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Abstract

Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By
studying these series of images we can both understand the changes of specific areas and discover global
phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread
over very long periods and may have different start time and end time depending on the location, which
complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern
mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods
consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes
as well as short term ones, whenever the change may start and end. However, applying FSPM methods
to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain’s
constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of
different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional
and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast
majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS
mining framework that enables discovery of these patterns despite these constraints and characteristics. Our
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proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on
35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution
behaviors.

1 Introduction

Change detection is an important field of remote
sensing with various applications in land cover
study. It has gained increasing attention due to
recent important technological progress. The next
generation of satellites (e.g., V enµs, Sentinel-2 )
will actually be able to acquire image time series
at high temporal frequency. Satellite Image Time
Series (SITS) are an important source of informa-
tion for land cover analysis and change detection.
Let us consider, for instance, the scene illustrated
in Figure 1. Each image contains four main regions
(R1 to R4) and the series show their evolution on
four different dates. In July 2007, regions R1 and
R2 were mainly covered with trees, region R3 with
a river and region R4 with roofs. A global evolu-
tion to this example is the urbanization process,
where the trees disappear, replaced by bare soil
and finally by urban items (roads and roofs).

Extracting knowledge from time series can
be crucial in domains such as prediction[1] and
clustering[2, 3]. In the case of SITS, the discov-
ery of evolutions has important applications[4, 5, 6]
but requires to consider two important challenges
related to the domain constraints and with SITS
characteristics.

First, changes in a scene might spread
over a long time period (urbanization, for in-
stance, lasts for several years and building sites
do not have the same start time and end time) or
they might cycle (such as crop rotation). Let us
consider the SITS illustrated in Figure 1. A pos-
sible region evolution from this series of images is
the following: “trees → bare soil → urban”, which
can be observed for 50 % of pixels. Obviously,
detecting such evolutions, having more than two
steps, cannot rely on a naive comparison of two
consecutive images. While the number of possible
combinations over such long periods is very large,
solutions to this kind of problem exist in knowl-
edge discovery in the field of “frequent sequential
pattern mining” (FSPM) [7, 8, 9]. In this paper,
we will explore such solutions for change detection
in SITS.

Second, satellites don’t automatically
give labels (such as “tree” or “roof”) to (re-
gions of) pixels. Actually, their sensors measure
the light reflected by geographic areas for differ-
ent wavelengths allowing satellites to acquire im-
ages on multiple bands, such as “Infra-red”, “Red”,
“Green”, etc. Let us now consider the images il-

lustrated in Figure 1, from the satellite’s point of
view. Figure 2 shows the same series of images on
the red band. In the image from July 2007, the red
level of regions R1 and R2 could be 120 (which is
the response on this band of some trees from broad-
leaved or coniferous forests). The red level of re-
gion R3 is 30 (response of the river) and the red
level of region R4 is 200 (response of red tile roofs
in the red band). Meanwhile, broad-leaved trees
and conifers have different responses on the Infra-
Red band. Consequently, working with a single
band is not sufficient since the number of possible
values is lower than the number of possible kinds
of surfaces.

This need for multiple bands is well known in
geographic studies. Actually, a measure on a band
generally takes a value in a range of 255 levels,
whereas the number of possible measures for a
pixel with n bands is 255n, allowing much more
possible combinations. Figure 3 shows the series
illustrated in Figure 1, on the Infra-Red band. We
can see, for instance, that the Infra-Red level is the
same for red tile roofs and concrete roads.

Understanding from SITS the evolutions that
occurred on a scene (i.e., geographic area) is a com-
plex task. Data mining methods are usually used
rather than image/video processing methods, since
SITS are very different from videos: (1) the images
are not regularly sampled, (2) sensed values are ab-
solute physical states of the land cover and (3) the
series are much shorter. Many differences are then
following in the conception of dedicated methods.
The irregular sampling prevents making any as-
sumptions on the content of previous/next images
(frames in video). Moreover, satellite image time
series are giving a physical state of the land cover;
the method has thus to map the changes (as well
as in videos), but also to characterize it in order
to provide a semantic meaning to the thematic ex-
pert. Furthermore, video-dedicated methods have
to be extremely fast in order to be able to process
the data flow. We take here the opposite direction:
the aim is to map and characterize the change with
as few assumptions as possible.

Our goal is to extract patterns of evolutions
from these images and, to that end, we need
to take into account the whole sets of dates and
bands. To date, the problem of mining frequent
sequences from SITS has been investigated for a
single band[10, 11]. Unfortunately, as explained
above, a single band does not make it possible
to distinguish between different kinds of surfaces.
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July 2007 May 2009 September 2009 May 2010

⇒ ⇒ ⇒

Figure 1: Example of change in a scene involving trees and urban growth where a pattern of evolution is
“trees → bare soil → urban”, verified by 50 % of regions (i.e. R1 and R2).
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Figure 2: The scene of Figure 1 from the “Red band” point of view

Let us consider a pattern discovery process on the
red band, for instance. In this case we will ex-
tract region evolutions where broad-leaved trees
and conifers have the same value but red tile roofs
and concrete roads don’t. Therefore, a possible
frequent pattern would be “conifers/broad-leaved
trees → bare soil”. We can observe that “urban”
does not appear since its surfaces take values in
very different ranges on the red band. Actually,
in the red band, the values of urban surface are
divided into “roofs” (R1) and “roads” (R2). The
expert would then interpret this pattern and decide
that it can be reformulated as “trees → bare soil”.
Unfortunately, this pattern corresponds to the be-
ginning of the urbanization process and we could
not extract any information about “urban” sur-
faces in this analysis performed on the red band.
The problem remains with other bands such as
Infra-Red, for instance, where a possible pattern
would be “bare soil/conifer → roof/road”, refor-
mulated by the expert as “bare soil → urban”. In
this case, we find the urban part of the pattern but
it does not contain enough information about the
trees (because they have different values on the
Infra-Red band). Furthermore, the expert needs
time for this interpretation (since the information

on each step of the pattern is not sufficient) and the
reformulation is not always reliable (because each
value may correspond to multiple possible surfaces,
making the result ambiguous).

Therefore, in order to find complete, signifi-
cant and relevant patterns, we need to consider the
whole set of bands. In our example, taking multi-
ple bands into account would allow us to extract
the pattern illustrated in Equation 1.

This pattern can easily be interpreted as
“trees → soil → urban”, which corresponds to our
goal. It has two important advantages 1) it is more
informative than the patterns extracted on a sin-
gle band and 2) it is not ambiguous. As we will
describe later, there is a strong correspondence be-
tween this problem and the problem of frequent se-
quential pattern mining (FSPM) [7, 8, 9, 12]. How-
ever, the use of frequent pattern mining methods
for SITS analysis is not straightforward, since the
non evolving regions, which are the vast majority,
are overwhelming the evolving ones.

This article introduces a new strategy for the
extraction of evolution patterns from SITS. The
proposed method addresses the two problems of
studying multi-spectral series and of extracting
the main evolution behaviors from predominantly

(conifers/hardwoods
︸ ︷︷ ︸

Red

) → (soil
︸︷︷︸

Red

, soil/conifers
︸ ︷︷ ︸

Infra−Red

) → (roof/road
︸ ︷︷ ︸

Infra−Red

) (1)
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Figure 3: The scene of Figure 1 from the “Infra-Red band” point of view

static behaviors. In this paper, we propose to an-
alyze a scene with satellite images on important
time periods. Our approach will be tested over 35
images and a period of 20 years, which represents
28 million sensed values.

This paper is organized as follows. In Section 2
we give an overview of existing works in SITS anal-
ysis. Section 3 gives the main definitions of fre-
quent sequential patterns and Section 4 describes
the preprocessing of SITS for the discovery of such
patterns. In Section 5 we propose a FSPM method
devoted to SITS, along with a visualization prin-
ciple, and our results are described in Section 6.
Finally, we conclude this paper in Section 7.

2 Related Works: SITS
Analysis

Change detection in a scene allows the analysis,
through observations, of land phenomenon with a
broad range of applications such as the study of
land-cover or even the mapping of damages follow-
ing a natural disaster. These changes may be of
different types, origins and durations.

In the literature, we find three main families of
change detection methods. Bi-temporal analy-
sis, i.e., the study of transitions, can locate and
study abrupt changes occurring between two ob-
servations. Bi-temporal methods include image
differencing[13], image ratioing[14] and change vec-
tor analysis (CVA)[15]. A second family of mixed
methods, mainly statistical methods, applies to
two or more images. They include methods such
as post-classification comparison[16], linear data
transformation (Principal Component Analysis
and Maximum Autocorrelation Factor)[17], image
regression or interpolation[18] and frequency anal-
ysis (e.g., Fourier, wavelet)[19]. Finally, we find
methods designed towards image time series and
based on radiometric trajectory analysis[20].
Whatever the type of methods used in order to
analyze satellite image time series, there is a gap

between the amount of data representing these
time series, and the ability of algorithms to an-
alyze them. First, these algorithms are often ded-
icated to the study of a change in a scene from bi-
temporal representation. Second, even if they can
map change areas they are not able to characterize
them. As for multi-date methods, their results are
usually hard to interpret and do not characterize
the change.

FSPM [7, 8] is for its part intending to ex-
tract patterns of evolution in a series of symbols.
These methods enable to identify sets of sequences
that had the same underlying evolution. Further-
more, they are able to characterize this evolution,
by extracting the pattern shared by this set of se-
quences. Extracting frequent sequences from SITS
was introduced in[10, 11]. The authors study the
advantages of such sequences in two applications:
weather and agronomics. However, their proposal
is restricted to the mining of series of images where
each pixel take a value on a single band only. Our
proposal, as explained in Section 4, applies to im-
ages where the pixels take values on tuples, each
value corresponding to a separate band. These
characteristics, along with the large number of im-
ages, will have important consequences on the pat-
terns, on their relevance and on the complexity of
their discovery.

3 Mining frequent sequen-
tial patterns

Sequential patterns are extracted from large
sets of records. These records contain sequences
of values that belong to a specific set of symbols,
as stated by Definition 1 (inspired by the defini-
tions of[7]).

Definition 1 Let I = {i1, i2, ..., im}, be a set of
m values (or items). I is a vocabulary of all pos-
sible values for an item. Let I = {t1, t2, ...tn}, be
a subset of I. I is called an itemset and is noted
(t1; t2; ...; tn). A sequence s is a non-empty list
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of itemsets noted < s1, s2, . . . , sn > where sj is
an itemset. A data sequence is a sequence in the
dataset being analyzed.

Definition 2 shows the conditions for the inclu-
sion of two sequences. In other words, s1 is in-
cluded in s2 if each itemset of s1 is included in an
itemset of s2 with the same order. This definition
is illustrated by examples 1 and 2.

Definition 2 Let s1 =< a1, a2, . . . , an > and
s2 =< b1, b2, . . . , bm > be two sequences. s1 is
included in s2 (s1 ≺ s2) if and only if
∃i1 < i2 < . . . < in integers, such that a1 ⊆ bi1 ,
a2 ⊆ bi2 , . . . , an ⊆ bin

.

Example 1 Let us consider the sequence s1 =<
(3) (4; 5) (8) >. s1 is made of 3 ordered itemsets.
The first itemset of s1 contains only one item (i.e.
(3)). The second itemset of s1 contains two items
(i.e. (4; 5) an itemset of size two that contains the
items 4 and 5). The third itemset of s1 contains
only one item (i.e. (8)). Let us now considered the
sequence s2 =< (7) (3; 8) (9) (4; 5; 6)(8) >. Then,
s1 is included in s2 (i.e s1 ≺ s2) since (3) ⊆
(3; 8), (4; 5) ⊆ (4; 5; 6) and (8) ⊆ (8). Meanwhile,
the sequence s3 =< (3; 8; 9) (4; 5) > is not included
in s2 since (3; 8; 9) is not included in an itemset of
s2.

Example 2 gives an illustration of how sequen-
tial pattern mining may be applied to SITS as a
model of their content and meaning.

Example 2 Let us consider s1 from Example 1.
Say that 3 stands for “low IR”, 4 corresponds to
“low R”, 5 to “Average NDVI” and 8 to “high
NDVI”. Then, if a pixel has a series of values that
corresponds to s1, it should be regarded has a pixel
having a low value of infra-red in an image, fol-
lowed by a low value of red and an average value
of NDVI in a next image and lastly by a high value
of NDVI in a next image.

In this paper, the main characteristic for se-
quential pattern extraction will be the frequency
of the patterns. This notion is based on the num-
ber of occurrences of a pattern, compared to the
total number of sequences, as stated by Definition
3. Finally, for simplicity in the results, only the
longest patterns are kept (C.f. Definition 4).

Definition 3 A data sequence sd supports a se-
quence s (or participates in the support of s) if
s ≺ sd. Let D be a set of data sequences. The
support of s in D is the fraction of data sequences
in D that support s:

support(s) =
|{sd ∈ D|s ≺ sd}|

|D|
(2)

Let minSupp be the minimum support value,
given by the end-user. A sequence having support
higher than minSupp is frequent.

Example 3 Let us consider the toy database given
in Table 1 that contain four sequences. If the end-
user gives a minimum support of 50%, then a se-
quence will be frequent if it is supported by (i.e. in-
cluded in) at least two sequences of this database.
This is the case of < (a) (b) (c; x) >, which is
included in three sequences among three, thus hav-
ing a support of 75% (above the minimum support
given by the user).

Definition 4 Let F D be the set of frequent se-
quential patterns in D. In a set of sequences, a
sequence s is maximal if s is not contained in any
other sequence. Let LD be the set of maximal se-
quences of F D. LD is the set of maximal frequent
sequential patterns in D.

Table 1: Sample database

s1 < (a) (b; d) (c; e;x) >
s2 < (a; b) (b) (c; f ;x) >
s3 < (n; o) (p) (q; s) >
s4 < (a; g) (b;m) (c; g;x) >

4 Data preparation (SITS)

We want to analyze images from SITS databases,
such as Kalideos∗. In our experiments, for instance,
we have extracted a series of 35 images Spot-1,
Spot-2 and Spot-4 (the scenes are located in the
south-west of France) as illustrated by Figure 4.
These images are described by three attributes,
corresponding to three spectral bands: Near Infra-
Red (NIR), Red (R) and Green (G). To these
bands, we add a fourth one, corresponding to the
Normalized Difference Vegetation Index (NDVI).
It is the most used index in remote sensing since
it makes it possible to distinguish between several
spectral signatures. The NDVI is calculated as fol-

lows for a pixel p: NDVI (p) = NIR(p)−R(p)

NIR(p)+R(p)
.

Since the images from these databases are ac-
quired by different sensors, the comparison of ra-
diometric levels of a pixel (x, y) from one image
to another calls for corrections. The value of
each pixel has to be adjusted. First, we need to
make sure that pixel (x, y) in a series covers the
very same geographic area in every image. Then,
some corrections are performed in order to reduce
the impact of the difference of the solar lighting

∗http://kalideos.cnes.fr
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· · ·

Image 1 Image 2 · · · Image 34 Image 35

Figure 4: Extract of the Satellite Image Time Series from the Kalideos database. CNES 2010 – Distribution
Spot Image

and of the difference of composition of the atmo-
sphere. These corrections make it possible to guar-
antee that a geographic area (x, y) can be studied
throughout the image series with comparable val-
ues.

This section formalizes the construction of the
sequences from the image series. The idea is
to study the evolution of atomic geographic ar-
eas identified by their (x, y) coordinates. In this
way, the image series provide, for each sensed
area (x, y), a 4-dimensional series of values (Defini-
tions 5 and 6. Then, the values have to be quanti-
fied in order to be studied by the frequent pattern
mining method (Definition 7).

Notations Let us first introduce several nota-
tions:

• [[X, Y ]] = [X, Y ] ⊂ N: the set of integer val-
ues from X to Y ;

• {{a, a, c}} refers to the multi-set theory, i.e.,
sets with possibly multiple occurrences of el-
ements;

• ⊎ refers to the union operator for multi-sets,
e.g., {{a}} ⊎ {{a}} = {{a, a}};

• In
b (x, y) denotes the reflectance level (sensed

value) of the nth image in the bth band.

Definition 5 Let Simage =< I1, . . . , IN > be a
series of N images of width W and eight H. Let B
be the number of bands in the images. Each multi-
valued (with multiple bands) image In (n ∈ [1,N ])
can be seen as a function:

In : [[1,W]] × [[1,H]] → Z
B

(x, y) 7→ Ik(x, y) =
QB

b=1 In
b (x, y)

(3)
with

Q

be the Cartesian product.

Definition 6 Let Sv be the dataset built from the
values of the image series. Sv is the set of se-
quences defined as:

Sv = {{< I1(x, y), · · · , IN (x, y) >
|x ∈ [[1,W]], y ∈ [[1,H]]}}

(4)

Finally, a discretization step is necessary on the
values of bands for a sequential pattern extraction.
Actually, this step will lower the total number of
items during the mining step. To that end, we
first create B datasets Db (16b6B): one dataset per
band from all images. Then, in each such dataset,
we gather together all the values of the correspond-
ing attribute. It makes it possible to have a com-
mon discretization of the values between all im-
ages. In this way, the first slice of NIR is for ex-
ample the same whatever the considered quantified
image. Formally, B datasets of non-temporal data
are created as:

Db = ∀(x, y) ∈ [[1,W]] × [[1,H]] :
N
]

n=1

In
b (x, y) (5)

Then, to each dataset Di, we apply the
K-means algorithm [21] in order to obtain K
groups of values. Although all discretization tech-
niques can be used here, the K-means algorithm
was chosen instead of a usual histogram equaliza-
tion, since the K-means algorithm is more adap-
tive to the distribution of the data. Therefore, ev-
ery attribute (NIR, R, G or NDVI) is divided into
K groups. For readability, we name these groups
ordered by the value of the centroid (i.e., the mean
value of the group). For instance, the cluster NIR1

corresponds to the first slice of NIR, i.e., the clus-
ter of NIR with lowest values, NIRK corresponds
to the last slice of NIR, i.e., the cluster of NIR
with highest values. Definition 7 details the cre-
ation of S: the dataset ready for sequential pattern
extraction, from the values of Sv.
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Definition 7 Let Clus be the function associat-
ing the B values of a pixel ( i.e., a quadruplet
(nir, r, g, ndvi)) with their B slices computed by the
K-means algorithm†. The dataset S from the dis-
cretized values of the image series is then defined
as:

S =
{{< Clus(I1(x, y)), · · · , Clus(IN (x, y)) >

|x ∈ [[1,W]], y ∈ [[1,H]]}}
(6)

We are thus provided, for each pixel,
with a sequence of discrete values as,
for example: (NIR1; R6; G3; NDV I16) →
· · · → (NIR12; R3; G14; NDV I19) where
(NIR1; R6; G3; NDV I16) means that the value
of that pixel in the first image is in the first slice
of near infra-red, in the sixth slice of red, in the
third slice of green and in the 16th slice of NDV I.

5 Extracting and Visualiz-
ing Patterns from SITS

The preprocessing steps described in Section 4 pro-
vide us with a series of images where each pixel is
described on a tuple of values. Let us consider the
series of three images simply reduced to 4 pixels
(p1 to p4) illustrated by Figure 5. We want to
extract frequent evolutions from these images. In
other words if there exists a large enough set of
pixels with the same “behavior” (i.e. these pix-
els have the same evolution), then this behavior
must be discovered. Let us mention that the pix-
els’ position is not a criterion here (our goal is not
to extract pixels because of a shape). Our goal
is to extract significant schemes in the evolution
of a set of pixels. Each pixel in this figure is de-
scribed on 3 values (corresponding to bands B1 to
B3). With a minimum support of 100 %, there is
no frequent pattern in these images (no “behavior”
corresponding to the whole set of pixels). With a
minimum support of 50 %, however, we find two
frequent behaviors:

1. < (B1, white; B2, white) (B1, gray; B2, red) >.
This behavior matches the sequences of val-
ues of pixels p2 on images 1 and 2 (or 3) and
p3 on images 1 (or 2) and 3.

2. < (B1, white; B2, white) (B1, white; B2, white) >.
This behavior matches the sequences of val-
ues of pixels p1 (let p1 be white on all images)
B2 on on images 1 and 2 and p3 on images 1
and 2.

Let us note that, in the illustration above, patterns
may be frequent even despite a lag in the images
that support them (according to Definition 3).

Figure 5: A series of three images, with four
pixels described on three bands.

5.1 Mining Sequential Patterns
from Image Time Series

As described above, our goal is to extract sequen-
tial patterns from these image time series. How-
ever, the pixels that support the evolution patterns
embedded in SITS are not the vast majority. In
this context, the sequential patterns having the
highest support will usually correspond to “non-
evolution patterns.” In other words, the sequences
in these very frequent patterns contain the same
frequent item, repeated several times. An example
of such a pattern being < (trees)(trees)(trees) >
meaning that, in this series, most pixels have a
value corresponding to trees on images i, j and
k (with i < j < k). This would correspond to
< (B1, white; B2, white) (B1, white; B2, white) >
in our previous illustration, which means that the
white value was found in the two attributes B1
and B2 at the same time, and that another same
state was found afterwards.

However, such patterns are not really informa-
tive. In SITS, patterns with the highest support
always correspond to geographic areas that did not
change and these areas are the vast majority. How-
ever, as illustrated in the introduction, mining fre-
quent sequential patterns from satellite images can
reveal pixels having the same evolution (since these
pixels will be characterized by the same pattern).
Therefore, the challenge is to extract patterns hav-
ing a minimum threshold, while avoiding the enu-
meration of non-evolving patterns. There are sev-
eral naive approaches for solving this problem, but
they all have important drawbacks.

A first idea would be to remove the pixels
that never show any change. This is not enough,
since the non-evolution part of the remaining pix-
els might still cause the same problems. Actually,
a pixel might not show any change for years, and
some important changes at the end of the series.

†For instance, a pixel taking values (12; 35; 200; 100) in an image could have Clus(12; 35; 200; 500) = (NIR1; R2; G16; NDV I11).
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Another approach would consist in lowering
the minimum support until we obtain patterns
that correspond to evolutions (since the areas of
changes are minority). This would lead to extract-
ing patterns having lower support (say, above 2 %).
Unfortunately, in this case, the whole (and large)
set of frequent values will flood the process with an
intractable number of candidate and frequent pat-
terns with two important consequences. First, the
results are difficult, or even impossible, to obtain
(because of the combinatorial complexity associ-
ated with frequent pattern extraction). Second,
even if the results could be obtained, they would
be difficult to read and very few would be relevant
because they would contain a lot of non-evolution
patterns.

A third idea would consist of a candidate
generation process where two successive occur-
rences of the same value is forbidden. Indeed,
such a solution would be motivated by the need
to get rid of non-evolution patterns (such as
< (trees)(trees)(trees) >). Unfortunately, this so-
lution is not sufficient because non-evolution pat-
terns can take values on the whole set of avail-
able bands. Let us consider, for instance, the pat-
tern < (tree, b1)(tree, b2)(tree, b3) >. This pat-
tern does not contain any repetition of the same
value since (tree, b1) corresponds to the response
of trees on band 1, (tree, b2) on band 2 etc. There-
fore, since (tree, b1) 6= (tree, b2) 6= (tree, b3), this
pattern would be considered.

Finally, a naive and extreme solution would
consist in the total removal of highly frequent
items from the candidate generation process. In
this case, we could ignore important patterns that
should be considered. Let us consider the case
where (tree, b1) and (tree, b2) are very frequent,
whereas the item (urban, b3) is barely frequent.
Then, the pattern < (tree, b1)(tree, b2) > would
be ignored (which is correct) but also the pattern
< (tree, b1; tree, b2)(urban, b3) > (which must not
be the case).

Considering the number of naive (and unre-
alistic) solutions, we propose a frequent pattern
extraction algorithm based on PSP[8]‡with a tar-
geted adjustment: the candidate generation step
discards patterns having two contiguous highly fre-
quent items. To that end, we introduce a maxi-
mum threshold (described in Definition 8) in addi-
tion to the minimum support of Definition 3. Be-
sides the ability to discard non-evolution patterns,
this principle significantly reduces the combinato-
rial complexity associated with FSPM, as we ex-
plain in the following analysis.

Definition 8 Let maxSupp be a maximum
frequency threshold and H be the set of

items having support larger than maxSupp
(H = {i ∈ I|support(i) > maxSupp}). Let
minSupp be a minimum frequency threshold and
FI be the set of items having support larger
that minSupp. The reduction factor h that ap-
plies to FI according to maxSupp is given by
h = |FI|/|FI\H|.

It is straightforward to show that a lower num-
ber of combinations leads to a lower number of pos-
sible frequent sequential patterns. However, with
Theorem 1 we provide a formal comparative anal-
ysis of the upper bounds on the number of possible
frequent sequences when successive occurrences of
highly frequent items are considered and when they
are discarded. For simplicity (and to make the up-
per bounds easier to read while remaining reliable)
we consider that the empty itemset is not discarded
from the set of possible k-itemsets, ∀k. Therefore,
the sequences containing one or more occurrences
of the empty itemset are not discarded from the
following reasoning. For instance, sequences like
< (1) () (4) () (2) >, which contains two occur-
rences of the empty itemset, are not considered is
this reasoning. Actually, the impact of this item-
set (and its repetitions) on the possible number of
sequences is negligible compared to the exponen-
tial number of potential combinations involved by
sequential patterns. Furthermore, our reasoning is
limited to sequences of pair length (though it can
be generalized to any length of sequences).

Theorem 1 Let n be the number of frequent items
and h be the reduction factor introduced in Defini-
tion 8. Let St be the set of possible sequences of
length t and P[0..t] =

St

j=0 St be the set of possi-

ble sequences of length 0 to t. Let S′
t be the set

of possible sequences of length t with no contigu-
ous successive occurrences of frequent items and
P ′

[0..t] =
St

j=0 S′
t be the set of possible such se-

quences of length 0 to t. Then |P[0..t]| =
Pt

j=0 2nt

and |P ′
[0..t]| =

Pt

j=0
2nt

h
t

2

(and |P ′
[0..t]| < |P[0..t]|).

Proof. First, let us recall some properties of
sequential patterns. |PI|, the number of possible
itemsets with n frequent items is given by the num-
ber of itemsets having length 0 plus the number of
itemsets having length 1, etc. The number of item-
sets having length k is given by Ck

n (i.e. the num-
ber of choices of k items among n possible items in
I). Therefore, |PI| =

Pn

k=0 Ck
n = 2n (or (2n−1) if

we discard the empty itemset). |St|, the number of
possible sequences of length t is given by |St| = 2nt.
Actually, the number of possible combinations for
St is given by:

2n × 2n × . . . × 2n

| {z }

t times

(7)

‡However, this principle may apply to any sequential pattern mining algorithm.
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And |P[0..t]|, the number of possible sequential pat-
terns of length 0 to t is given by:

|P[0..t]| = |
t

[

j=0

St| =
t

X

0

2nt (8)

Second, let us give an upper bound on the num-
ber of sequential patterns when two items of H
cannot be combined. |PI\H|, the number of pos-
sible itemsets i such that minSupp < support(i) <

maxSupp is given by |PI\H| = |PI|
h

= 2n

h
. The

number of possible combinations for St, the se-
quences of length t with no contiguous successive
occurrences of items from H is given by:

2n ×
2n

h
× 2n ×

2n

h
× . . . × 2n ×

2n

h
| {z }

t times

(9)

Therefore, |S′
t| = (2n × 2n

h
)

t

2 = 2
2n

t

2

h
t

2

= 2nt

h
t

2

and

the number of possible such sequential patterns of
length 0 to t is given by:

|P ′
[0..t]| = |

t
[

j=0

S′
t| =

t
X

0

2nt

h
t

2

(10)

¤

The importance of h is significant regarding the
number of possible itemsets. However, when it
comes to sequential patterns, it becomes crucial.
Figure 6 gives the difference between the upper
bounds on itemsets and sequential patterns with
8 to 10 frequent items, a reduction factor (h) be-
tween 1.5 and 5, and a sequential pattern length
(t). With h = 1.5, the maximum number of item-
sets (left diagram in Figure 6) drops from approx-
imately 1000 to 600, which is expected to have a
limited influence on the frequent itemset discovery
process. Meanwhile, the maximum number of se-
quential patterns of size t (right diagram) shows a
very large theoretical difference, growing up to an
order of magnitude for h = 1.5 (and even more for
higher values of h).

5.2 Towards a generic learning
approach for SITS mining

The new principle of FSPM presented in the last
subsection is inspired from the constraints of SITS.
The resulting algorithm PSPSITS is detailed in Al-
gorithm 1. It is based on PSP, while providing a
new threshold value standing for the maximum fre-
quency.

Algorithm 1 PSPSITS

Input: D //a database of sequences

Input: I //the set of items in D
Input: minSupp //the minimum support

Input: maxSupp //the maximum support

Output: k //the maximum length of a fre-

quent

Output: L0,k //the set of frequent sequences

of length 0 to k
k ← 1
//Extract the frequent items of D
Lk ← { i | i ∈ I , support(i) > minSupp}
//Index the highly frequent items of D
H ← { i | i ∈ I , support(i) > maxSupp}
k ← k + 1
Ck ← Learning(Lk−1,H)
repeat

//Check the support of each candidate D
CountSupport(Ck, D)
//Extract the frequent ones

Lk = FreqSeq(Ck)
k ← 1
//Generate the next step candidates

if Lk 6= ∅ then

Ck ← Learning(Lk−1,H)
end if

until Lk = ∅

The main modification of PSP that should be
noticed in PSPSITS is the usage of a maximum
support in the learning step, where the candidates
of each level are generated. We do not give the
details of this candidate generation algorithm be-
cause, above this particular algorithm, an impor-
tant characteristic of our work is that it can ap-
ply to any FSPM method. Our theoretical back-
ground shows that the number of generated can-
didates, during the learning phase, gives a very
low number of candidate patterns that have to
be checked over the data (compared to traditional
learning principles). This is due to the fact that
candidates containing two consecutive items hav-
ing support greater than maxSupp (see algorithm
PSPSITS in Algorithm 1) will be rejected. This
principle is very easy to apply to any FSPM al-
gorithm by modifying the learning step. For in-
stance, in GSP [7], the learning step is based on
a pattern matching principle that checks the sub-
sequences of each couple of frequent sequences.
When the subsequence obtained by removing the
first item of the first sequence matches the sub-
sequence obtained by removing the last item of
the second sequence, then a candidate is gener-
ated. For instance, let s1 =< (a)(bc)(d) > and
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s2 =< (bc)(d)(e) > be two frequent sequences hav-
ing length 4, then we can generate the candidate
sequence c =< (a)(bc)(d)(e) > (because the sub-
sequences of s1 and s2 do match). If we want to
apply our filter on the consecutive highly frequent
items, all we have to do is to carefully generate
the candidates of size 2 and 3. Afterwards, the
property of not having two consecutive highly fre-
quent itemsets in a sequence will be automatically
propagated without any additional effort.

5.3 Visualizing Sequential Pat-
terns Extracted from SITS

Our goal, in this section, is to propose a visualiza-
tion approach designed towards the synthetic rep-
resentation of sequential patterns in SITS.
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Figure 6: The theoretical influence of h is much
more significant on the number of possible se-
quential patterns than it is on the number of
possible itemsets.

The (usually very) large number of patterns
extracted by means of data mining algorithms is
an important issue, with numerous and relevant
contributions in the literature[22, 23, 24]. In the
case of patterns extracted from SITS, an important
advantage is that our individuals are pixels. The
main idea is that every sequence (as introduced in
Definition 7) built from the SITS corresponds to a

geographic location identified by its coordinates in
a H×W space (with H and W be the height and
width of the images in the series). Therefore, we
can build a H×W image, where the data sequences
that participate to the support of one or more fre-
quent sequential patterns will be highlighted (since
each data sequence corresponds to a pixel in that
space). Moreover, by assigning gradual levels to
the pixels, we can see the percentage of frequent
sequences they support. To the best of our knowl-
edge, this is the first visualization principle intend-
ing to give a synthetic representation of the set of
frequent sequential patterns extracted from a series
of images. In Definition 9, we define the “contri-
bution frequency” of a data sequence in a set of
sequential patterns. The larger the number of pat-
terns supported by a data sequence, the higher its
contribution frequency.

Definition 9 Let FS be the set of fre-
quent sequential patterns in S. The con-
tribution frequency of a sequence sx,y =<
Clus(I1(x, y)), · · · , Clus(In(x, y)) > in FS is de-
fined as:

C(sx,y) =
|{sF ≺ sx,y | sF ∈ FS}|

|FS |
(11)

Definition 10 Let C(sx,y) be the contribution fre-
quency of a sequence sx,y. The contribution fre-
quency image is the image gathering the contribu-
tion frequency of all sequences identified by their
coordinates (x, y). IC is defined as:

IC : [[1,W]] × [[1,H]] → [0, 1] ⊂ R

(x, y) 7→ IC(x, y) = C(sx,y)
(12)

Given Definition 9, C(sx,y) can be computed
for each sequence sx,y (i.e., for each pixel (x, y)).
Definition 10 gives the characteristic of the image
representing the contribution of each pixel to a set
of sequential patterns. Once this synthetic repre-
sentation is obtained, the expert is provided with
a valuable guide that allows him to identify in one
viewing the kind of surfaces involved in the set of
extracted patterns. For instance, if most of the
highlighted pixels correspond to areas covered with
fields, then the expert may browse the set of ex-
tracted patterns with phenomena such as “crop ro-
tation” in mind.

6 Experiments

Our 35 images have a resolution of 202,500 pixels
(450x450). Once preprocessed (as described in Sec-
tion 4), each pixel takes values on four attributes
(NIR, R, G, NDVI) and our data contain a total
of 28 million values in the series. The values have
been quantified according to Section 4, attribute
by attribute. Table 2 links the quantified values
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to the sensed ones. By applying the method de-
scribed in Section 5 to the SITS illustrated in Fig-
ure 4, we obtain a set of patterns that needs to be
interpreted by the experts. In this section, we pro-
vide some results and their interpretation in the
two first subsections. The last subsection is then
devoted to the study of the maximum support and
its efficiency regarding the time response.

Table 2: Correspondence between sensed val-
ues and quantified ones.

Quantified Mean reflectance
value NIR R G NDVI

1 60 5 7 0
2 93 8 11 0.28
3 111 10 13 0.38
4 121 13 16 0.45
5 128 16 18 0.49
6 132 18 20 0.54
7 137 22 21 0.57
8 144 26 22 0.61
9 152 28 25 0.64
10 162 29 27 0.67
11 174 30 30 0.70
12 184 32 33 0.72
13 194 35 35 0.75
14 203 39 37 0.78
15 214 42 40 0.81
16 227 47 46 0.84
17 242 56 56 0.87
18 263 69 78 0.90
19 293 93 138 0.92
20 343 157 160 0.96

6.1 Visualization of Data Mining
Patterns on Image Time Se-
ries

Examples of different IC computed for different FS

are displayed on Figure 7. These results aim at
visually determining the content of the set of ex-
tracted patterns. Not surprisingly, the lower the
minimum support, the lower the number of se-
quences supporting the extracted patterns (series
of states of evolutions). Actually, with low sup-
ports, the extracted patterns get more and more
specific and correspond to fewer pixels. Besides
this obvious observation, Figure 7(a) shows that
the pixels supporting the patterns with such low
supports are mainly located in industrial zones.
Figure 7(c) contains a little more sequences sup-
porting the set of sequential patterns, mostly cor-

responding to urban areas and reclaimed land. As
to Figure 7(e), it corresponds to urban areas and
wet vegetation (swamps) in dark gray. This image
provides us with another type of information: the
constant gray-level of urban areas indicates that
these areas are often supporting patterns all to-
gether.

(a) IC with
parameters
(0.005,0.3)

(b) IC with
parameters
(0.01,0.4)

(c) IC with
parameters
(0.02,0.3)

(d) IC with
parameters
(0.05,0.5)

(e) IC with
parameters
(0.07,0.3)

(f) IC with
parameters
(0.07,0.5)

Figure 7: IC images for different extractions
with parameters (minimum support,maximum
support). 256 gray levels (from black to white)
are used in order to illustrate the contribution
frequencies. White pixels correspond to high
C(sx,y).

6.2 Exploring the Evolution Pat-
terns

The images built on the principle described in the
previous subsection (and illustrated in Figure 7)
provide the experts with valuable intuitive infor-
mation on the kind of patterns contained in the
data mining result for a minimum and a maximum
support. For each individual pattern in this result,
we can retrieve the pixels whose series of values
contain the pattern. These pixels may than be vi-
sualized (highlighted) as illustrated by Figure 8(b)
(right). In this figure, each color corresponds to a
pattern selected from our SITS. We also report an
image from the series (left) for visualization pur-
pose. This work is supported by the French Space
Agency and these results where considered by ex-
perts in the domain. Here is the geographic expla-
nation of these patterns.

The pattern <(IR,1) (NDVI,20)> is repre-
sented by the green dots in Figure 8(b). It cor-
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(a) June 3 2006: image selected from the SITS (b) Illustration of our result with three selected patterns (one
color per pattern).

Figure 8: A sample of our results (right) compared for visualization purpose to one image from the series (left).

responds to swamps (wetlands) in the SITS and
their cyclic behavior. During winter, swamps
are almost covered with water, resulting in a low
infra-red level (slice 1) since water does not reflect
light a lot. During summer, these swamps are not
covered with water any more and light is reflected
by the vegetation. Due to its high chlorophyll con-
centration (due to high irrigation), vegetation in
summer has a very high level in NDVI (slice 20).

The orange dots represent the pattern
<(R,17) (R,18 ; NDVI,3)>. It corresponds
to urban areas that get denser (the number
of residences has grew). Actually, urban areas
(residences) have a high response in the red band.
The level at the beginning of the pattern (slice
17) is highly likely to be the sign of an urban
area. The following level (slice 18) shows an ur-
ban densification (slices 17 and 18 are separated
by a radiometric increase of nearly 15 %), con-
firmed by a low level of NDVI (corresponding to
almost no vegetation). Extracting this kind of
patterns is interesting because the urbanization
behavior spreads over long time period, with dif-
ferent start time and end time. In this SITS, the
building of new houses mostly starts in 1995 and
was not finished in the end of the series. Moreover,
the urbanization time can vary from one area to
another. The extracted pattern concentrates all

building behaviors, demonstrating the relevance of
frequent patterns mining methods for the analysis
of satellite image time series.

The pattern <(NDVI,2) (G,20) (NDVI,1)>
is represented by the purple dots. This pattern cor-
responds to a densification of industrial areas
(e.g. increase in the number of warehouses). In
fact, industrial areas have high response in the
green band and show very low values of NDVI.
Furthermore, the significant decrease of NDVI
shows that vegetation almost disappeared from
these areas. Lastly, the maximum level of green
is typical of flat roofs (e.g. corrugated iron) of
industrial areas.

6.3 Efficiency of the Filters

The maximum support introduced in
Subsection 5.1 has an important influence on the
number of frequent items that are not allowed in
successive combinations (and, therefore, on the
number of sequential patterns that are evaluated
during the process). In Figure 9 (left) we report
the number of frequent items that can be combined
into candidate sequential patterns. For instance,
when the minimum support is 50 %, the number
of frequent items (“Original”) is 63, but with a
maximum support of 75 %, the number of items
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i having support falling between 50 % and 75 %
drops to 37 (which corresponds to a reduction fac-
tor h = 1.7). We report in Figure 9 (right) the
time responses with a maximum support of 80 %,
75 % and 70 %, and we compare it to an extrac-
tion with no maximum support (“Original”). We
can observe that the influence of the reduction
factor h is very important on the time response,
as expected and described in Subsection 5.1 and
Figure 6.

This principle is well suited for SITS mining,
since it discards non-evolution patterns and it out-
performs by at least one order of magnitude the
process attempting to extract the whole set of fre-
quent sequential patterns. For instance, in our
experiments, we observed that with a minimum
support of 50 % and no maximum support, the
extraction needs several hours. With a minimum
support of 10 %, we estimate that it should take
several weeks. However, with a minimum support
of 10 % and a maximum support of 50 %, the pro-
cess completes within minutes.

7 Conclusion

Sequential patterns are well suited for evolution
discovery and description. These patterns are ex-
tracted from series of values and they give the fre-
quent successive values that are embedded in the
series. The intrinsic properties of sequential pat-
terns extraction algorithms fit the specific charac-
teristics of satellite image time series: they are ro-
bust to meteorological noise, they tolerate irregular
sampling of images and are able to extract behav-
iors of different length and with different start and
end times. However, when it comes to extracting
evolution patterns from SITS, the challenge is to
filter out the very large number of non-evolution
patterns, because of which the experts could be
overwhelmed. In this paper, we have proposed
i) a framework for evolution pattern mining from
SITS, ii) a principle intended to filter out the non-
evolution patterns and enable the mining process
and iii) a visualization technique that makes it pos-
sible to locate areas of evolution in one viewing.

Experiments carried out on a particular dataset
showed that FSPM methods allow us to extract re-
peated, shifted and distorted temporal behaviors.
The flexibility of these methods makes it possible
to capture complex behaviors from multi-source,
noisy and irregularly sensed data. However, this
flexibility could also have some drawbacks. In
fact, this flexibility could lead to skipping minority
states of evolution, even if they are characteristic
of a class. Moreover, the acquisition dates of the
images were not used as an information for these
experiments. Finally, this kind of methods does

not provide directly a whole classification of the
sensed area, i.e., there is not a class associated to
each sensed area.

Considering these issues, we believe this work
opens up a number of research directions. First,
further experiments should be conducted in order
to demonstrate the genericity of the proposed ap-
proach. Second, developed filters could include
more sophisticated rules in order to integrate the
knowledge of thematic experts. Third, when deal-
ing for instance with agronomical classes, the date
of the different states of evolution has to be used in
order to discriminate one class from another. More
work is still needed to integrate the use of the date
of the images in a flexible way. Finally, inferring a
clustering of the data from extracted patterns re-
mains an important issue for both theoretical and
applied research direction.

Finally, this work shows new interesting leads
for sequential pattern extraction when the number
of possible combinations does not allow to calcu-
late the frequent sequences. This may have impor-
tant consequences in applications where the data
does not vary much and we want to find patterns
with a frequency threshold that is not very high
while remaining significant. This is the case, for
instance, in Web Usage Mining, where the most
frequent behaviors usually correspond to non in-
formative patterns (e.g. “20% of users click on
homepage followed by location”). In data mining,
it is well known that depending on some character-
istics of the data, one has to choose the approach
that best corresponds. Our study shows a new
approach to consider, depending on the data and
their characteristics.
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patterns extraction in multitemporal satel-
lite images. In: 17th European Conference
on Machine Learning and the 10th Euro-
pean Conference on Principles and Practice
of Knowledge Discovery in Databases (ECML
/ PKDD). (2006) 96–99
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