that p : E n -→ S and r : E n -→ S are n-ary two-sorted predicates on E. Then the linear maps not S • p, and S • (p ⊗ r), or S • (p ⊗ r), and

S • (p ⊗ r) • 2 E n , or S • (p ⊗ r) • 2 E n are again two-sorted predicates on E such that not S • not S • p = p not S • and S • (p ⊗ r) = or S • ((not S • p) ⊗ (not S • r)) . ( 13 
)
Proof. It suffices to check the equalities (13) for basis vectors, which follows from (12).

Two-sorted predicates have two possible values for individuals. For sets, however, they have a wider range of values. The following lemma tells us when.

Lemma 7. [Fundamental Property] Let p : V B -→ S be a two-sorted predicate on V B and A = {b i1 , . . . , b i k } a subset of k basis vectors. Then there is a non- negative integer k 1 ≤ k such that p(b i1 + • • • + b i k ) = k 1 • + (k -k 1 ) • ⊥ holds.
In particular, the following equivalences hold in the categories 2SF and RI

p( x∈A x) = - → 0 ⇔ A = ∅ p( x∈A x) = ⇔ p(x) = for all x ∈ A and A = ∅ p( x∈A x) = ⊥ ⇔ p(x) = ⊥ for all x ∈ A and A = ∅ p( x∈A x) = - → 1 ⇔ p(x)
= and p(y) = ⊥ for some x, y ∈ A .

(

) 14 
Proof. Let k 1 be the number of elements of the set

A 1 = {x ∈ A : p(x) = } . Then k-k 1 is the number of elements of A 2 = {x ∈ A : p(x) = ⊥} . By linearity, p( x∈A x) = x∈A1 p(x) + x∈A2 p(x) = k 1 • + (k -k 1 ) • ⊥ .
The particular case follows because addition is idempotent.

In Hilbert spaces, the value a two-sorted predicate assigns to the vector x∈A x is the result of two 'counts'. One counts the elements of A for which the predicate is true, the other one those for which the predicate is false. It suffices to divide by the number of elements k in the set A, to obtain a frequency distribution. The step from two-sorted predicates to probabilities is minimal. In the context of natural language, different font shapes help to distinguish the set X ⊆ B from the vector J B (X), namely italic font for the former and typewriter font for the latter. For example, if

Bank ⊆ B bank = x∈Bank x = J B (Bank ) .
The same applies when distinguishing a one-sorted predicate on B and the corresponding two-sorted predicate on V B . For example, the one-sorted predicate Rich corresponding to rich :

V B -→ S satisfies x ∈ Rich ⇔ Rich(x) ⇔ rich(x) = , for all x ∈ B .
Here are a few examples how two-sorted predicates work in an arbitrary semantic category.

Under the assumption that a noun designates a non-empty set of individuals, the following equivalences hold in 2SF and RI . The proofs are straight forward via the Fundamental Property ( 14 Important: The first order formula in Example 3 is not the negation of the first order formula in Example 2. But then, the equality rich(bank) = ⊥ is not the negation of the equality rich(bank) = , because there are more than two truth values.

Semantics via pregroup grammars

Let E be a finite dimensional space with basis B . Call its basis vectors individuals. Single basis vectors of E correspond to singulars and sums to plurals of natural language. The examples below concern unary predicates only. The generalization to ordered pairs, triples etc. of individuals is straight forward. The space S is the two-dimensional space of two-sorted truth introduced in 3.3.

The computation of meanings

Like every other categorial grammar, a pregroup grammar is given by a lexicon and a calculus. The pregroup calculus is compact bilinear logic where proofs identify with morphisms in the free compact bicategory C2(B) generated by a partially ordered set B.

The 1-cells are called types and the tensor product is written as concatenation. Hence, a type is a string of simple types, where a simple type is either an element of x, y, • • • ∈ B or an iterated adjoint x , y , . . . , x , y , . . . , x r , y r , . . . , x rr , y rr , . . . etc. The types x, y, • • • ∈ B are called basic types. They stand for grammatical notions.

As a consequence, every functor from B into a semantic category C extends into a functor from C2(B) to C preserving the structure of compact bicategories.

A lexicon is a finite list of entries. An entry is a triple w : T :: m, where w is a word, T a type and m a meaning expression.

This description differs from the original one in [START_REF] Lambek | Type grammar revisited[END_REF]. There, only pregroup 'dictionaries' are considered where the entries are pairs w : T , without meaning expressions. The latter must be added explicitly, because the functional semantics of categorial grammars with higher order types has been lost by the pregroup types.

The meaning in the entry is a formal expression m : I -→ V in the language of compact closed categories or, equivalently, a string of two-sorted functions. 

I rich ---→ E * ⊗ S
The basic types c 2 , n 2 , n, s, stand for 'plural count noun', 'plural noun phrase', 'dummy noun phrase' and 'sentence', in that order. Moreover, c 2 < n 2 . The properties of the meaning vector m in the entry w : T :: m depend on the logical content of the word, given in due course, and on the type.

The lexicon defines a canonical functor from B into the compact closed category C. For example, in the list of entries above, the basic type s is interpreted by S and each of the basic types c 2 , n 2 , n by E . The canonical functor maps the inequality c 2 < n 2 to the identity 1 E and left and right adjoints of a type to 'the' adjoint space, because right and left adjoints may be identified in a symmetric monoidal category.

All meanings are presented in the form of names, up to a symmetry isomorphism that arranges the factors of the tensor product in the order given by the simple types. For example, big

= σ E * ,E • big : 1 -→ E ⊗ E * where big : E -→ E.
The meaning of a grammatical string involves both the meanings of the words and the syntactical analysis of the string. An ambiguous string with several parsings has several meanings. A non-grammatical string has no meaning. A string of words w 1 . . . w n is grammatical if there are entries w 1 : T 1 :: m 1 , . . . , w n : T n :: m n and a basic type b such that

T 1 . . . T n b
is provable in compact bilinear logic. Otherwise said, if there is a morphism f : T 1 . . . T n → b in the syntactic category. Due to a theorem in [START_REF] Lambek | Type grammar revisited[END_REF] the graph of the proof involves only underlinks and is called a reduction.

For example, the reduction corresponding to the graph on the left below analyses big banks as a plural noun-phrase. The graph on the right is the corresponding morphism in the semantic category.

1 c2 ⊗ c2 = big banks ( c 2 c 2 ) ( c 2 ) d d c 2 r 1 = 1 E ⊗ E = (E ⊗ E * ) ⊗ E E
The reason why the syntactic category must not be symmetric is obvious in this example. The type c 2 c 2 c 2 of the non-grammatical string banks big has no reduction to a basic type. If we had symmetry all order variants of a grammatical string would be grammatical.

The meaning vector of a lexical entry also identifies with a graph, for example

I big --→ E ⊗ E * = big I } } E ⊗ E * bank : I -→ E = I E bank .
Again, the domain of the morphism is at the top of the graph, the codomain at the bottom. For a grammatical string w 1 . . . w n , let w 1 : T 1 :: m 1 , . . . , w n : T n :: m n be a choice of entries and r a reduction of T 1 . . . T n to a basic type. The corresponding

meaning is r • (m 1 ⊗ . . . ⊗ m n ) ,
where now r denotes the linear map obtained by applying the canonical functor to the reduction.

The meaning of a string can be computed graphically. Connect the graphs at their joint interface and follow the paths from top to bottom picking up the labels along the way. For example, the graphs

big ⊗ bank = (E ⊗ E * ) ⊗ (E) | | big bank ) ) Ì ⊗ I r 1 = (E ⊗ E * ) ⊗ (E)
E when connected at there joint interface compute to The reduction of the sentence big banks are rich is the graph

r 1 • (big ⊗ bank) = (E ⊗ E * ) ⊗ (E) | |
r = big banks are rich W W d d s c c (c 2 c 2 ) (c 2 ) (n 2 r s s n) ( nr s)
.

Compute the meaning by composing the tensor product of the word vectors with the reduction

r • (big ⊗ bank ⊗ are ⊗ rich) = W W Ð Ð big e e Ð Ð I bank Õ Õ 4 4 S d d Y Y Ð Ð rich (E ⊗ E * ) ⊗ (E ) ⊗ (E * ⊗ S ⊗ S * ⊗ E) ⊗ (E * ⊗ S) = I S rich•big•bank = rich • big • bank .
The sentence All banks are rich is computed by the same graph except that the label big is replaced by the label all. A similar remark applies to the sentence Some banks are rich.

The last example concerns the computation of the meaning vector of the sentence no banks are rich.

-the reduction of the sentence is

s g g V V e e d d no banks are rich (s s n 2 c 2 ) (c 2 ) (n 2 r s a ) (a)
-the meaning vector no : I -→ S ⊗ S * ⊗ E ⊗ E * is defined as the name of not S ⊗ 1 E : S ⊗ E -→ S ⊗ E with the corresponding graph

no = I Ð Ð not S Ð Ð S ⊗ S * ⊗ E ⊗ E *
-the meaning of the sentence no banks are rich is

r • (no ⊗ bank ⊗ are ⊗ rich) = Ñ Ñ not S S g g V V Ð Ð f f I bank × × 6 6 Ñ Ñ X X rich 2 2 f f (S ⊗ S * ⊗ E ⊗ E * ) ⊗ (E ) ⊗ (E * ⊗ S ⊗ S * ⊗ E) ⊗ (E * ⊗ S) = not S • rich • bank .
'Walking graphs' makes the computation linear in the number of links. The latter is proportional to the length of the string of words, because the lexicon is finite and thus the length of its types is bounded.

The logical content of words

The preceding examples mention the logical content of some words. More generally, the description of the logical content can be organized according to the type of the words. We postulate 1. Any f : E n -→ S occurring in a lexical entry is an n-ary two-sorted predicate. 2. Any f : E -→ E occurring in a lexical entry is an intrinsic projector. 3. Any f : I -→ E occurring in a lexical entry is a Boolean vector. Under these postulates, adjectives in predicative position and intransitive verbs are unary two-sorted predicates. The meaning map word : E -→ E in word : n i c i :: word : I -→ E ⊗ E * interpreting an adjective in attributive position or a determiner is an intrinsic projector. The universal determiner satisfies an even stronger property all = 1 E .

Recall that B is the canonical basis of E and that any subset Y of B is identified with a Boolean vector, by Equality (8). Assume that word : E -→ E is an intrinsic projector occurring in the lexicon. Use the abbreviation Word = word(B) .

Combine this abbreviation with Equality (7) to obtain the equality

word(Y ) = Word ∩ Y, for Y ⊆ B . ( 16 
)
For example, Bank = bank(B) and big(Bank) = Big ∩ Bank

Examples

The examples below concern sentences and their meaning vectors in the categories 2SF and RI . Represent the truth of a sentence by the fact that the meaning vector computes to . Then show that this representation coincides with the 'usual' translation of the sentence in logic.

Example 4. All banks are rich / rich(all(bank))

The following are equivalent ∀x(x ∈ Bank ⇒ Rich(x )) rich(all(bank)) = .

Proof. Recall that all = 1 E . Hence rich(all(bank)) = rich(bank) . For the proof of the equivalence of rich(bank) = with ∀x(x ∈ Bank ⇒ Rich(x)) confer to Example 2.

Example 5. Big banks are rich / rich(big(bank))

The following are equivalent ∀x(x ∈ Big ∩ Bank ⇒ Rich(x))

rich(big(bank)) = .

Proof. Recall that bank = x∈Bank x and therefore the vector big(bank) is identified with the set big(Bank ) = Big ∩ Bank by ( 16). The equivalence now follows from the Fundamental Property ( 14). The implication

rich(some(bank)) = ⇒ ∃ x (x ∈ Bank & Rich(x))
holds, but its converse does not hold in general.

Proof. The equality rich(some(bank)) = implies some(bank) = ∅ and ∀ x (x ∈ some(bank) ⇒ rich(x) = ), by the Fundamental Property. The first order formula follows, because some(bank) ⊆ bank .

If the first order formula holds, take a witness b ∈ Bank for which Rich(b) holds. Let some b be the intrinsic projector that maps b to itself and every other individual to the null vector. Clearly some b (bank) = b and rich(b) = . Hence, rich(some b (bank)) = , but this does not imply that the particular intrinsic projector some b coincides with the original some .

Natural language confronts us with a problem. On one hand, the interpretation of 'some Y ' changes from occurrence to occurrence, like in Some banks are rich and some banks are not rich. On the other hand, 'some Y ' acts like a well determined reference set. In Some banks are rich. They scare me, the personal pronoun they refers to the set some banks of the preceding sentence.

The interpretation of some given above may vary from occurrence to occurrence and in the same time it defines a set at each occurrence, which is available for later reference, e.g. they = some(bank).

The interpretation by a generalized quantifier, see [START_REF] Barwise | Formal Semantics: the essential readings, chapter Generalized Quantifiers and Natural Language[END_REF], takes into account the change of meaning in different occurrences, but it does not construct the set to which the noun phrase refers.

Proof. Assume that g satisfies( 17). Let q j l = g(j l ) ∈ {p j l , p j l ⊥ }, l = 1, . . . , k,

and G = f ∈ d i=1 {p i , p i⊥ } : f (j l ) = q j l , for l = 1, . . . , k . Then v g = f ∈G b f = -→ q j1 ∧ • • • ∧ -→ q j k . ( 18 
)
Theorem 2. The free Boolean algebra generated by P is isomorphic to the lattice of intrinsic projectors of C(P ) . The map p → -→ p extends to an isomorphism K from B(P ) onto the lattice of Boolean vectors of C(P ).

Proof. Partial choice vectors are Boolean vectors by ( 18). Hence, the map p → -→ p extends to a unique Boolean homomorphism K from B(P ) into the Boolean algebra of Boolean vectors of C(P ) . A classical theorem, [START_REF] Halmos | Lectures on Boolean algebras[END_REF], states that the free Boolean algebra B(P ) is isomorphic to the set algebra generated by the following subsets of

d j=1 {0, 1} p i    h ∈ d j=1 {0, 1} : h(i) = 1    , ¬p i    h ∈ d j=1 {0, 1} : h(i) = 0    ,
where i varies from 1 to d. Every singleton set {h} can be written as a conjunction of subsets of the form p i or ¬p i . Therefore the homomorphism K maps {h} to the corresponding basis vector in C(P ) . It follows that the homomorphism K maps B(P ) onto the lattice of Boolean vectors. It is one-to-one, because every Boolean vector can be written uniquely as a sum of basis vectors.

Compose K with the isomorphism H of Theorem 1 to obtain the isomorphism H • K onto the lattice of intrinsic projectors.

By Theorem 2, the primitive projectors p-→ pi and p ¬ - → pi play an important role in the lattice of projectors of C(P ) : 1. Every intrinsic projector is a finite disjunction of finite conjunctions of primitive projectors 2. The lattice of intrinsic projectors in a compound system is the classical propositional calculus modulo equiderivability. 3. One can use induction on the complexity of propositions for defining and proving properties of Boolean vectors/intrinsic projectors. Propositional complexity creates a somewhat unusual hierarchy on subspaces. Recall that com(p i ) = 0, com(¬p) = 1 + com(p), and com(p ∧ q) = 1 + max (com(p), com(q)) . The primitive subspace E-→ pi has complexity 0 and E ¬ - → pi has complexity 1, but both have dimension 2 d-1 . The one-dimensional subspace generated by a single basis vector b f has complexity d -1 if f (i) = p i for i = 1, . . . , d, and complexity d otherwise. The satisfaction system induces a representation of (sets of) individuals by concepts in C(P ) . For any x ∈ B let q(x) i = p i if x |= p i q(x) i = p i⊥ if x |= p i , for i = 1, . . . , d . This choice determines a basis vector, the concept v x internalizing x, v x = q(x) 1 ⊗ . . . ⊗ q(x) d .

Concept spaces and two-sorted truth

For any non-empty subset

Y ⊆ B define the concept v Y internalizing Y v Y = x∈Y v x .
Different individuals may be internalized by the same basis vector. This means that they are indiscernible by the properties listed in P . property p i , because positive and negative occurrences like some banks are safe, some banks are not safe contribute both to γ i . 'Reasoning by probability' based on frequency counts requires a distinction between positive and negative occurrences.

Conclusion

New in this approach is that two separate notions of truth, one for concepts and one for sentences, are handled formally inside a single mathematical frame with a resulting equivalence of the two representations. The geometrical properties of quantum logic and the functional application of logic are preserved. On a technical level, both the tensor product and syntactical analysis intervene when composing meanings.

Many interesting questions have not been addressed. For example, biproducts of concept spaces are necessary to handle predicates of an arbitrary arity simultaneously. Ambiguous words as well live in a biproduct of different concept spaces. Disambiguation by context uses the probability that the meaning factors through one branch rather than the other of the biproduct.

The most challenging questions belong to the probabilistic approach to natural language semantics and its relation to compositionality. How to distinguish between opposites? (The usual probabilistic approach confounds them.) How to capture the intuitive interaction of statistical learning of concepts and their logical use?

  , let f (a) = f (a) if f (a) is a set and f (a) = {f (a)} if f (a) is an element. Define g (b) similarly and let K = b∈f (a) g (b) . Then on one hand, (g • f )(a) = b∈f (a) c∈g (b) {c} = c∈K {c} and therefore J (g • f )(a) = c∈K c .

Corollary 1 .

 1 The following equivalences hold in the categories 2SF and RI, for any element x and any subsetY of B p(x) = ⊥ ⇔ p(x) = ⇔ not S (p(x)) = p(Y ) = ⊥ ⇔ not S (p(Y )) = . (15)In general, however, p(Y ) = does not imply p(Y ) = ⊥ . Proof. The equivalence p(Y ) = ⊥ ⇔ not S (p(Y )) = follows from the definition of the two-sorted negation. By the fundamental property, p(Y ) = ⊥ is equivalent to ∀ x (x ∈ Y ⇒ p(x) = ⊥) for a non-empty set Y . Now assume that Y has two distinct elements x and y and that p(x) = and p(y) = ⊥. Then p(Y ) = { , ⊥} = -→ 1 = ⊥ .

)

  Example 2. The following are equivalentrich(bank) = ∀x(x ∈ Bank ⇒ x ∈ Rich) .Example 3. The following are equivalent not S (rich(bank)) = ∀x(x ∈ Bank ⇒ x ∈ Rich) .

  It depends functionally on the pair w : T . Consider the following entries no : ss n 2 c 2 :: I no -→ S ⊗ S * ⊗ E ⊗ E * are : n 2 r ss n :: I are --→ E * ⊗ S ⊗ S * ⊗ E and : s r ss :: I andS --→ S * ⊗ S ⊗ S * some : n 2 c 2 :: I some ---→ E ⊗ E * big : c 2 c 2 :: I big --→ E ⊗ E * banks: c 2 :: I bank ---→ E rich : nr s ::

=

  big • bank . The meaning vector are : I -→ E * ⊗ S ⊗ S * ⊗ E is up to a symmetry isomorphism the name of the linear map are : E ⊗ S -→ E ⊗ S. The following postulate renders the logical property of the word are are = 1 E ⊗ 1 S . Hence the graph of are is to the pair rich : nr s a meaning vector rich : I -→ E * ⊗ S . Its graph has the form rich = I rich 3 3 E * ⊗ S , where rich : E -→ S .

Example 6 .

 6 No banks are rich / not S (rich(bank))The following are equivalentnot S (rich(bank)) = ∀x(x ∈ Bank ⇒ x ∈ Rich) Proof. See Example 3.Example 7. Some banks are rich/rich(some(bank))

A

  classification system consists of 1. a set B (of individuals, pairs of individuals etc.) 2. a set P = {p 1 , . . . , p d } (of properties) 3. a relation |= ⊆ B × P Read x |= p as 'x satisfies p' . Extend the relation |= to arbitrary concepts in C(P ) = C(P 1 ) ⊗ . . . ⊗ C(P d ) for every individual x ∈ B using induction on the complexity of concepts

Lemma 9 .

 9 For any concept c ∈ C(P ) and any individual x ∈ B x |= c if and only if v x ≤ c .(20)In particular, for any basis vector b f ∈ C(P )x |= b f if and only if v x = b f . (21)For Y = ∅ Y |= c if and only if v Y ≤ c .(22)

x

  |= -→ p i if and only if x |= p i x |= ¬v if and only if x |= v x |= v ∧ w if and only if x |= v & x |= w x |= v ∨ w if and only if |= v or x |= w . Clearly, either x |= v or x |= ¬v holds for every individual x ∈ B and every concept v ∈ C(P ). Extend satisfaction to every non-empty subset Y of B and every concept v Y |= v if and only if x |= v for all x ∈ Y . (19) Read Y |= v as 'Y has property v in general'. Note that Y |= v and Y |= ¬v may hold simultaneously. It suffices that Y has an element satisfying v and another one that does not satisfy v .

Compositional semantics in concept spaces

Quantum logic stands for 'logic of projectors in a concept space' and concept for 'Boolean vector in a concept space'.

Classical propositional calculus in concept spaces

Let P = {p 1 , . . . , p d } be a non-empty set. Call compound system or concept space the tensor product

where C(p i ) is a 2-dimensional space with basis vectors p i , p i⊥ , for i = 1, . . . , d .

The space C(p i ) is a 'basic variable' in quantum protocols and a 'basic concept' in semantics for natural language. For example, key-words of Roget's (or the speaker's mental) thesaurus provide sets of basic concepts.

Any basis vector b f of C(P ) is a tensor product of basis vectors of the factors

Due to the fine-grained structure of the basis vectors, the Boolean algebra of intrinsic projectors of a concept space is isomorphic to the Boolean algebra freely generated by the set P . The rest of this subsection is devoted to the proof of this fact.

For every i = 1, . . . , d, define the two so-called primitive vectors

The two primitive vectors defined by p i ∈ P are orthogonal to each other. In fact, each is the negation of the other one

Every Boolean vector can be written as a disjunction of conjunctions of primitive vectors. Indeed, let {j 1 , . . . , j k } be a subset of {1, . . . , d} . Assume

The partial choice vector associated to g is

Lemma 8. Every partial choice vector v g is a conjunction of primitive vectors.

In particular, every basis vector is a conjunction of primitive vectors.

Proof. Show (20), the equivalence concerning individuals, by induction on the propositional complexity of c. Equivalence ( 21) is a particular case of (20). The equivalence concerning sets, ( 22), now follows from the equivalence for individuals.

One consequence of the lemma above is that satisfaction in a classification system coincides with the conditional logic for Boolean vectors/projectors. Indeed, the inequality v ≤ w is equivalent to v → w = -→ 1 , where the full vector -→ 1 stands for 'true'.

Another consequence is that the concept v x is the best possible description of the individual x in the classification system and the same holds for v Y and the set Y .

Intrinsic projectors and two-sorted predicates

Let E be a space with basis B . One can think of any satisfaction system (B, P = {p 1 , . . . , p d } , |=) as a model of the language generated by P . It suffices to think of p ∈ P as the two-sorted predicate p( .

The expressiveness of the logic remains unchanged if the individuals in B are replaced by the basis vectors internalizing them. Indeed, individuals x, y for which v x = v y are indiscernible in the logic.

The compound system C(P ) is endowed with a canonical satisfaction system, namely

In the canonical satisfaction system, a basis vector can be both an individual and a concept. More generally, every Boolean vector is both a set of individuals and a concept.

Given p ∈ P , define a two-sorted predicate L( -→ p ) on C(P ) by stipulating

Boolean isomorphism from the lattice of concepts of C(P ) onto the Boolean algebra of two-sorted predicates on C(P ) satisfying

Moreover, if K is a non-empty subset of k basis vectors and w = x∈K the following equivalences hold

Proof. The extension of L to all Boolean vectors such that (24) holds is guaranteed by Theorem 2 . Next, prove (25) in the particular case where K consists of a single basis vector, i.e. prove that

Use induction on the propositional complexity of v . If the complexity is 0 then v = -→ p , for some p ∈ P . The two equivalences of ( 26) hold for -→ p by ( 23) and the fact that x ≤ ¬ -→ p if and only if x ≤ -→ p .

For the induction step, assume that (26) holds for v . Recall that not S is the symmetry isomorphism that exchanges the two basis vectors and ⊥. Thus

The righthand equality above is equivalent to x ≤ ¬v by induction hypothesis. The equivalence L(¬v)(x) = ⇔ x ≤ ¬v follows.

Next, assume that (26) holds for the concepts v and w . Then

Therefore, L(v ∧ w)(x) = holds exactly if both L(v)(x) = and L(w)(x) = hold, by definition of and S . The latter two equalities are equivalent to x ≤ v and x ≤ w by induction hypothesis, and to x ≤ v ∧ w by the definition of vector conjunction. This terminates the proof that the first equivalence of (26) holds for v ∧ w . The proof of the second equivalence is similar. Hence the particular case ( 26) holds for all Boolean vectors. Next, (26) implies that L is one-to-one. Indeed, if v and w are different Boolean vectors there is a basis vector x such that x ≤ v and x ≤ ¬w .

Next, for showing that L is onto, assume that r : C(P ) -→ S is an arbitrary two-sorted predicate on C(P ) . Let K = {x ∈ B : r(x) = } and v = x∈K x . Then r(x) = ⊥ for all basis vectors x ∈ K, because ⊥ is the only other possible value of r for a basis vector. Thus r(x) = if and only if x ≤ v and r(x) = ⊥ if and only if x ≤ x∈B\K x = ¬v . The equality r = L(v) follows by (26).

To show (25) in the general case, let K be a non-empty subset of k basis vectors and w = x∈K . Then L(v)(w) = k • if and only if v(x) = for all x ∈ K . The latter is equivalent to w ≤ v, because of (26). The proof of the second equivalence of (25) is similar.

A succinct summary of the theorem above says that every predicate on C(P ) can be expressed as a Boolean combination of the predicates L( -→ p ) for p ∈ P .

The fact that the space of indivuals is the concept space C(P ) is essential here. Assume that a and b are distinct individuals of some space E that indiscernible by the properties p i ∈ P . Then the two-sorted predicate r on E that maps x to if and only if x = b is not definable by a concept of C(P ) . Note that the homomorphism L maps the full vector -→ 1 ∈ C(P ) to the predicate that is 'everywhere' true, where 'everywhere' means 'for all basis vectors' . Switching from Boolean vectors to intrinsic projectors, identify the intrinsic projector p v with the two-sorted predicate L(v) . In particular, 1 C(P ) = p-→ 1 identifies with the predicate that is 'everywhere' true. The equalities ( 24), recast in terms of projectors, connect predicate logic and projector logic thus

Theorems 1 and 3 bring a new understanding to projectors in a compound system C(P ). The slogans 'negation is orthogonality', 'conjunction is composition of projectors' can be extended to 'every grammatical string corresponds to a projector such that predicate logic becomes quantum logic'. It suffices to make E = C(P ) in Subsection 4.1 to compute the projector.

Thus, the sample sentences of Section (4.3) have two interpretations in C(P ) . One is a two-sorted predicate and the other one a projector. Assuming that we evaluate the former in 2SF or RI, we have the following equivalences concerning the two interpretations No banks are rich / not S (rich(bank

Some banks are rich / rich(some(bank)) / p some(bank) → p rich rich(some(bank

This means that projector equalities translate to quantified formulas of twosorted first order logic. Otherwise said, quantum logic includes two-sorted first order logic. For example,

These equivalences concern the categories 2SF or RI, where predicates cannot count but only assert. The next subsection deals with Hilbert spaces, where predicate count the elements that satisfy them.

States in a concept space

In this subsection, C is the category of finite dimensional real Hilbert spaces.

A satisfaction relation requires a yes or no answer for every individual and every basic property p i . For practical reasons such a precise information may not be available. Instead, real numbers α iY ∈ [0, 1] are available representing the probability that an arbitrary individual in Y has property p i , i = 1, . . . , d .

Let 0 ≤ α iY ≤ 1 and

Lemma 10. The coordinates of µ Y define a probability on the event space B(P ) generated by the -→ p i 's. Moreover, α i is equal to the sum of the coordinates of -→ p i ∧ µ Y and β i to the sum of the coordinates of ¬ -

Hence the assertions follow from the equalities

Prove the first equality by induction on d. The case d = 1 is trivial. For the induction step, let d = d -1, P = {1, . . . , d } and

Let δ g be the coordinate of µ Y in C(P ), i.e. µ Y = g∈ d i=1 {p i ,p i⊥ } δ g b g . Then g δ g = 1 by induction hypothesis. We have

This finishes the proof, because for every basis vector b f ∈ C(P ) there is a unique g ∈ Return to vector semantics in information retrieval systems. Choose a set P = p 1 , . . . , p d of basic properties, for example the most frequent words in a (set of) document(s). Represent words by vectors in the d-dimensional space V P , where the coordinate γ i of word w is the frequency of co-occurrence with p i . The projection onto the one-dimensional subspace of V P generated by p i is the vector γ i p i .

The scalar γ i may be interpreted as the similarity of the word with p i , but not as the probability that an arbitrary individual designated by w has