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Adaptive path planning for steerable needles using duty-cycling

Mariana C. Bernardes, Bruno V. Adorno, Philippe Poignet, Nabil Zemiti, Geovany A. Borges

Abstract— This paper presents an adaptive approach for
2D motion planning of steerable needles. It combines duty-
cycled rotation of the needle with the classic Rapidly-Exploring
Random Tree (RRT) algorithm to obtain fast calculation of
feasible trajectories. The motion planning is used intraopera-
tively at each cycle to compensate for system uncertainties and
perturbations. Simulation results demonstrate the performance
of the proposed motion planner on a workspace based on
ultrasound images.

I. INTRODUCTION

Percutaneous medical procedures usually involve the in-

sertion of a needle deep into soft tissue and depend on

precise tip positioning for effectiveness. Needle deflection

and tissue deformation are the most important factors that

affect needle insertion accuracy and require great expertise

from the surgeon to compensate for their effects. In addition,

the procedure target may be located in a region of difficult

access, which cannot be reached by conventional rigid nee-

dles without causing excessive, injurious pressure on tissue.

This situation is critical in the presence of obstacles in the

needle path, such as important organs or vessels.

Special needles capable of active steering during its in-

sertion have been designed to overcome such problems and

also expand the applicability of percutaneous procedures [1].

These needles use their great flexibility and beveled tips to

enhance and magnify the needle deflection effect, allowing

curved trajectories that could be used to avoid sensitive or

impenetrable areas inaccessible with the traditional tech-

nique.

When inserted into tissue, a steerable needle follows a

path that is prescribed by the geometry of its beveled tip, its

relative stiffness with respect to the tissue and the insertion

and twist velocities at the needle entry point. In robotics,

this type of needle can be described as a kinematic system

with nonholonomic constraints. As a consequence, motion

planning is a complex task and its difficulty increases as

we consider the presence of uncertainties due to errors in

tip positioning, needle modeling, tissue inhomogeneity and

deformation. Thus, the need of developing a robotic steering

system capable of compensating for such effects.

Medical imaging can be used not only for the planning but

also for the control of robot-assisted medical procedures. The

use of 2D ultrasound imaging is specially attractive because

it is safe, affordable and provides information related to
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Fig. 1: A typical tree built by the Arc-based RRT to search

for a feasible path and its corresponding solution.

tissue properties, target displacement and tool position [2].

For using such type of medical imaging in robotic needle

steering, it is desirable to have a fast method for 2D path

planning that respects the system nonholonomic constraints.

In this paper, we present a new method that uses duty-

cycled rotation of the needle combined with the classic

Rapidly-Exploring Random Tree (RRT) algorithm to obtain

fast calculation of feasible trajectories and we evaluate its

performance in a simulated insertion procedure with simul-

taneous replanning.

II. RELATED WORK

Since the end of the ’90s, several motion planners capable

of tackling nonholonomic constraints have been proposed.

Many of these approaches rely on sampling-based tech-

niques, like the Probabilistic Roadmaps [3] or the Rapidly-

Exploring Random Tree [4]. The main advantage of the RRT

method is the exemption of a pre-processing phase, in addi-

tion to being very fast, easy to implement and probabilistic

complete [5].

Many path planning methods use the steerable needle

nonholonomic kinematics for finding feasible paths. Park

et al. [6] proposed a diffusion based approach, but they

only considered obstacle-free 3D environments. Duindam et

al. [7] used explicit geometric inverse kinematics for 2D

and 3D needle motion planning and Xu et al. [8] were the

first to apply RRT-based methods to steerable needle motion

planning.

However, only a few planning methods deal with needle

motion uncertainty caused by tissue deformation and inter-

action forces. Alterovitz et al. [9] used a finite element mesh

to compute soft tissue deformations combined to numerical

optimization to find a locally optimal initial configuration

and insertion distance. A finite element method has also been



used by Vancamberg et al. [10] to minimize the final error

of a RRT solution in a breast biopsy application. But the

efficiency of these strategies depends a lot on the quality of

the mesh simulation and how accurately it represents the real

tissue.

Instead of simulating a tissue mesh, Alterovitz et al.

considered uncertainty in needle motion by formulating the

planning problem as a Markov Decision Process, using a

discretization of the state space [11] and using a Stochastic

Roadmap [12]. These methods presented great results for

preoperative planning but are not suitable for an adaptive

intraoperative system due to its extensive precomputations.

Hauser et al. [13] were the only to propose a control-loop

policy to deal with uncertainties during motion planning

and control. But again, only obstacle-free environments were

considered.

A. Contributions and organization of the paper

The main contribution of this work is the proposal of

an adaptive strategy that applies fast replanning during the

insertion procedure to compensate for system uncertainties,

like tissue deformation, tissue inhomogeneity, positioning er-

rors and other modeling approximations. Also, we developed

a new Arc-based RRT path planner for steerable needles

using a duty-cycle strategy for insertion (Fig. 1). It uses

explicit geometry to obtain feasible trajectories that respect

the needle nonholonomic constraints, allowing the planner

to be used intraoperatively due to its high success rate and

fast calculation.

This paper is organized as follows. Section III describes

the steerable needle nonholonomic model and the principle of

the duty-cycle insertion strategy. Then, in Section IV the Arc-

based RRT planner is detailed, with a brief description of the

path planning problem and the proposed algorithm. Section

V presents the replanning strategy while in Section VI we

present the results obtained and the evaluation of our method.

Finally, in Section VII we discuss its use possibilities, next

steps in development and future works.

III. STEERABLE NEEDLE KINEMATIC MODEL

When pushed forward, the natural behavior of a steerable

needle is to bend in the direction of its sharpened tip, fol-

lowing an arc of approximately constant curvature κmax. The

kinematic model for this kind of needle can be approximated

by that of a nonholonomic unicycle vehicle [1], with the

following nonholonomic constraints: ωy = νy = νz = 0 and

ωz = νxκmax. Thus, the system has two control inputs νx and

ωx, that are respectively the needle’s insertion and rotation

velocities along its shaft, and are referred simply as ν and

ω (Fig. 2).

The usual technique for needle steering in a 2D plan,

called stop-and-turn [14], uses pure insertion of the needle

combined with occasional 180◦ rotations to reorient the bevel

whenever there is a curvature inversion. In consequence, the

needle can only reach points that belong to arcs of constant

curvature, limiting path possibilities. This may result in a

slow planning, normally not suitable for intraoperative use.
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Fig. 2: Needle tip 3D representation and system inputs.

However, if we combine simultaneous rotation and inser-

tion velocities, the needle moves along an helical path in the

3D space. In the case of using a rotation velocity relatively

larger than the insertion velocity, the helix curvature tends to

zero. Consequently, the needle follows a straight trajectory

in its xy-plane. The duty-cycle strategy [15] explores such

idea to achieve different curvature values.

This strategy combines periods Tins of pure insertion with

periods Trot of simultaneous insertion and rotation, so that

any curvature ranging from the natural curvature to a pure

straight trajectory can be achieved. When considering the

duty-cycle strategy to insert the needle along a 2D plan,

we simplify the path planning problem to that of a car-like

mobile robot that is subjected to two nonholonomic con-

straints: it can only move with continuous tangent direction

and its turning radius is lower bounded. Also, the use of

rotational motion has been proved to reduce the amount of

tissue indentation as well as the friction force between the

needle shaft and the tissue [16].

The duty-cycle DC is defined as the ratio of the rotation

period to the cycle period T :

DC =
Trot

T
, (1)

where T = Trot + Tins.

There is a linear relationship between curvature and duty-

cycle [17]. So any path curvature in the range [0, κmax] can

be obtained by a proper choice of DC:

κ = κmax(1−DC), (2)

where κ is the effective curvature and κmax is the needle

natural curvature, when no spinning is applied.

To keep the needle in the working 2D plane, the rotation

speed is chosen to be much higher than the insertion speed.

Also, the needle must perform complete rotations at each

cycle. Consequently, the rotation period is chosen to be

2πnω−1 with n = 1, 2, 3, . . .. By making Trot a fixed

value, the insertion period Tins should be adjusted in order

to achieve a desired curvature. This method can be easily

implemented by fixing the rotational speed ω and moving a

fixed insertion distance △s at each cycle, so that the insertion

velocity is variable and given by ν = △s/T . The coordination

between rotation and insertion motion is considered achieved

by the use of a controller, out of the scope of this paper.



The 3D configuration of the needle tip can be described by

a rigid transformation from Oworld to Otip in dual quaternion

representation (Fig. 2). In this notation, the rigid transforma-

tion is a combination of a translation ~t = [x, y, z] from the

origin of Oworld to Otip, followed by a rotation of an angle

φ about an axis ~n = [nx, ny, nz] through the origin of Otip.

Consequently, the tip configuration q is given by

q =
[

q 1

2
tq

]

, (3)

where q = [cos(φ
2
), sin(φ

2
)~n] and t = [0,~t] are the respective

rotation and translation quaternions of the needle tip frame

with respect to the world frame [18].

A discrete implementation of the needle kinematic model

can be obtained by a combination of consecutive dual

quaternion multiplications

q
k+1

= q
k
q

rot
q

ins
, (4)

where q
rot

represents the movement during simultaneous

rotation and insertion, and q
ins

is the movement of the

insertion-only period.

Consequently, we have

q
rot

=
[

qrot
1

2
trotqrot

]

and q
ins

=
[

qins
1

2
tinsqins

]

,

where

qrot =

[

cos

(

φrot

2

)

, sin

(

φrot

2

)

~n

‖~n‖

]

, ~n = [ω, 0, νκmax]

trot = [0, νTrot, 0, 0] , φrot = ‖~n‖Trot

qins =

[

cos

(

φins

2

)

, 0, 0, sin

(

φins

2

)]

tins = [0, νTins, 0, 0] , φins = νκmaxTins (5)

IV. DUTY-CYCLING MOTION PLANNING

Although the kinematic model defines the needle tip

configuration in 3D space, we want to move the needle

only in the ultrasound plane. Thus, for planning purposes

we assume that the needle xy-plane is correctly aligned to

the desired 2D plane of the medical images and we let the

configuration q of a needle to be defined by its tip cartesian

coordinates p = (x, y)T and orientation angle θ.

The objective of the planner is to find a combination of

circular arcs capable of taking the needle from its initial

configuration qinit = (xinit, yinit, θinit)
T to a final position

pgoal = (xgoal, ygoal)
T while respecting the nonholonomic

constraints. An arc A is defined by its curvature κ and

its two end configurations qA = (xA, yA, θA)
T and qB =

(xB , yB , θB)
T . The final extremity of each arc should corre-

spond to the next arc’s initial extremity, not only in position

but also in orientation, so we have C1 continuity. The goal

orientation is not considered as a problem requirement since

in a percutaneous procedure the final needle orientation is

usually irrelevant. Thus, θgoal is used as an extra degree of

freedom to obtain such orientation continuity. The workspace

is a 2D plane with boundaries defined to be the ultrasound

image area, and the locations of the targets and obstacles are

considered known and defined by the surgeon.

Algorithm 1 Arc-Based RRT Planner

ARC_RRT (qinit, pgoal)

1: T ← INIT_TREE(qinit)
2: while T ∩ pgoal = ∅ do
3: pnew ← RANDOM_POINT()
4: RRT_CONNECT(T , pnew)
5: RRT_CONNECT(T , pgoal)
6: end while
7: P ← SEARCH_GRAPH(T , qinit, qgoal)
8: return P

RRT_CONNECT (T , p)

1: Anear ← NEAREST_REACHABLE(T , p)
2: T .add_vertex(Anear.qB)
3: T .add_edge(Anear.qA,Anear.qB ,Anear.κ)
4: return T

NEAREST_REACHABLE (T , p)

1: for all qi ∈ T do
2: Ai ← ARC_LOCAL_PLANNER(qi, p)
3: if Ai 6= NULL then
4: add Ai to Qreachable

5: end if
6: end for
7: Anear ← GET_NEAREST(p,Qreachable)
8: return Anear

ARC_LOCAL_PLANNER(qA, pB)

1: A ← GET_ARC(qA, pB)
2: if A.κ < κmax and COLLISION_FREE(A) then
3: return A
4: end if
5: return NULL

A. Arc-Based RRT

The pseudocode for our planner is shown in Algorithm 1

and was based on the classic RRT approach [4]. First, a tree

T rooted in qinit is constructed. For a point pnew randomly

sampled from the free space, we define the set Qreachable

of all nodes in T from which pnew can be reached. To

respect the needle constraints, we propose a geometric-based

Arc Local Planner that calculates the only arc capable of

connecting two points given that the first point is associated

to a known orientation. If the obtained arc respects the

curvature range and does not intersect any obstacle, it is

considered reachable. Then, the nearest arc in Qreachable is

added to T . The tree is expanded until it can be connected

to the target by the local planner or until a maximum number

of nodes is reached. Then, a graph search is conducted to

return the obtained path P .

B. Arc Local Planner

The local planner proposed is responsible for calculating

the arc’s curvature and final orientation given an initial

configuration qA and a final point pB . This can be done

geometrically with only a few trigonometric calculations as

discussed bellow.

Consider two 2D points A and B, and an initial orientation

in A, given by θA (Fig. 3). First, we calculate the distance

d from point A to point B and the signed bearing angle ϕ

ϕ = arctan (yB − yA, xB − xA)− θA. (6)



A

B
θB

θA

d
α

r

γ ϕ

C

Fig. 3: Arc connecting points A and B.

Note that angles are represented in the interval (−π, π].
From Fig. 3, we can see that ϕ+ γ = π

2
and α+2γ = π,

so we have that α = 2ϕ. Using the Law of Sines and the

relationship between the arc and the bearing angle, we find

that the arc curvature is given by

κ =
1

r
=

2 sin (ϕ)

d
. (7)

The orientation in point B is θB = α+ θA .

Finally, the resultant arc is A = [qA, qB , κ]. The arc is

accepted by the Arc Local Planner if κ respects the maximum

curvature constraint and if the arc path is collision free.

Otherwise, the point pB is considered unreachable from the

configuration qA .

V. ADAPTIVE REPLANNING

From the sequence of arcs provided by the Arc-Based RRT

planner and using the duty-cycle equations, we obtain the

sequence of duty-cycle inputs that will take the needle from

its insertion point to the goal while following the desired

path. However, tissue deformation and inhomogeneity, im-

precision of the unicycle model, and uncertainties in needle

and obstacles positions may deviate the needle from the 2D

working plane or from the planned trajectory, leading to a

possible collision with an important organ or misplacement

of the needle tip at the end of the insertion task

The problem of keeping the needle in the 2D plane

has already been studied and a low-level controller was

proposed to stabilize the needle in a given plane [19]. For

the remaining problem of trajectory deviation, we propose a

replanning strategy to systematically correct the needle path

in order to avoid collisions and converge to the final target.

Our adaptive replanning is executed every cycle until the

needle tip is sufficiently close to the target. Its pseudocode is

shown in Algorithm 2. We assume that current information

about the workspace is provided by an ultrasound tracking

system which is out of the scope of this paper. The ultrasound

feedback is used to update the path by considering the

needle’s current configuration as the new qinit and the target’s

current position as the new pgoal. Then, the Arc Local Planner

is run to adjust all arcs from P , recalculating the new

curvatures and final orientations. If a collision is detected

in the updated arcs, or if the new curvature does not respect

the maximum limit, the complete RRT planner is run again

to find a new feasible trajectory.

Algorithm 2 Adaptive Replanning

ADAPTIVE_REPLANNING(qinit, pgoal,P)

1: P ← UPDATE_EXTREMITIES(qinit, pgoal)
2: for all Ai ∈ P do
3: Ai ← ARC_LOCAL_PLANNER(Ai.qA,Ai.pB)
4: if Ai = NULL then
5: return ARC_RRT(qinit, pgoal)
6: end if
7: end for
8: return P

The Arc Local Planner is extremely fast since it

uses explicit geometry to satisfy the system nonholo-

nomic constraints. We performed timing experiments on a

3GHz PC and the average execution time for executing

ARC_LOCAL_PLANNER was 0.038 ms in 10000 trials, with

standard deviation of 0.033 ms. Also, it presents low rejec-

tion of samples since we have an extra degree of freedom in

the choice of the final orientations. Consequently, the Arc-

based RRT is able to return a solution from a small quantity

of nodes, which normally represents only a few milliseconds

of processing. Considering that needle insertion procedures

normally occur at small insertion and rotation velocities due

to safety restrictions, the adaptive replanning can be easily

used intraoperatively.

Even though the convergence of our method is not assured,

the RRT is proved to be probabilistic complete, meaning that

if we give it enough time to search for the solution and if

the solution exists, it will be found [5]. In practice, what we

observe is that the Arc-based RRT converges much before

the next cycle due to its high success rate and fast execution

when compared to the insertion procedure speed.

Also, the resultant path is not the shortest possible since

we do not use any expensive numerical optimization in favor

of intraoperative use. Nevertheless, the general quality of

the solutions converges to the optimum as we increase the

number of executions of the Arc-based RRT. Consequently,

if the adaptive replanner profits from the time left between

cycles to accumulate executions, the quality of the path will

get close to optimal.

VI. RESULTS

A. Path Planning Evaluation

We tested the proposed Arc-Based RRT planner for needle

steering in the 2D environment with obstacles depicted in

Fig. 1. The workspace is based on an abdominal ultrasound

image obtained with a General Electric Diasonics Synergy

equipment and is defined to be the area covered by the ultra-

sound transducer and the obstacles are seven round structures

distinguishable in the image. For the kinematic model of the

needle, we specified a needle radius of curvature of 6.01 cm.

Simulations are run in a PC with Intel Core 2 Duo 3.00 GHz,

3.2 GB memory and Ubuntu 10.04 operational system. To

validate the proposed planner, we performed two different

simulations.

1) Simulation 1: The first simulation evaluates the capa-

bility of the proposed algorithm to find a solution. For each



TABLE I: Arc-Based RRT performance in Simulation 1.

Number of trials 10000
Number of successes 10000
Average number of nodes 114
Average CPU time (ms) 3.05

trial, an initial configuration and a goal point are randomly

picked from an uniform distribution. The maximum number

of nodes for the RRT is 2500. Table I presents the results of

Simulation 1 for 10000 trials. Feasible paths were found in

all cases, with an average of 114 nodes, which corresponds

to an average of 3.05 milliseconds of CPU time used.

2) Simulation 2: The second simulation evaluates the

quality of the paths generated. For this, we defined the

average path length as our quality criterion. The initial

configuration and the target point are the same for all tests

in Simulation 2 and were arbitrarily chosen in the image as

qinit = [323, 92, π
2
] and pgoal = [315, 412] given in pixels

and radians. The optimal path length for this configuration

is 120.15 mm. The maximum number of nodes allowed for

the RRT is 2500.

For Simulation 2, we also had 100% of success after 10000

trials. However, the average path length was 32% higher than

the optimal, with a standard deviation of 28.10 mm. The

smallest path from all trials was 120.15 mm while the longest

one was 410.19 mm (see results for 1 RRT in Fig. 4).

To overcome such high variance in the path length, we

proposed using extra CPU time to assure a good quality path.

The idea is to build more trees to explore the workspace

independently, and then, to pick the solution with the shortest

path. The extra time used to compute the path is not harmful

to the overall performance of our system since the dynamic

of the needle insertion is very slow when compared to the

RRT exploration which is in the range of a few milliseconds.

Fig. 4 summarizes the results for tests with 1, 10, 20 and

50 simultaneous trees. For all cases we had the same 100%

success rate, but very distinct results for the average path

length. The results show that despite the increase in CPU

time, the addition of more RRT’s to explore the workspace

is justified by the improvement in path quality and smaller

variance.

B. Needle Insertion Simulation1

1) Simulation 3: The third simulation evaluates if the

nonholonomic constraints are respected and if the needle

is capable of following the expected trajectory during an

open-loop insertion procedure. For this, the needle tip was

simulated using the discrete model from (5). The rotational

velocity was set to 2 Hz and Trot = 0.5 s. The insertion

distance at each cycle was defined to be △s = 1 mm. The

workspace is the same used in previous simulations.

We used the Arc-based RRT to obtain a feasible path and

the correspondent sequence of duty-cycles parametrized in

path length was directly calculated from the arc’s curvatures

and (2). The sequence of inputs was then applied to the

1For Simulations 3 and 4, see the provided video.
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Fig. 4: Comparison of average path length and CPU time for

different number of simultaneous trees in Simulation 2.

simulated needle and it resulted in the trajectory depicted

in Fig. 5a. It can be observed that in the case of an ideal

situation, the needle was able to follow the path almost

exactly, with a small final error of 0.83 mm due to curvature

discontinuity combined with discretization.

However, if we consider the presence of system uncer-

tainties and perturbations such as positioning errors, tissue

deformation and inhomogeneity, the result can greatly de-

viate from the expected. In simulation, these perturbations

were modeled as white noises added to the measured tip

configuration and to the actual natural curvature. The conse-

quence of the addition of such noises can be seen in Fig. 5b,

where the needle failed to avoid the obstacles and finished

the insertion with 33.41 mm of error.

2) Simulation 4: The adaptive replanning strategy was

evaluated at the same workspace and perturbation conditions

as Simulation 3. In this last simulation, instead of applying

the control inputs in open-loop, we used our adaptive strategy

to systematically replan the trajectory along the insertion

procedure. Fig. 5c illustrates how the online update of the

path was able to compensate for the uncertainties, with a

final error of only 0.20 mm.

VII. CONCLUSIONS

In this paper we proposed a closed-loop strategy for

motion planning of steerable needles using duty-cycling and

a new Arc-based RRT planner. The use of the duty-cycle

technique instead of the usual stop-and-turn gave the system

more trajectory possibilities. This multiplicity of solutions

is specially useful for the case of steering around obstacles

during insertion procedures restricted to a 2D working space.

The Arc-based RRT proved to respect the nonholonomic

constraints while being fast enough to be used in an intra-

operative system. We think it could be easily adapted to a

preoperative planner by adding some new features, such as

the calculation of initial orientation and insertion point and

the possibility for the surgeon of choosing image regions as

passage points for the needle.

The proposed replanning strategy made the insertion pro-

cedure more robust to system uncertainties such as tissue



(a) Final error = 0.83 mm (b) Final error = 33.41 mm (c) Final error = 0.20 mm

Fig. 5: Simulated trajectories of the needle tip in simulations of (a) an ideal situation, (b) under disturbances and (c) with

adaptive replanning for noise compensation. Planned path (dashed) and simulated needle trajectory (solid).

deformation, errors in position, inhomogeneity and modeling

approximations. The simulation results showed that even

under perturbations, the needle was able to reach the target

with satisfactory precision while an open-loop strategy would

fail to avoid the obstacles and to arrive at the desired position.

Preliminary work suggests that the replanning could also

be used to compensate for small magnitude physiological

movement if the tissue-needle combination presents good

steerability. However, this possibility needs to be further

investigated.

The next step is to evaluate the proposal on tissue phan-

toms and robotic hardware. We also plan to extend this

method to 3D motion planning using the duty-cycle strategy

for different planes in a tridimensional workspace. Some very

recent papers [20], [21] propose the use of other sample-

based algorithms for flexible needle path planning. A proper

comparison of our approach and these new methods should

be presented in a next work. Possible future works include

the investigation of motion planners that combine the duty-

cycling strategy with smoother trajectories such as splines

curves.
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