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Muscle Strength and Mass Distribution Identification
Toward Subject-Specific Musculoskeletal Modeling

Mitsuhiro Hayashibe, Gentiane Venture, Ko Ayusawa, Yoshihiko Nakamura

Abstract— In current biomechanics approach, the assump-
tions are commonly used in body-segment parameters and
muscle strength parameters due to the difficulty in accessing
those subject-specific values. Especially in the rehabilitation
and sports science where each subject can easily have quite
different anthropometry and muscle condition due to disease,
age or training history, it would be important to identify those
parameters to take benefits correctly from the recent advances
in computational musculoskeletal modeling. In this paper, Mass
Distribution Identification to improve the joint torque estima-
tion and Muscle Strength Identification to improve the muscle
force estimation were performed combined with previously
proposed methods in muscle tension optimization. This first
result highlights that the reliable muscle force estimation could
be extracted after these identifications. The proposed frame-
work toward subject-specific musculoskeletal modeling would
contribute to a patient-oriented computational rehabilitation.

I. INTRODUCTION

A. Background

An understanding of the whole body human motion is a
complex process that requires information at different scales.
The observation of a motion reflects in fact the brain activity,
the neural system activity, and the musculo-skeletal system
activity. To fully understand the mechanisms and the internal
network of human motion generation, it is thus mandatory
to understand each element and the connections between
these elements in a multidisciplinary framework. Muscles are
the basic elements to actuate the joints in the human body
[1]. Analyzing how they activate and generate forces for a
specific motion would significantly improve several research
areas ranging from physical therapy to neuro-rehabilitation.
In addition, quantitative analysis between neural activity and
muscle force can contribute to the design of Functional
Electrical Stimulation (FES) for paralyzed muscles and my-
oelectrical limb control, and also to the design of robotic
prosthetic limbs and exoskeletons.

The modeling of the human body and the computation of
human dynamics is an active field in robotics and biome-
chanics. The general musculoskeletal model of whole body
and its dynamics computation method were established and
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are now available as OpenSim software [2][3]. The efficient
computational algorithms for musculoskeletal model were
pursued for inverse and forward dynamics on the basis of
efficient multibody dynamics computations [4][5].

In this paper, we discuss the muscle strength and mass dis-
tribution identification toward subject-specific musculoskele-
tal modeling. As mentioned above, many researches on
musculoskeletal modeling have been reported especially in
the biomechanics society. These techniques are getting ma-
ture to be applied for the clinical rehabilitation study and
other specific purposes. However, to our knowledge, most
of the works use the literature-based anthropometric index
for segment mass distribution. The work of de Leva [6]
which adjusted the Zatsiorsky model is commonly used for
segment definitions to obtain ”typical” mass distribution.
The subject weight, height are used as the reference to
compute the corresponding mass of each segment derived
from anthropometric table. As it depends on the total mass, it
should not be able to represent the subject-specific difference
of mass distribution in the case where the subjects have the
same weights and heights, the one is an athlete, and the other
is an elderly person. In addition, regarding muscle isometric
force table, the work of Delp [3] is quite famous and
often used when the muscular force is computed based on
electromyography (EMG). This musculotendon parameters
database is meaningful as it is normally difficult to access
these typical values. However, we can not assume that every
subject would have similar muscle strength especially in the
rehabilitation and sports science where each subject has quite
different muscle condition due to disease, age or training
history. In fact, the group even in the same generation and
healthy people can easily have different muscle strength
depending on daily exercises and the preference of sports.

B. Related works

Inverse dynamics of musculoskeletal models is commonly
used to estimate the joint torques and muscle tensions from
motion, ground contact force, and/or EMG measurements.
Known problems with the inverse dynamics approach is
that one must know the inertia and mass of each body
segment in order to estimate joint moments correctly [7].
Typically these are estimated using values from cadavers
and scaled using simplistic scaling rules, the accuracies of
which are rarely verified. This scaling technique is employed
also in OpenSim [3]. A novel identification method was
proposed and implemented for the human body-segment
mass-parameters [8]. This method can contribute to reduce



errors in the inverse dynamics result significantly. Its real-
time implementation is also available [9].

The resultant joint torques from inverse dynamics are net
values contributed from every muscle. As the numbers of
muscles span for each joint is greater than the degrees of
freedom for each joint, the estimation of each muscle force
is a redundant problem. Thus, usage of EMG has been
studied by many researchers in biomechanics. EMG-based
model relies on measured muscle activity to estimate muscle
force. Potvin et al. [13] derived the relationship between
the EMG signal and muscle force to estimate the muscle
load during lifting motion. EMG-based models have been
used to estimate torques around the knee joint by calibrating
the muscle parameters for individual subjects [10]. However,
previously proposed methods for the estimation of forces
based on EMG with calibration were about only one DOF
as it requires dynamometer to obtain reliable joint torque.
Recently, EMG-driven musculoskeletal model was proposed
for multiple DOFs of the joints [16]. This method uses
Opensim to obtain joint torques from motion capture data.

Drawback of complete EMG-driven musculoskeletal
model is that it is unrealistic to access all the inner mus-
cles. In addition, the tensions computed from EMG data
are not reliable due to the noise in EMG measurements
and uncertain muscle model parameters. Thus, Yamane and
Nakamura proposed to obtain physically and physiologically
reasonable whole-body muscle tensions by forming an op-
timization problem such that the error of the tension-torque
transformation equation becomes minimum while respecting
the physiological muscle dynamics and the muscle activity
when it is available from EMG [5]. All inner muscles
are included in the optimization. However, subject-specific
muscle strength is not considered yet. Identification method
to identify subject-specific muscle states and maximal force
parameter was developed for FES in [15]. In biomechanics,
normally dynamometer is used for subject-specific muscle
strength information.

This work is the first trial to make the identification on
subject-specific muscle strength and mass distribution based
on motion capture. The concept of this paper is summarized
in Fig. 1. The white colored parts are the standard processes
in the current musculoskeletal analysis. As the subject-
specific mass distribution is identified using kinematic in-
formation and ground reaction force, the computed joint
torques from the inverse dynamics of musculoskeletal models
can be improved to output reliable physically consistent
torques. In addition, as the subject-specific muscle strength
is identified with the above torque and EMG signal, the
optimization result of muscle tensions can be improved to
output reliable physiologically consistent torques reflecting
subject-specificity.

II. MASS-DISTRIBUTION IDENTIFICATION

The equations of motions of a moving system can be
written as Eq. 1 [17]. The upper equation describes the 6
DOF motion of a free link: the base-link in the 3D space.
The lower equation describes the motion of the various

Motion Capture

Marker positions

IK

Force plates

Joint angles

Mass Distribution

 Identification

Joint angles & Physically

consistent segment info 

ID

Joint angles & Physically consistent torques

Ground reaction

 forces

Reliable estimation

of muscle tensions

Muscle Strength

 Identification
EMG

Muscle activity

Physiologically consistent 

Muscle Strength

Fig. 1. Scheme of Mass Distribution and Muscle Strength identification.

kinematic chains constituting the whole system. The base-
link can be chosen arbitrarily, however for practical reasons
it is convenient to select the lower torso. The chains are
formed with the limbs, the upper-torso, the head.[
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where:

• Hij(i, j = o, c) is the inertia matrix,
• qo is the vector of generalized coordinates which rep-

resents the 6 DOF of the base-link,
• θ is the vector joint angles,
• bi is the bias force vector including centrifugal, Coriolis

and gravity forces,
• τ is the vector of joint torques,
• Nc is the number of contact point with the environment,
• F k is thekth vector of external forces,
• Kko and Kkc are matrices which mapF k to the

generalized force vector.

In the aim of identification of the dynamics it is common
to rewrite Eq.1 by separating the time-constant inertial pa-
rametersϕ from the time varying functionsY [18], resulting
in the identification model given by Eq.2. We have shown
in our previous work [8] that it is possible to solve the
identification problem using solely the upper equation of
Eq.2, thus without requiring the joint torque information.
This method is particularly adequate for the measurement of
the human body dynamics.
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where:

• Y =
[
Y o

Y c

]
is the regressor, which is function of the

system joint anglesθ, velocity θ̇ and acceleration̈θ,
and of the vector of generalized coordinatesqo and its
derivatives;

• ϕ is the vector of inertial parameters to estimate such
that:

ϕ =
[
ϕT

0 ϕT
1 ·· ϕT

N

]T
(3)

• ϕj is the vector of standard parameters for each link
Bj (j = 0 to N), such that:

ϕj = [ mi msi,x msi,y msi,z Ii,xx

Ii,yy Ii,zz Ii,yz Ii,zx Ii,xy ]T
(4)

• mj is the mass,
• Ij,xx, Ij,yy, Ij,zz, Ij,yz, Ij,zx, Ij,xy are the6 indepen-

dent components of the inertia matrixIj ,
• msi,x, msi,y, msi,z are the first moments components

of the vectormsj

Because the measuring environment is not free from noise
and measuring errors, and the modeling of the human body is
an approximation, the identification results are biased. This
bias, even with sufficiently exciting trajectories may lead to
parameters that are not physically consistent. Namely, inertia
matrices should be definite positive, masses should positives,
and the center of a mass of a link appropriately located in
the link. In order to guarantee the physical consistency of
each parameters we have also included a constraint based
on a simplified shape of the link [9]. For the geometric
identification: lengths of limbs, center of joints, we use
the marker positions captured from a T-pose to generate
automatically the adequate model.

The model used for segment identification and the
musculo-skeletal model differ in the number of degrees
of freedom. This is because for identification we must
consider the identifiability problem, and for the musculo-
skeletal we must take into account via-points of muscles.
In the musculo-skeletal model several virtual links or fixed
DOF are utilized, and the trunk is divided in links of small
size. The identified parameters must then be adjusted to this
model. The limbs, the head are globally the same, so we use
directly the identified parameters. For the other links, we use
a proportional distribution of mass and inertia to reflect the
results of identification, while preserving the high number of
DOF of the musculo-skeletal model.

III. TORQUE TO FORCE MAPPINGIN IDENTIFIED
MODEL

From the lower part of Eq. 1, once subject-specific inertia
matrix is identified, more reliable joint torquesτ can be
computed with external forces using Newton-Euler inverse

dynamics as in Eq.5. This process is indicated as ID in Fig.
1.

τ =
[
Hco Hcc

]
θ̈ + bc −

Nc∑
k=1

KkcF k (5)

To obtain the relationship between the joint torquesτ and
the muscle element tensionsf , the Jacobian matrix of the
element lengths with respect to the generalized coordinates
J ∈ Rnmus×ndof is computed as Eq. 6.

J =
∂l

∂θG
(6)

where:
• l ∈ Rnmus is the muscle lengths,
• θG ∈ Rndof is the generalized coordinate,
• nmus andndof are the number of muscles and DOF of

the model.
The method for computingJ is detailed in [4]. The prin-

ciple of virtual works yield the following equation relating
the muscle forces and the joint torques.

τ = JT f (7)

Solving Eq.7 for muscle forcesf using joint torquesτ is
a highly redundant problem. Because the number of muscles
nmus is greater than the total DOFndof . The skeletal model
used in this work has 83 DOF with 314 muscles.

IV. EMG PROCESSING AND MUSCLE CONTRACTION

DYNAMICS

The transformation from EMG to muscle activation is
an essential process in Hill-type muscle models [11][12],
it is dominant process because the estimated muscle force
is assumed to be proportional to the muscle activation. One
can refer to the detailed steps in [5]. First, mean of the raw
EMG was taken to offset the baseline of EMG signal. The
integrated EMG signal, called IEMG, normalized with the
value of Maximum Voluntary Contraction (MVC) gives the
activity level u. The muscle activitya is obtained by the
following first-order differential equation:

ȧ =
u − a

T

T = Ta (u ≥ a)
T = Td (u < a) (8)

whereTa and Td are the time constants for activation and
deactivation.

The Hill-type model is used to estimate the reference
muscle forcef∗ with general form of the function by

f∗ = afl(l)fv(l̇)Fiso (9)

where:
• Fiso is the maximum isometric muscle force,
• l is the muscle length,
• fl(l) and fv(l̇) gives the normalized force-length and

force-velocity relationship respectively [7].
The force length relationship shows a Gaussian distribu-

tion around the optimal lengthl0 and is formulated as

fl(l) = exp
{
−

( l − l0
Kl

)2}
(10)



whereKl is a constant parameter.
fv(l̇) represents the relationship between velocity and

normalized force. The muscle can contract at its maximum
velocity vmax without load and slows down as the load
increases. This relationship is formulated as follows:

fv(l̇) =


0 (l̇ ≤ −vmax)

Vsh(vmax+l̇)

Vshvmax−l̇
(−vmax ≤ l̇ ≤ 0)

VshVshlvmax+Vml l̇)

VshVshlvmax+l̇
(0 ≤ l̇)

(11)

where Vsh,Vshl and Vml are constant parameters given by
Stroeve [14].

V. MUSCLE STRENGTH IDENTIFICATION

Considering the joint torqueτ k which is generated by the
musclek,

τ k = JT
k fk (12)

= [−akflk(lk)fvk
(l̇k)JT

k ]Fisok (13)

= CT
k Fisok (14)

where Jk ∈ R1×ndof is the element Jacobian for muscle
k. As flk(lk),fvk

(l̇k),JT
k can be obtained from the result of

inverse kinematics andak is obtained from EMG measure-
ment for the muscles with EMG electrodes,Ck is known
for the muscles with EMG electrodes. We callCk as net
contribution matrix.

As the human motion is generated by complex combi-
nation of multiple muscle forces, then it is not always the
case but for certain tasks, particular joint torque among
τ is expected being consisted of the contributions from
particular muscles. In such case and with the assumption
where synergist muscles exhibit similar activity levels like
the muscle grouping in stretch reflex, the net contribution
matrix Ck are available if there is EMG measurement in the
muscle group, certain elements in joint torque vector can be
expressed as follows:

τ (j) =
∑
k=1

CT
k (j)Fisok (15)

=
∑

Gemg

CT
k (j)Fisok + d (16)

where:

• (j) representsjth element of the vector,
• Gemg is the EMG measured synergist muscle group,
• d is the constant residual term which takes into account

the contribution from other elements.

The subject-specific Muscle-StrengthFisok is identified with
linear regression.

After the identification of subject-specific Muscle-Strength
Fisok, a more reliable EMG-based reference muscle force
f∗ can be computed. From the previous work [4] about
optimization criteria for the actuation redundancy problem
in quadratic programming, we should now minimize the
objective function to find a solutionf keeping the error
against EMG-based muscle tension which is physiologically
consistent and the error against the resultant joint torque

which is physically consistent and subject-specific. The op-
timization is formulated as follows:

Find f that minimizes

Z =
1
2
|τ − JT f |2 +

Wemg

2
|f − f∗|2 (17)

subject to the following constraints:

Emf ≤ 0 (18)

whereWemg is the weight for EMG-based force reliability
coefficient andEm is a matrix which extracts the tensions
of all elements fromf .

Defining the appropriateWemg is an issue involving the
argument on how we can decide it, because normallyf∗

is not a subject-specific estimation. For instance, when the
literature basedFiso is taken for the elderly subject or
athlete, the right term of the objective function can lead
the inconsistency in the sense of subject-specific muscle
strength. Thus, the identification of muscle strength is a
trial to make the EMG-based muscle tension subject-specific
and physically consistent. Even with the same choice of the
Wemg, the solutionf can be more reliable as its absolute
value. In addition, the identified Muscle-Strength can be used
for the performance index to evaluate the subject evolution
in training and rehabilitation. In the optimistic scenario,
software may automatically judge if the designated task
can be performed by the patient who has particular motor
function problem.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

The human motions are recorded by a commercial optical
motion capture system consisting of 10 cameras (Motion
Analysis). 35 reflective optical markers pasted on the body
are captured by these cameras. We employed modified Helen
Hayes Hospital marker set. They are located at the defined
anatomical rigid points to diminish the influence from non-
rigid skin and muscle movement to insure accuracy of inverse
kinematics computations. The contact forces are measured by
two force-plates (Kistler). EMG data are recorded at 1kHz
with a 16-channel wireless EMG system (DELSYS) that
is synchronized with other measurements. Bipolar surface
electrodes are placed on the following 16 muscles for both
legs; Gluteus Maximus, Rectus Femoris, Vastus Lateralis,
long head of Biceps Femoris, Semimembranosus, Tibialis
Anterior, medial head of Gastrocnemius, Soleus as shown in
Fig.2.

First, subjects are requested to make Maximum Voluntary
Contraction (MVC) for the extension and flexion in each
joint of lower limbs. The corresponding EMG value was
used as an initial reference for the normalization in EMG
processing. Then, we record a T-pose of a few seconds
for the geometric calibration. Next, a sequence of about 2
minutes of free exciting movements for the mass-distribution
identification. For the better excitability for each joint DOF,
subjects are requested to pay attention to articulate each
body-segment. One session consisting of slow, normal and



Fig. 2. Appearance of the experiment to measure EMGs and marker
positions for lower limbs.

fast squat is repeated with different weighted loads (0kg, 4kg,
8kg) around the waist.

B. Identification of Mass-Distribution

The identified geometric model is used to compute the
inverse kinematics. Each joint information and the global
coordinates are then used to compute the regressor matrix
and the transformation matrix for the forces. The contact
forces are measured by two force plates directly. The model
of the body used for identification is simplified compared
to the musculo-skeletal model. It consists in 34 degrees of
freedom located between 15 links. Except for the upper
torso, the links correspond to actual segment, thus it is
not a simplification for lower limbs. The upper-torso is
considered as one link for a precise identification, rather
than using a decomposition similar to the musculo-skeletal
model in several links of extremely small size, and thus
with little mass and inertia, therefore difficult to identify
precisely. The global parameters of the upper torso are then
redistributed on the small links to match the specificity of
the subject. The identified results are visualized graphically
as shown in Fig. 3. The green color indicates that the inertial
parameters are well identified, based on statistic evaluation.
The figure in the link is the identified mass in kilograms.
The results are consistent with expected values: no aberrant
value, no negative value, a good right/left balance. And
there is a clear difference in the identified Mass-Distribution
between candidate A and candidate B, which are of different
morphologies.

C. Identification of Muscle-Strength

In this first trial of Muscle-Strength (M-S) identification,
we focused on knee joint torque variation under squat
motions. First, we needed to extract motions which have
torque variation well correlated to EMG-measured synergist
muscle groups to be applied in Eq.16. The example of muscle
activation transition is shown in the up of Fig.4. It was
obtained from a squat motion with 8kg load. Correlation
analysis in the level of the net contribution matrix was
performed to judge which EMG-measured synergist muscle
group have enough correlation and contribute to the torque
production. The knee element of contribution matrix in
Rectus Femoris, Vastus Lateralis had significant correlation

Candidate BCandidate A

Fig. 3. The results of the identification for the two candidates. The figure
represents the identified mass of each link in kg unit, the green color shows
link which parameters are identified with excellent accuracy, the blue color
shows link which parameters are small. The red arrow shows the direct force
plate measurement, the blue arrow is the reconstruction using the identified
parameters.
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Fig. 4. The example of the muscle activation transition from a squat motion
with 8kg load (up). The knee element transition of contribution matrix in
Rectus Femoris, Vastus Lateralis during the same motion. They showed
significant correlation with knee joint torque during the motion (bottom)

as shown in the bottom of Fig.4. The squat motion with
load made the situation where the knee extensor is required
to be activated principally even in the knee bending phase.
For Vastus Lateralis, the synergist muscle group: Vastus
Medialis and Vastus Interioris are assumed to have same
muscle activity.Fiso was identified applying linear regression
in Eq.16.

The estimation of muscle tensions was performed with the
optimization as in Eq.17. The muscle force estimation with
different weightsWemg was carried out with original settings
and M-S identified settings forFiso of Rectus Femoris and
Vastus muscle group. The average error of left knee joint
in the term of|τ − JT f | and the maximal estimated force
in left Rectus Femoris of Candidate B during squat with



8kg were evaluated as in Table I. The maximal estimated
force indicates the force scale solved in the optimization.
Fiso of Rectus Femoris with original model was1kN . Fiso

was identified as685N in Candidate B.Fiso was identified as
802N in Candidate A. For reference, the parameter in Delp
musculoskeletal table is780N . Considering the difference of
musculoskeletal geometrical path, it is well identified within
similar range.

TABLE I

KNEE TORQUE ERROR AND ESTIMATED FORCE SCALE FORRECTUS

FEMORIS WITH DIFFERENTWemg IN STATIC OPTIMIZATION

with M-S Ident no M-S Ident
Wemg τ error max force τ error max force

1 1.1 632 0.87 940
5 × 10−1 0.99 626 0.78 938

10−1 0.59 595 0.49 871
5 × 10−2 0.45 591 0.39 832

10−2 0.26 585 0.23 543
5 × 10−3 0.23 580 0.20 433

10−3 0.19 483 0.17 337

τ error showed similar result both for the optimization with/without M-S
identification. The estimated force is less influenced byWemg with M-S
identification.

Normally when Wemg is increased,τ error can be in-
creased because the solution needs to be found keeping
physical consistency from ID and respecting EMG-based
model output.τ error showed similar result both for the op-
timization with/without M-S identification. However, when
M-S identification is not performed, the estimated force
scale varied a lot depending onWemg. It is not preferable
since the estimated force is influenced by the computation
setting. It can be explained by the following: as the muscle
reference forcef∗ is not realistic, minimizing the right term
in the objective function causes problem. Thus, the solution
is easily influenced by the difference ofWemg. In addition,
asFiso is 1kN for original model, we can see the solution
without M-S Identification is misled while increasingWemg.
Thus, the estimated value is still usable as the comparative
study with other muscles such as distribution ratio, but not
for the individual analysis with different tasks. For very
small Wemg, even in M-S identified case, it started to give
different solution, but it is normal as it starts not to respect to
EMG-based model output. In any case, the optimal setting of
Wemg andWdyn is hard to be predicted before the analysis.
Since the solution with M-S identification became stable with
much larger range ofWemg, this first results highlight the
effectiveness of Muscle-Strength identification.

Next, the identified model was applied for the muscle
forces estimation in another squat motions with 4kg load.
Fig. 5 shows the estimated muscle forces of Rectus Femoris,
Vastus Lateralis and Vastus Medialis with different speeds
(first two series are normal speed, second two are slow
and last two are fast). The corresponding visualizations of
estimated muscle tensions at the indicated time instant are
depicted in the bottom.
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Fig. 5. Estimated muscle forces of Rectus Femoris, Vastus Lateralis and
Vastus Medialis using the identified model in squat motion with 4kg load
with different speeds (first two series are normal speed, second two are slow
and last two are fast) (up). The corresponding visualization of estimated
muscle tensions at the indicated time instant (bottom).

VII. CONCLUSION

In this paper we have presented a method that allows
to reliable subject-specific muscle forces estimation with
Muscle Strength and Mass Distribution Identification. The
proposed method features:

• Mass Distribution Identification to improve the joint
torque estimation accuracy,

• Muscle Strength Identification to improve the muscle
force estimation accuracy,

• The above features result in subject-specific muscu-
loskeletal dynamics computation to compensate the
drawback of conventional computer aided analysis such
as the assumptions in body-segment parameters and
muscle strength parameters.

The result as in Fig. 5 indicated the starting timing of
contractions of knee extensor muscles is visualized in quite
reasonable way and the estimated value is expected to be
reliable since this model computation is considering the
subject-specific mass distribution and subject-specific muscle
strength of knee extensors along with EMG activities of
surface muscles and all the inner muscles contributions in
the optimization process.

However, in order to apply the proposed method to all
the other joints, we still have open problem such as how
we can automatically detect the motions which have high
correlation between torque variation and net contribution
matrix. The excitation index tracking algorithm in torque-
muscle force mapping would be necessary in order to make



this framework applicable in systematic way. The knowledge
about modular control in synergist muscle group [19] is
recently well accepted in neuroscience. It would help a lot to
decrease the actuation redundancy problem. Muscle grouping
to realize real-time computation is already implemented in
[20]. Muscle grouping concept would help also for system-
atical detection of high correlated motion in torque-muscle
force mapping.

Even though the above problems are required to be
solved, the proposed framework toward subject-specific
musculoskeletal modeling would contribute to a patient-
oriented computational rehabilitation. In addition to subject-
specificity, human characteristics are basically time variant,
for instance, neuromuscular dynamics may vary according to
muscle fatigue. In order to correspond to such time-varying
characteristic, a model-based approach which is combined
with adaptive identification would enable to bring a new
modality in musculoskeletal modeling as in [21].
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