
HAL Id: lirmm-00640886
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00640886v1

Submitted on 14 Nov 2011 (v1), last revised 27 Nov 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P2Prec: A Social-Based P2P Recommendation System
Fady Draidi, Esther Pacitti, Didier Parigot, Guillaume Verger

To cite this version:
Fady Draidi, Esther Pacitti, Didier Parigot, Guillaume Verger. P2Prec: A Social-Based P2P Recom-
mendation System. ACM Conf. on Information and Knowledge Management (CIKM), 2011, Glasgow,
Scotland, United Kingdom. pp.2593-2596. �lirmm-00640886v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00640886v1
https://hal.archives-ouvertes.fr

Demo of P2Prec: a Social-Based P2P Recommendation
System

Fady Draidi

LIRMM

Montpellier, France

Fady.Draidi@lirmm.fr

Esther Pacitti

LIRMM

Montpellier, France

Esther.Pacitti@lirmm.fr

Didier Parigot

INRIA

Sophia Antipolis, France

Didier.Parigot@inria.fr

Guillaume Verger

INRIA

Montpellier

Guillaume.Verger@inria.fr

ABSTRACT

P2Prec is a social-based P2P recommendation system for large-

scale content sharing that leverages content-based and social-

based recommendation. The main idea is to recommend high

quality documents related to query topics and contents hold by

useful friends (of friends) of the users, by exploiting friendship

networks. We have implemented a prototype of P2Prec using the

Shared-Data Overlay Network (SON), an open source

development platform for P2P networks using web services,

JXTA and OSGi. In this paper, we describe the demo of P2Prec’s

main services (installing P2Prec peers, initializing peers,

gossiping topics of interest among friends, key-word querying for

contents) using our prototype implemented as an application of

SON.

1 INTRODUCTION

The general problem we address is large-scale content sharing for

on-line communities. Consider, for instance, a scientific

community (e.g., in bio-informatics, physics or environmental

science) where community members are willing to share large

amounts of documents (including images, experimental data, etc)

stored in their local servers. Assume also that they don’t want to

lose control over their data at a central site. A promising solution

is to organize community members in a peer-to-peer (P2P)

overlay network, with the advantages of decentralized control,

peer autonomy and scalability.

Locating contents based on contents ids in a P2P overlay network

is now well-solved (see e.g. [5]). However, the problem with

current P2P content-sharing systems is that the users themselves,

i.e., their interest or expertise in specific topics, or their rankings

of documents they have read, are simply ignored. In other words,

what is missing is a recommendation service that, given a query,

can recommend relevant documents by exploiting user

information.

Sinha et al. [10] have shown that in general users prefer the

advices coming from known friends in terms of quality and trust

because usually users trust their friends’ advices. In most of

existing P2P solutions, friendship links are extracted from user’s

behaviors [2], or are established based on explicit trust declaration

[9]. To enrich these solutions, we exploit the fact that users who

store similar contents are potential friends. Therefore, our

solution leverages between content-based and social-based

recommendations over a P2P overlay.

P2Prec is a social-based P2P recommendation system for large-

scale content sharing [4]. The main idea is to recommend high

quality documents related to query topics and contents hold by

useful friends (of friends) of the users, by exploiting friendship

networks. Our recommendation model relies on a distributed

graph, where each node represents a user (peer) labelled with the

contents it stores and its topics of interests. The topics each peer is

interested in are automatically calculated by analyzing the

documents the peer holds. Peers become relevant for a topic if

they hold a certain number of highly rated documents on this

topic. A peer v becomes useful to a peer u, if u’s topics of interest

and v’s relevant topics are overlapped. To exploit friendship links,

we rely on Friend-Of-A-Friend (FOAF) descriptions

(http://www.foaf-project.org). To disseminate information about

relevant peers, we rely on gossip algorithms that provide

scalability, robustness, simplicity and load balancing. In addition,

we propose an efficient query routing algorithm that selects the

best peers to recommend documents based on users’ useful friends

and query topics. At the query’s initiator, recommendations are

selectively chosen based on similarity, rates and popularity or

other recommendation criteria.

We have implemented a prototype of P2Prec by using Shared-

Data Overlay Network (SON) (http://www-

sop.inria.fr/team/zenith/SON), an open source development

platform for P2P networks using web services, JXTA and OSGi

(http://www.osgi.org). SON components communicate by

asynchronous message passing to provide weak coupling between

system entities. To scale up and ease deployment, we rely on a

Distributed Hash Table (DHT) for publishing and discovering

services or data.

In this paper, we describe the demo of P2Prec’s main services

(installing and initializing P2Prec peers, gossiping topics of

interest among friends, key-word querying for contents) using our

prototype implemented as an application of SON.

2 OVERVIEW OF P2PREC

Centralized systems recommender systems (RS) rely on the

ratings that users provide [1]. The advents of Web2.0 tools and the

growing popularity of online social networks have led to the

development of social-based RS that use users’ social data such as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

friends, trust, etc. to provide recommendations [9]. These systems

exploit the preferences and relations of users’ friends (of friends)

[2] or the trust relations [8] between users to aggregate the

neighbors of each user. Then the recommendations are computed

based on the ratings that have been given by those neighbors.

P2Prec’s recommendation model is expressed based on a graph G

= (D,U,E,T), where D is the set of shared documents, U is the set

of users u1,…un corresponding to autonomous peers p1,…pn, E is

the set of edges between the users such that there is an edge e(u,v)

if users u and v are friends, and T is the domain of topics. Each

user uU is associated with a set of topics of interest Tu  T, and

a set of relevant topics Tu
r Tu extracted locally from the

documents u has rated. The rating that has been given by a user u

on document doc is denoted by ratedoc
u.

In our approach, we use Latent Dirichlet Allocation (LDA) [3] to

automatically model the topics in the system, which in turn are

used to extract users’ relevant topics of interest. LDA processing

is done in two steps: training at a global level and inference at the

local level. The global level is given to a bootstrap server (BS),

where BS aggregates a sample set of M documents from P2Prec

participant peers. Then BS executes the LDA classifier program to

get a set T = {t1,..tk} of topics, where k is the number of topics.

Each topic tT contains a set of z words, where z is the total

number of the unique words in M, and each of these words is

associated with a weight value between 0 and 1. At the local level,

user u performs LDA locally to extract the topics of its local

documents, using the same set of topics T that were previously

generated at the global level. LDA provides a vector of size k for

each document doc, Vdoc = [wdoc
t1,…,wdoc

tk], where wdoc
t is the

weight of each topic tT with respect to doc.

Users’ relevant topics of interest are extracted based on a

combination between documents’ semantics and ratings. Once a

user u extracted the Vdoc for each docDu, it multiplies the Vdoc =

[wdoc
t1,…,wdoc

tk], by the rating ratedoc
u. Then, user u identifies for

each topic tT only the documents that are highly related to t. A

document doc is considered highly related to topic t, if its weight

in that topic wdoc
t multiplied by its rating ratedoc

u exceeds a

threshold value. Next, u counts how many documents are highly

related to each topic t T. User u is considered interested in topic

tTu if a percentage y of its local documents are highly related to

topic t. Finally, u is considered a relevant user in topic tTu
r if it

is interested in t and has a sufficient amount of documents that are

highly related to topic t.

Each user uU maintains a FOAF file that contains a description

of its personal information, and friendship network. Personal

information includes the extracted topics of interest, where each

topic of interest tTu is associated is associated with a Boolean

value which indicates whether u is relevant in that topic. Friends

information includes friends’ name, links (URI) to their FOAF

files, relevant (topics of interest), and trust levels. The trust level

between user u and a friend v, denoted by trust(u,v), is a real value

within [0, 1], and it represents how much user u has faith in its

friend v.

Furthermore, each user u establishes new friendships with users

that are useful to u’s queries, and if their friendship networks have

high overlap with u’s friendship network. A user v is considered

useful to a user u, if v is a relevant user and a certain amount of v’s

relevant topics Tv
r are of interest for u. user u keeps locally (in its

FOAF file) its useful friends and their corresponding relevant

(topics of interests). User u exploits its useful friends (of friends)

for recommendations.

To establish friendship and disseminate recommendation, we rely

on gossip protocols [7] as follows. At each gossip exchange, each

user u checks its gossip local-view to enquire whether there is any

relevant user v that is useful to u, and its friendship networks have

high overlap with u’s friendship network. If it is the case, a

demand of friendship is launched among u and v and the

respective FOAF files are updated accordingly. FOAF files are

used to support users’ queries. Whenever a user submits a key-

word query, the FOAF file is used as a directory to redirect the

query to the top-k most adequate friends by taking into account

similarities, relevance, usefulness and trust.

Finally, a key-word query q is associated with a TTL (Time To

Live) and is routed recursively in a P2P top-k manner: once a

query is submitted by u, it is forwarded to u’s top-k useful and

trustful friends. When a query is received at any peer, it is again

redirected to its top-k useful and trustful friends, until TTL is

reached. Each user v that received the query provides

recommendations to u. The response to a query q is a

recommendation that has been provided in a ranked list, based on

a function that ranks each document according to its relevance

with q, its popularity, the similarity and trust between q’s initiator

and responder v.

3 P2PREC IMPLEMENTATION

With SON, the development of a P2P application is done through

the design and implementation of a set of components. Each

component includes a non-functional code that provides the

component services and a code component that provides the

component logic (business code). The complex aspects of

asynchronous distributed programming (non-functional code) are

separated from code components and automatically generated.

From a description of a component’s services, the Component

Generator (CG) automatically generates the non-functional code.

Thus, the programmer does not deal with complex distributed

programming aspects. The basic infrastructure of SON is

composed of a Component Manager (CM), a Publishing and

Discovery Component (PDC), and a Connection Component

(CC). The PDC allows publishing or discovering components on

different peers using a DHT. The CC provides connection

between remote components on peers. The CM performs the

creation of new component instances and the connections between

them. To establish a connection between two components, the CM

uses the services description of each component.

At run-time, when a component A wants to connect with another

component B, it must use the service ConnectTo(A,B)

provided by the CM. As in the CM that created the component,

the components are by default connected to the CM. To establish

a connection between two components, the CM uses the services

description to associate the services provided by component A

with the services required by component B, and conversely. After

the connection process, the two components can communicate

directly with each other without going through the CM. The

advantage of this process is that it is done at run-time, thus

avoiding each component to know statically the services of other

components. In fact, each component can, on the fly, connect to

any component. The assembly of components of a given

application is not necessarily known statically and can evolve

dynamically over time. Thus, the components are autonomous and

independent.

The CM delegates the management of lists of remote components

to the PDC. In the current version, we use the OpenChord DHT

implementation (http://open-chord.sourceforge.net/) for the PDC,

but nothing prevents us from using other implementations. For

this purpose, an interface has been defined with the usual methods

(put (key,value) and get(key)) that can be expected

from a DHT. At each creation of a component, the CM publishes

into this DHT the information for a remote component useful to

connect to this component.

The Connection Component (CC) is a component that handles the

communication between remote components. It opens the TCP

connection between peers. It is based on the concept of virtual

pipes introduced by JXTA technology (http://jxta.kenai.com/).

This concept allows passing through a single TCP connection

several logical communications (virtual pipes) between peers.

Using this abstraction allows each component to open a virtual

pipe to read messages sent to it. We identify a virtual pipe by a

universally unique identifier (UUID).

 SON is implemented in Java on top of OSGi components that

provide all basic services for the lifecycle of our components, in

particular, the deployment services. The launching of a SON

application is defined through an OSGi configuration, which

describes the application components.

3.1 P2Prec Architecture

We developed P2Prec as a SON application with two components:

the LDA component for the documents topics process and the

P2Prec component for the recommendation process. For instance,

the services of the P2Prec component are the services for passive

and active propagation through gossip services (gossip and

gossipAnswer services) and the queries services (query and

queryAnswer services). There are two OSGi configurations, the

Bootstrap Server (BS) configuration and the Client (the peer)

configuration, as shown in Figure 1.

To run the P2Prec application, the BS must be started on a given

machine (with a given IP address). This IP address will be used as

the entry point into the P2Prec network for new peers. At the

startup time, a new peer must first identify itself with the BS

(connect service) and the BS is going to return the current set of

all topics (allTopics service). Then within the local peer's LDA

component and the current topics, the topics of each document is

computed locally. After these steps, the peer can start the

recommendation steps and documents discovery without any

connection with the BS. Indeed, the research of topics of a new

document (computeTopic(doc) service) and the computing of

topics of a query (computeTopic(query) service) can be made

locally with the local peer's LDA component. Depending on the

evolution of documents on the P2Prec network, the BS may

update the set of topics of documents, and inform the peers by

broadcasting this new topic set (using the allTopics service).

4 P2PREC DEMONSTRATION

In this section we describe how the P2Prec services cooperate

using scenarios based on the Ohsumed documents corpus [6] that

has been widely used in IR. It is a set of 348566 references from

MEDLINE, the on-line medical information database, consisting

of titles or abstracts from 270 medical journals over a five year

period (1987-1991). Our application is done as a lightweight

application, meaning that no client needs to be downloaded for

using it. In order to couple the P2Prec core, made of OSGi

configurations, with the chosen scenarios, we have used the

Google Web Toolkit (GWT: http://code.google.com/webtoolkit/)

to build User Interface. This toolkit allows defining a client/server

application written completely in Java that runs in a web browser.

It automatically compiles the Java client code into HTML and

JavaScript, and easily permits to use Java libraries. Therefore, all

graphical interfaces of this demo are made of web pages and run

in a classical browser.

We show how the application works, from the global installation

to the utilization by an end-user.

Installation. In order to run a P2Prec peer properly, any user (at a

peer) has to connect first to the Bootstrap Server (BS). Therefore

we define a place the BS will run on. Every peer in the system

will know its IP address. As the BS and any peer offer the same

kind of services, we have defined two OSGi configurations for

running P2Prec components: one as a BS, and one as a standard

peer that will connect to the BS.

Initialization. Each peer consists of a LDA part coupled with a

Communication part (called P2Prec). As the demonstration starts,

the BS is created, and so are several peers (30 of them). Each peer

sends some of its documents, which are arbitrarily distributed

among all peers, to the BS to perform LDA on a sample of all

documents and to define the set of topics used in the network.

Next, the BS informs all connected peers about the topics that are

present in the network, and each peer indexes its own documents

with the set of topics. Each peer is given an initial FOAF, which

determines its friends in the network, and provides it information

Figure 1: P2Prec Architecture.

about them. It can now start gossiping with other peers, and the

user belonging to the peer can send queries to discover

documents. We show by connecting a new peer to the network

how he gets initial information what is in its FOAF, in the case it

has already joined the network in the past (it knows other peers)

and in the case it connects to the network for the first time.

Figure 2: P2Prec Gossip Interface.

Gossiping. The gossip service is at the heart of P2Prec, and is

transparent to the end-user. While peers exchange gossiping

messages, the system recommends new friendships to users. For

the sake of the demonstration, we developed an interface showing

what is internally happening during gossiping (see Figure 2). The

interface shows the current friends of the user, the gossiping

messages sent and received by the peer, the gossip local-view that

permits to find friends, etc. We show how the gossip mechanism

notifies the user that other users share the same interests, and ask

her to add them to her friend list.

Figure 3: P2Prec Query Interface.

Querying. Spreading information with gossip to make new

friends has one aim: being able to answer queries accurately when

a user searches for documents. This is where the query service is

needed. The user is able to send a query for getting documents

recommendations from her friends. The local LDA of the user

translates the query into a set of relevant topics, and the peer sends

them through the query service to the user’s friends. Each friend

may recommend documents depending on the similarity in terms

of topics and the rate of the document. The query hops to friends

of friends as many times as its TTL allows, the results being

returned during the journey. Figure 3 shows the result returned to

the user after a query is sent. We show the results of the query for

a user who has been in the network for a long time compared to a

new user, and compare the accuracy and the number of answers

she gets.

5 REFERENCES

1 Adomavicius, G., Tuzhilin, A., Towards the next

generation of recommender systems: a survey of the

state-of-theart and possible extensions. IEEE

Transactions on Knowledge and Data Engineering,

17(6):734–749, 2005.

2 Arazy, O., Kumar, N., Shapira, B., Improving social

recommender systems. Journal of IT Professional,

11(4):38–44, 2009.

3 Blei, D. M., Ng, A. Y., Jordan, M. I., Latent Dirichlet

Allocation. Journal of Machine Learning, 3:993–

1022, 2003.

4 Draidi F., Pacitti E., Kemme B. P2Prec: a P2P

recommendation system for large-scale data sharing.

Journal of Transactions on Large-Scale Data and

Knowledge-Centered Systems (TLDKS), Vol. 3,

Springer, LNCS 6790, 87-116, 2011.

5 El Dick M., Pacitti E., Akbarinia R., Kemme, B.

Building a peer-to-peer content distribution network

with high performance, scalability and robustness.

Information Systems, 36(2):222-247, 2011.

6 Hersh W.R., Buckley C., Leone T., Hickam D.H.,

Ohsumed: An interactive retrieval evaluation and new

large test collection for research. ACM SIGIR, 192-

201,1994.

7 Jelasity M., Voulgaris S., Guerraoui R., Kermarrec

A.M., VanSteen M. Gossip-based peer sampling.

ACM Trans. On Computer Systems, 25(3):2007.

8 Kim, H.-J., Jung, J.J., Jo, G.-S.: Conceptual

framework for recommendation system based on

distributed user ratings. Springer, LNCS 3032, 115-

122, 2003.

9 Massa, P., and Avesani P. 2004. Trust-aware

Collaborative Filtering for Recommender Systems.

Springer, LNCS 3290, pp. 492-508, 2004.

10 Sinha, R., Swearingen, K. Comparing

Recommendation made by Online Systems and

Friends. DELOS-NSF Workshop on Personalization

and Recommender Systems in Digital Libraries, 2001

