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Abstract— Electrical stimulation (ES) is one of the solutions
for drop foot correction. Conventional ES systems deliver prede-
fined stimulation pattern to the affected muscles. However, time-
variant muscle response may influence the gait performance as
they are difficult to be taken into account in advance. Therefore,
closed-loop ES control is important to obtain desired gait in
presence of muscle response variation. In this work, a dual
predictive control, which consists of two nonlinear generalized
predictive controllers, is proposed to track desired torque.
The stimulated muscle dynamics are modeled by Hammerstein
cascades, with one representing stimulation to activation, the
other representing activation to torque. Ankle dorsiflexion
torque and ES-evoked EMG of tibialis anterior were recorded
experimentally for model identification. The control scheme
is validated by following desired torque trajectories with the
identified model. The results show that the stimulation pattern
obtained from the dual predictive control can produce good
torque tracking according to the current muscle condition.

I. INTRODUCTION

Drop foot is a condition where an individual is not able
to adequately dorsiflex or lift the foot. It is associated with
a variety of conditions such as stroke, spinal cord injury
(SCI), or cerebral palsy [1]. Regardless of the mechanism
of injury, the drop foot condition can be improved by
different techniques, which is typically referred to as drop
foot correction. The main goal of drop foot correction is to
provide toe clearance while the affected limb is swinging,
and stability while the affected foot is on the ground, so
as to prevent the dragging of the toe on the ground and
decrease the risk of falls. Electrical stimulation (ES) is one of
the existing solutions, which can artificially generate action
potential in the place of central nervous system (CNS) for
inducing muscle contraction. It was put forward for gait
improvement since 1961 [2]. This technology presents its
benefit compared to conventional ankle foot orthosis devices,
in terms of the similar ability of gait improvement, the
lightweight and better cosmesis, a decrease in spasticity, and
an increase in walking speed [3].

The technology of ES for drop foot correction has ad-
vanced substantially over 40 years. A detailed review on this
topic can be found in [1]. In such context, most interests were
laid on designing stimulation system, aiming for optimal
patterns and exploring gait sensors to detect gait events.
In particular, optimal stimulation envelope is considered to
be important to improve gait performance. The stimulation
pattern commonly used in previous research is trapezoidal
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ES profile. However, it was reported that the muscle activity
elicited by trapezoidal profile did not match the muscle
activity during gait in able-bodied subject [4]. In addition,
the muscle behavior generated by predefined stimulation
may be influenced by time-variant muscle response such as
muscle fatigue and spasticity. Therefore, it is important to
adaptively modulate ES pattern in closed loop corresponding
to the response variation. A closed-loop ES system, which
is controlled by position sensors and triggered by foot-
switches with real time feedback, was proposed in [5]. The
stimulation pattern can be adjusted through the information
of the sensors. A micro-controller dynamically adjusting the
ES intensity through a built-in algorithm was presented in
[6]. The focus of this paper is the development of an novel ES
control strategy to adaptively generate stimulation patterns
for drop foot correction using biofeedback aiming for torque
control rather than position control.

ES-evoked electromyography (eEMG) has been widely
used to observe muscle electrical behavior such as [4] [7] as
it permits noninvasive and reliable measurement of muscle
activity. In [7], it was reported that the eEMG signal could
be used for ES-induced torque prediction. Moreover, the
mechanical response of stimulated muscle occurs later than
the electrical response, due to so-called electromechanical
delay (EMD). eEMG contains muscle contraction state prior
to torque production. Thus it is advantage to use eEMG
signal for feedforward control of muscle torque. In our
previous work, a time-varying relationship during eEMG and
ES-induced torque was reported in [8]. The follow-up study
proposed to apply Kalman filter with forgetting factor to
predict for muscle fatigue tracking based on eEMG [9]. Even
when torque measurement is not available for certain time, it
can contribute to torque prediction with biofeedback and the
performance was validated in five SCI subjects [10]. In ES,
it is important to realize smooth muscle activation transition
due to the limitation of physiological response. Therefore, we
were motivated to adopt a predictive control strategy based
on identified muscle model which takes advantage of actual
eEMG signal reflecting the actual muscle activation. Some
simulation studies can be found in [12] and [13] to introduce
predictive control strategy in different applications of ES.
This work aims at proposing a closed-loop control strategy
which can track desired torque trajectory rather than position
one for drop foot correction. A dual predictive controller,
that is, two nonlinear generalized predictive controllers in
series to bridge the muscle input and output with intermediate
variable from eEMG, is proposed in this paper.



II. M ODEL STRUCTURE AND ITS ONLINE

IDENTIFICATION

A. Model Structure

The stimulation signal, the torque measurement, and the
eEMG measurements can be used to identify the parameters
of muscle models in muscle torque production as shown in
Fig. 1. Excitation dynamics model, relating the stimulation
us(t) to the eEMGym(t) (stim-to-eEMG), and contraction
dynamics model, relating the eEMGum(t) to the torqueyt(t)
(eEMG-to-torque) are considered as proposed in [7].
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Fig. 1. Model structure of stimulated muscle for identification. The con-
traction dynamics model, relating eEMG to torque, the excitation dynamics
model, relating stimulation to eEMG.

The discrete-time Hammerstein structure was used to
model both excitation and contraction dynamics. For sim-
plification, a generic Hammerstein structure was introduced
here. It consists of a dynamic linear part and a memoryless
nonlinear part. It is popularly used to represent highly nonlin-
ear systems, such as electrically-stimulated muscles, relating
stimulation to muscle force under isometric conditions [14].

In this work, the linear part is chosen as an autore-
gressive model with external input (ARX), which has been
experimentally shown to yield good prediction of output
force/torque in isometric situation [15].

A(z−1)y(t) = B(z−1)h(t) (1)

in which A, B are defined as

A(z−1) = 1+a1z−1 +a2z−2 + · · ·+al z
−l

B(z−1) = b1z−1 +b2z−2 + · · ·+bmz−m (2)

wherez−1 is the backward shift operator. In (1),y(t) is the
output of the linear part, the intermediate variableh(t) is the
input of the linear part, as well as the output of the nonlinear
part with following polynomial formulation:

h(t) =
n

∑
i=0

γiu
i(t) (3)

Substituting (2), (3) into (1), the output of a polynomial
Hammerstein model (PHM) at a given timet can be pa-
rameterized as:

y(t,θθθ) =
l

∑
i=1

aiy(t − i)+
m

∑
i=1

n

∑
j=0

biγ j(u(t − i)) j (4)

whereθθθ = [a1, · · · ,al ,b1, · · · ,bm,γ0, · · · ,γn]T is a parameter
vector containing the model parameters. Therefore, there are
l +m+n+1 model parameters required to be identified in a
PHM (l,m,n) model.

B. Identification of Time-varying Parameters

The state-space form is basically required for the imple-
mentation of Kalman filter. Considering a PHM (l,m,n), its
state-space form can be compactly written as:

1) process equation

xk = Axk−1 +B
n

∑
i=0

γi(uk−1)i (5)

2) measurement equation

yk = Cxk (6)

whereuk−1 is the previous model input. Subscriptk denotes
the current time step. The current state vector can be de-
scribed asxk =

[
x1,k,x2,k, · · · ,xq,k

]T
, whereq = max{l ,m}.

A ∈ Rq×q correlates the previous states to the current states.
B ∈ Rq×1 correlates the previous inputs to the current states.
They can be represented as follows:

A =


a1 1 0 · · · 0 0
a2 0 1 · · · 0 0
...

...
...

. . .
...

...
aq−1 0 0 · · · 0 1
aq 0 0 · · · 0 0

 , B =


b1

b2
...

bq−1

bq


C ∈ R1×q correlates the current states to the current

measurement with the following expression:

C =
[
1 0 · · · 0 0

]
The detailed implementation of Kalman filter can be

found in [10]. At each time step, the internal states and
model parameters were simultaneously identified by Kalman
filter and measurement update. Notice that, the parameters
relating to linear partbi (i = 1, · · · ,q) and nonlinear part
γ j , ( j = 0, · · · ,n) in (4) were separately identified, rather than
identifying their products as in [9]. This improvement is
meaningful for directly applying predictive control scheme
on the linear part of a PHM model.

III. C ONTROLLER DESIGN

A. Dual Predictive control

We propose a dual predictive controller which consists of
two nonlinear generalized predictive controllers in series in
order to track desired torque during electrical stimulation.
Our main idea is to use eEMG signal for a dual-purpose in
this control strategy, eEMG has some properties of captur-
ing all of neural excitation, directly from stimulation, and
also from muscle fatigue, reflex and spasticity [7]. Fig. 2
demonstrates the control strategy we propose. There are two
controllers in series to handle predictive control of stimulated
muscle enhanced by biofeedback. Activation controller takes
eEMG as control signalmd to drive the predicted torqueyp,
close to the desired torque trajectoryyd, based on contraction
dynamics model. Stimulation controller usesmd obtained
from activation controller as the desired eEMG trajectory,
so that the control signal, stimulation pulse widthus, can be
computed to drive predicted eEMGmp close tomd, based
on excitation dynamics model.
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Fig. 2. Diagram illustrating the dual predictive control using biofeedback.
The control signal obtained from activation controller is used as desired
reference of stimulation controller. In each controller, nonlinear generalized
predictive control algorithm was applied based on a PHM model. The torque
measurementyt and eEMG measurementum/ym were only used for model
identification as shown in dashed lines.

In both the activation controller and the stimulation con-
troller, the same model structure - the polynomial Hammer-
stein model - is used for precess prediction and optimization.
Therefore, the overall control problem can be reduced to
resolve a nonlinear generalized predictive control problem
in which a polynomial Hammerstein model is utilized to
represent the dynamics process.

B. Nonlinear Generalized Predictive Control

As a whole, the solution of a nonlinear generalized predic-
tive controller consists of two parts: linear part and nonlinear
part. The control solution of the linear part is first considered
by generalized predictive control (GPC) algorithm, which
has been described in several publications [11] [16] [17].
Despite different methods can be used to obtain the control
law of GPC, the general idea is to minimize a multistage
cost function given by

J =
Np

∑
j=1

ξ j [ŷk+ j|k−vk+ j ]2 +
Nu

∑
j=1

δ j [∆hk+ j−1]
2 (7)

Where ŷk+ j|k is an optimum j-step ahead prediction of the
controlled variable using data up to time instantk, vk+ j is
the future reference trajectory,∆hk+ j−1 is the increment of
manipulated variable. Weighting coefficientsξ j , δ j respec-
tively penalize relative big changes of ˆyk+ j|k and ∆hk+ j−1.
Np is known as prediction horizon, and control horizonNu,
1≤ Nu ≤ Np, implies that all the increments of the control
effort are assumed to be zero forj > Nu.

A simpler formulation of GPC can be found in [18], which
was introduced instead of solving recursive Diophantine
equations. In a word, the optimization problem can be
computed online and in real time in terms of the manip-
ulated variable sequences[hk|k,hk+1|k, · · · ,hk+Nu−1|k], so that
the predicted controlled variables[ŷk+1|k, ŷk+2|k, · · · , ŷk+Np|k]
follow a desired reference trajectory[vk+1,vk+2, · · · ,vk+Np].
Only the first element of the control sequence is actually
implemented during time interval[k,k+1], that is,hk = hk|k.
Then the procedure is repeated at the next sampling time.

In this way, GPC has four tuning parameters:Np, Nu,
ξ and δ . Usually, the selection of prediction horizonNp

relies on sampling time. The selection of control horizon

Nu depends on a trade-off between reducing computation
amount and achieving global optimization [19]. A largeNu

may avoid constraints violation before they are arrived at,
but may result in substantial amount of computation due to
involved inversion of matrix [11]. The effect ofδ relates
on suppressing aggressive control action, whileξ allows to
assign weight to reduce the prediction error for trajectory
tracking.

The control signalhk obtained by GPC is a solution of
the linear predictive control problem at step k, which is
required to be applied to the linear part of the system. It
is also provided to generate the plant inputuk on the basis
of function (3). The nonlinear problem can be stated that, at
each time step, the signalhk is obtained as described above,
the nonlinear model coefficientsγ0, · · · ,γn are known by
model identification, we need to find the control input signal
uk. It can be considered as finding zeros of the following
function

p(uk) = γ0 + γ1uk + γ2u2
k + · · ·+ γnun

k −hk. (8)

In this work, theuk was calculated by finding eigenvalues
using Frobenius companion matrix. Until now, the control
problem of a nonlinear generalized predictive controller is
solved in two steps, first linear solution, and then nonlinear
solution.

C. Closed-Loop Implementation of the Dual Predictive Con-
troller

Both the activation controller and the stimulation con-
troller include the procedure described in III. B. In the
dual predictive controller we proposed in Fig. 2, the control
signal obtained from activation controller was treated as
desired reference of stimulation controller. The closed-loop
implementation of the dual predictive controller consists of
the following events periodically:

1) Obtain stimulation signal, eEMG, and output torque
(at time instant t)

2) Update the model parameter estimates by Kalman
filter for both muscle excitation model and contraction
model. Note that, both the linear part parametersai ,
bi and the nonlinear part parametersγ j in (4) are
simultaneously identified

3) Using linear part of the identified contraction model,
the intermediate signalhm(t) is computed by GPC

4) The control signal of activation controllermd is cal-
culated using (8), and then is considered as desired
reference of stimulation controller

5) Using linear part of the identified excitation model, the
intermediate signalhs(t) is computed by GPC

6) The control signal of stimulation controllerus is cal-
culated using (8)

7) Apply us to the muscle
8) Wait for the next sample then go to 1).



IV. RESULTS

A. Experiment for Model Identification

In order to get a realistic model for our simulation study,
we used experimental data to identify model parameters. Two
healthy subjects participated in this study. The experimental
set-up is depicted in Fig. 3. The subjects were seated on a
chair with the right ankle at 90o, while the foot was strapped
on a pedal. A classical stimulation scheme was used to
induce ankle dorsiflexion. The active (cathode) stimulating
electrode was placed over the common peroneal nerve and
the indifferent (anode) was placed over the tibialis anterior
(TA) muscle. Sequences of 2s stimulation and 2s rest were
applied for 30 minutes. A trapezoidal envelope with pulse
width modulation was applied. Each 2s stimulation train
consists of 0.4s ramp-up, 1.2s plateau and 0.4s ramp-down.
The common peroneal nerve was stimulated with pulse width
modulation where the maximum pulse width (PWmax) was
fixed at 350µs, constant stimulation frequency at 40Hz,
under isometric conditions by a programmable stimulator
(ProStim, MXM, France). The constant stimulation ampli-
tude was varied from 30 to 46mA depending on the subjects.

Fig. 3. Experimental set-up for stimulation and ankle torque measurement.

Evoked EMG activity of TA was recorded, amplified
(gain 1,000) and sampled at 4kHz by an acquisition system
(Biopac MP100, Biopac Systems Inc., CA, USA). Two
surface electrodes were positioned over the TA muscle in the
direction of muscle fiber with 20mm interelectrode spacing.
The reference electrode was placed on the patella. The skin
under the electrodes was shaved to minimize the impedance.
Isometric ankle dorsiflexion torque was measured using a
calibrated dynamometer (Biodex 3, Shirley corp., NY, USA)
at 2kHz, interfaced with the acquisition system.

B. Data Processing

The stimulation artifacts were removed by means of
blanking window to extract muscle response (Mwave). The
measured torque was offset with respect to the baseline of
the torque measurement without stimulation. The eEMG data
was then divided into epochs with each epoch containing
one Mwave. The mean absolute value (MAV) of eEMG and
mean torque during the epoch was simultaneously calculated
and normalized by their maximum values. In this work, the
stimulation pulse width, MAV of eEMG and mean torque
are used to identify both muscle excitation model and muscle
contraction model. Fig. 4 shows an example of the processed
result.
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Fig. 4. An example of processed data. Normalized torque, normalized
MAV of eEMG and normalized stimulation pulse width were prepared for
model identification. The muscle mechanical response (torque) occurs later
than muscle electrical response (eEMG) due to so-called electromechanical
delay (EMD). This phenomenon is one of the advantages of using eEMG
feedback for predictive torque control.

0 20 40 60 80 100 120 140 160
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

M
o

d
el

 p
ar

am
et

er
s

Time (s)

 

 

b1

b2

b3

b4

Fig. 5. Model parameters of the linear part of the input in contraction
model in subject2. The parameters were estimated by Kalman filter and
represent global time-varying property.

C. Identification Result

The parameters of muscle excitation and contraction
model were identified by Kalman filter with forgetting factor.
The parameters of muscle excitation model were identified
based on stimulation pulse width and MAV of eEMG.
The parameters of muscle contraction model were identified
based on MAV of eEMG and torque. For each model,
the parameters relating to linear and nonlinear parts were
separately identified as mentioned before. Model orderl =
3,m= 4,n= 3 was chosen for both excitation and contraction
models as proposed in previous work [9]. All the initial
states were fixed at zeros. The linear parametersai were
initialized at 0.2, and bi at 0.1. The nonlinear parameters
γ j were initialized at 0.0,1.0,1.0,1.0. In the presented results,
forgetting factor was selected at 0.999. Fig. 5 demonstrates a
part of parameters of contraction model in subject2. It reveals
that, the parameters represent global time-varying property
during the electrical stimulation.

D. Simulation Study of Control Strategy

In order to investigate the performance of the proposed
dual predictive controller described in section III. A, the
closed-loop simulations were carried out while the muscle



model was identified using real experimental data to simulate
real muscle response.

The relevant tuning parameters were chosen as below. The
sampling time was set at 0.025s. The prediction horizonNp

and control horizonNu were set atNp = 30, Nu = 20. The
control inputu was constrained in[0,1] representing respec-
tively non fiber recruitment and maximal fiber recruitment.
For convenience, the weighting coefficients of controlled
variablesξ1 (in activation controller) andξ2 (in stimulation
controller) were fixed asξ1 = ξ2 = 1, while the weighting
coefficients of control signalsδ1 and δ2 were constant and
adjustable. Finally, the tuning problem was simplified to a
tuning of parametersδ1 andδ2.

The control task of this work is calculating appropriate
and corrective stimulation signal in order to track the desired
ankle torque trajectory. In order to assess the suitability of the
proposed dual predictive controller, the effects of stimulation
constraints, the stability of the stimulation, and the control
performance were evaluated as follows.

Effects of Control Constraints:The desired torque ref-
erence consists of a sequence of two 4s trains, where the
first 2s were increased from a fixed minimum value to a
predetermined maximum value, and then the next 2s were
symmetrically decreased. The maximum value was chosen
to be 2Nm and 4Nm, respectively. The simulation result
is shown in Fig. 6 (δ1 = 0.5, δ2 = 5). The proposed dual
predictive controller was used to generate the stimulation
pulse width to drive the predicted torque as close as possible
to the desired torque. However, when the desired torque is
above 3.4Nm, the stimulation pulse width represents satura-
tion, which is important to avoid any damage of the patients’
muscle due to excessive stimulation. It could be performed
with the constraints condition in predictive control.
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Fig. 6. Torque reference (blue) and reproduced torque (red). The control
input was constrained in[0,1] to guarantee stimulation safety of the patient.

Torque Tracking performance:This desired torque trajec-
tory consists of a sequence with two trains. One train is
with 4.5s square profile, where the maximum value is fixed
at 2.4Nm. Another train is with 6.5s trapezoidal profile,
where the maximum value is fixed at 2.4Nm and lasts
2.5s. Fig. 7 shows the tracking performance to the desired
torque trajectory. Three sets of weighting coefficients were
tested. The weighting coefficients of input in two controllers
were respectively referred to as DPC1 (δ1 = 0.1, δ2 = 20),
DPC2 (δ1 = 0.5, δ2 = 5) and DPC3 (δ1 = 20, δ2 = 2). We

can find that, on one hand, different weighting coefficients
lead to different time converging to the desired torque, on
the other hand, even different weighting coefficients were
selected, the output torque can track the torque reference in
a limited time. The transient processes are smooth in both
torque tracking and control input, which is important for
muscle to gradually respond to the stimulation within the
physiologically feasible velocity. It also matches the intuitive
requirement of muscle response during electrical stimulation.
In particular, comparing these two different torque types,
the ramp-up period in trapezoidal is important to reduce
spasticity and fatigue due to fast contraction, and the ramp-
down period is important to avoid foot-flap or foot-slap [1],
thus the trapezoidal profile is more practical than square
profile in practice. The tracking performance of trapezoidal
torque is better than the tracking of square torque. That
implies that a realistic torque trajectory can ensure better
controller performance. Moreover, even if an unrealistic
torque trajectory is designed by mistake, the controller can
generate more practical stimulation signal by adjusting the
weighting coefficients as DPC2 in Fig. 7. This feature is
important since there is a limitation of muscle reactive
velocity, the proposed controller has an ability to explicitly
ensure practical stimulation transition. Finally, weighting
factors (δ1 = 0.5, δ2 = 5) were considered as an optimal
choice. They were used in the following study.
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Fig. 7. Comparison of tracking performance with different types of torque
trajectory. Different weighting coefficients were also tested. The weighting
coefficient of input was chosen as DPC1 (red,δ1 = 0.1, δ2 = 20), DPC2
(green,δ1 = 0.5, δ2 = 5) and DPC3 (blue,δ1 = 20, δ2 = 2).

Robustness of the Dual Predictive Controller:In order to
assess the control performance with the proposed method,
we assumed that torque measurement was interrupted after
certain time. The updates of model parameters were switched
off after 19.2s for both the excitation and contraction model.
Consequently, the model prediction in the control after 19.2s
was only driven by the model input and the model parameter
estimates at the time of 19.2s. The dual predictive controller
can still generate suitable control signal to obtain desired
torque trajectory as shown in Fig. 8. That is quite useful
for ES control in the presence of sensor failure or control
only based on biofeedback. The control performance was
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Fig. 8. Torque reference (solid blue) and reproduced torque output by the
proposed controller (dashed red). The updates of model parameters were
switched off after 19.2s. Consequently, the model prediction in the control
was only driven by the model input and the model parameter estimates at
the time of 19.2s.

maintained between before and after switching off model
identification. It shows that the stability of the controller
even in the condition where the model is time-varying or
not. The reference trajectory here was prepared according to
the recommended profile as natural TA contraction during
gait in [4]. Another advantage of the proposed framework is
that any reference can be input and the stimulation patterns
can be systematically generated with explicit consideration
of muscle activity.

V. CONCLUSIONS

In the context of drop foot correction through electri-
cal stimulation, optimal stimulation profile is important to
improve gait performance. However, traditional predefined
stimulation profile may suffer from muscle time-variant prop-
erty. Hence it is valuable to adaptively modulate stimulation
pattern in order to obtain desired gait performance and avoid
over-stimulation as well. In this work, we aim at the devel-
opment of an ES control strategy for drop foot correction
which allows torque tracking. Classical ES strategy was
conducted on two healthy individuals to induce dorsiflexion
through surface electrodes. ES-evoked EMG signal and ankle
torque were recorded for the model identification, which
was performed by Kalman filter with forgetting factor. A
dual predictive controller was proposed and verified by
generating control signal adaptively according to the current
muscle condition. The control signals were constrained to
guarantee stimulation safety of the patient. The simulation
results represent good torque tracking performance, effective
safety and systematic input pattern generation. The muscle
response against stimulation is quite different depending on
the patients. This method can contribute to a generation of

stimulation considering the actual muscle activation state.
The future work will be extended to real time implementation
on hemiplegic patients as well as dynamic motion tracking.
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