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Abstract— A good gripper can adapt itself on any 

grasped object and ensure contact pressure as 

homogenous as possible. A gripper that provides a 

uniform contact pressure is said to be isotropic. Another 

feature of a gripper is its dexterity, which can be 

improved by under-actuation. This paper presents the 

design of a three-phalanx pseudo-isotropic under-

actuated finger with anthropomorphic dimensions. 

Contact forces depend on the gripper folding angles and 

the transmission torque ratio between unactuated joints. 

In order to ensure a grasping as isotropic as possible two 

cams were used. The isotropy is checked up by 

recalculation of the contact forces. 
Keywords: grasping, under-actuation, fingers, cam-tendon mechanism 

Nomenclature 

 1L , 2L and 3L : The proximal, middle and distal 

phalanx lengths respectively 

 1I , 2I and 3I : contact points between the phalanxes 

and the grasped object 

 1P  : simple-neck pulley centered at 1O   

 2P : double-neck pulley centered at 2O . 

 
3P  : simple-neck pulley centered at 3O  and welded 

to the distal phalanx 

 1f , 2f  and 3f  contact forces at the proximal, 

middle and distal phalanxes respectively 

 1 : is the angle defining the rotation of the proximal 

phalanx relatively to the absolute vertical fixed to 

the frame. 

 2 : The angle between the proximal and the middle 

phalanx  

 3 : The angle between the middle and the distal 

phalanx 

 aT : actuator torque. 

 r1: radius of P1 

 r2i and r2e internal and external radii of P2 

 r3: radius of P3 

 
* guss_dandash@hotmail.com  
† ranyrizk@hotmail.com 
‡ krut@lirmm.fr 
§ dombre@lirmm.fr 
1 13th World Congress in Mechanism and Machine Science, 
Guanajuato, México, 19-25 June, 2011 

I Introduction 

Grippers are widely used in industry as well as in 

medicine. They can be used as tools to grasp an object. 

They can be used also as artificial fingers and hands for 

amputee people. A gripper is characterized by its 

dexterity. It has to adapt itself on whatever grasped 

shape. It has also to grasp with contact forces as 

homogenous as possible. A bad adaptation leads to the 

loss of grasping by ejection. A bad contact forces 

distribution leads to stress concentration then to the 

worsening of the grasped object. A gripper that provides 

a uniform contact pressure is said to be isotropic ‎[1]. The 

best gripper is of course the human hand. However, the 

closest gripper to the human finger requires more than 

ten actuators and sensors ‎[2]. The control of such gripper 

is tricky even with the newest CPU. Moreover, its cost is 

prohibitive. 

Advanced robotic hands have been developed with the 

isotropy requirement in mind. Many dexterous hands 

having several actuators (more than six) can be 

mentioned: the Utah/MIT hand ‎[3], the Stanford/JPL 

Salisbury’s‎hand‎ ‎[4], the Belgrad hand revisited at USC 

‎[5], the DLR hand ‎[6]. The dexterity can also be obtained 

by under- actuation. The principle consists in equipping 

the finger with fewer actuators than the number of 

degrees of freedom (DOF) ‎[7]. Thus, the shape of the 

grasped object and the static equilibrium govern the 

gripper configuration. In ‎[8], the advantages of such 

under-actuated gripper over a simple parallel one are 

presented. In ‎[9], an under-actuated hand with three 

fingers is presented. Each finger has two phalanxes and 

one actuator. A special mechanism is added in order to 

allow the distal phalanxes to be maintained orthogonal to 

the palm when precision grasps are performed. An 

artificial hand mimicking the human hand is presented in 

‎[10]. This hand has partially under-actuated fingers. Each 

finger has three phalanxes. A coupling is introduced 

between the motion of the middle and distal phalanxes. A 

drawback of under-actuation is the difficulty of the 

contact pressure control. 

In this paper we present a pseudo-isotropic under-

actuated finger. In this finger we use two cams to provide 

acceptable ratio between contact forces. In section II we 

present the under-actuation in robotic hands and the 
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isotropy in grasping. We set up also a review for most 

grippers presented in the literature. In section III, we 

present the finger structure. In section IV we carry out a 

kineto-static analysis for the finger, where we compute 

the contact forces. In section V, we set up a design for 

cams that ensure a pseudo-isotropy in the grasping. In 

section VI, we check-up our isotropy by recalculating the 

contact grasping forces. We finish the paper by 

conclusions and opening next challenges. 

II Under-actuation and grasping isotropy 

The idea behind the under-actuation is to keep the 

nature laws govern the mechanical device. The objective 

is to adapt the gripper on the grasped object, without 

considering the shape. Under-actuation can be realized by 

using differential, compliant or triggered mechanism. In 

order to avoid the deterioration of the grasped object, 

contact pressure must be as homogenous as possible. A 

hydrostatic pressure induces a Von-Mises stress equal to 

zero ‎[31]. An object subjected to an isotropic grasping is 

less exposed to deterioration. 

A. Under-actuation in robotic fingers 

The concept of under-actuation in robotic hands should 

not be confused with under-actuation in robotic systems. 

The joint coordinates of an under-actuated robot are 

indirectly controllable. The cart and pole system 

(inverted pendulum) ‎[24] is under-actuated. The 

pendulum has four DOF among which two are actuated 

and two are governed by the system dynamics. In an 

under-actuated finger, joint angles are imposed by the 

grasped object shape, the static equilibrium and passive 

components (spring,‎ mechanical‎ limits,…).‎ The‎ main‎

difference between both concepts is that in robotic 

systems DOF are governed by the dynamics and in 

robotic fingers by the statics. However, if in robotic 

systems the number of DOF is the rank of the Jacobian 

matrix as in the Grübler formula ‎[25], in under-actuated 

fingers the number of DOF represents the number of 

parameters that define the finger configuration. These 

parameters‎are‎also‎called‎―configuration‎variables‖‎‎[15]. 

The BarrettHand ‎[16] can also be considered as under-

actuated since the folding angle of each finger depends 

not only on the actuator but also on the shape of the 

grasped object, thus there is one actuator and two DOF. 

In addition to the classical parameters known in robotics, 

the notion of kinematic irreversibility and the use of 

flexible bodies must be introduced. The gripper 

developed for the Canadian Space Agency is said to have 

10 DOF ‎[13], but the backdrivability of each finger has 

been removed thanks to worm gears. The under-actuated 

prosthetic hand of Arts Lab (Italy) ‎[14] relies on an 

―adaptive‎grasp‎mechanism‖‎designed‎to‎share‎the‎forces 

throughout each finger using compression springs. 

Under-actuation can be achieved by using differential, 

compliant or triggered mechanisms. Differential 

mechanisms can be based on linkage systems [2, 7, 8, 10, 

13, 22] or on tendon-actuated mechanisms [1, 9, 11, 12, 

15, 17, 20, 21, 22]. Tendon systems are limited to small 

grasp forces. They induce friction and elasticity. Linkage 

mechanisms are more efficient for applications with large 

grasp forces but are relatively more bulky. 

In triggered mechanisms, once the torque exceeds a 

certain value, the joint locks. On the BarrettHand, the 

transmission is disengaged and an irreversible 

mechanism prevents backdrivability of the joint ‎[18]. In 

Lee's hand ‎[19], this is achieved by the use of automatic 

brakes.  

It is also possible to reduce the number of actuators by 

introducing compliance for each DOF. In ‎[14], each 

finger is linked to a common actuator through compliant 

springs. If one of the fingers is blocked, the other ones 

are not blocked for a certain range. The stiffness of the 

springs must be sufficiently small in order to allow 

adaptation. Therefore, the stiffness of the grasp is limited. 

Differential mechanisms allow control of the contact 

forces on the phalanxes in contact, but require high 

actuator torques and high internal loads in the gripper 

structure, as they guarantee conditional grasp stability 

only. Compliant mechanisms are capable of adapting 

themselves to the shape of the grasped object and are 

always in equilibrium, but if contact forces depend on 

spring stiffness then they are non-controllable. Triggered 

mechanisms provide always a stable grasp on a fixed 

object since there is no sliding, but they are not able to 

follow a moving object once the contact with this object 

is lost since the motion of the proximal phalanx is 

blocked. 

Robotic or prosthetic fingers in which the motion of all 

phalanxes is mechanically coupled [23, 29, 30] are not 

under-actuated. They have one actuator and one DOF. 

The motion is determined by the design and there is no 

shape adaptation. 

B. Force isotropy 

Large differences between contact forces induce bad 

stress-distribution on the grasped object, meaning bad 

distribution of deformation, and consequently stress-

concentration and deterioration. It is known that a 

hydrostatic pressure induces a Von-Mises stress null ‎[31]. 

Hence a body subjected to hydrostatic pressure does not 

present any risk of deterioration. A gripper which ensures 

uniform‎contact‎pressure‎ is‎said‎ to‎be‎―isotropic‖‎ ‎[1]. In 

‎[20] a gripper which ensures the same contact force on 

the middle of each phalanx is presented. Since both 

phalanxes have the same length, it is possible to consider 

the gripper as isotropic. This is true since the contact 

force is the resultant of the uniform pressure exerted on 
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the phalanx. In our case, the goal is to design a pseudo-

isotropic three-phalanxe finger with anthropomorphic 

dimensions. In human fingers, the distances between the 

rotational axes of the phalanxes are variable. The mean 

distance between the rotational axes of the first phalanx 

is equal to the sum of the distance between the rotational 

axes of the middle phalanx and the length of the distal 

phalanx ‎[23]. In other words, the mean length of the first 

phalanx is equal to the sum of the lengths of the two 

other phalanxes. If we consider this property valid for n 

phalanxes, the ratio between the lengths of two 

consecutive‎phalanxes‎should‎be‎the‎―golden ratio‖,‎thus: 
2

3 2 1

5 1

2

l l l 



 




. (1) 

The phalanxes are of different lengths. When the finger is 

subjected to a uniform linear pressure p, the resultant 

force on each phalanx is the product of p and the length 

of the phalanx. In the ideal case, forces f1, f2 and f3 

exerted respectively on the proximal, middle and distal 

phalanxes are: 
2

1 1 2 2 1 3 3 1

1 1
f pl f pl f f pl f

 

 
      

 
. (2) 

In conclusion, the aim is to find mechanisms for torque 

transmission that ensures contact forces, the closest to 

those computed in (2). 

III Finger structure 

In a pulley-tendon finger, the torque transmission ratios 

are equal to the pulley radius ratios ‎[2]. The idea is to 

replace the pulleys by cams ‎[20] in order to give variable 

transmission ratio depending on the folding angle, hence 

ensuring force isotropy. 

 
Fig. 1. Finger kinematic structure 

The contact force is assumed as the resultant of a uniform 

pressure. Then, the contact points are considered to be in 

the middle of corresponding phalanxes, thus (figure 1): 

1 1 1 1 2 2 2 2 3 3 3 32 2 2O I K L O I K L O I K L       (3) 

A system of springs pulls back the finger once the 

actuator is relaxed. The effect of these springs is 

neglected in the following, because the springs are with 

low stiffness and their torques are negligible. The system 

of pulleys used in the finger includes 2 simple-neck 

pulleys and 1 double-neck pulley. The actuator turns the 

pulley P1 centered at O1. Due to a tendon the actuator 

torque is reduced and transmitted to the double neck 

pulley P2. Another tendon transmits the torque to the 

third pulley P3. P3 is welded to the third phalanx. Then, 

the rotation of P3 drives the distal phalanx. 

IV Kineto-static analysis of the finger 

Contact forces are mainly function of the folding angles 

and transmission ratios. The problem consists in finding 

the transmission ratios that ensure isotropy. Then we 

have to find the profiles of cams that ensure these 

transmission ratios. Based on the virtual work theorem 

we can compute the grasping forces. It is a matter to 

establish a balance between the powers, produced by the 

actuator Pa and consumed by the contact forces Tf. These 

powers are balanced at equilibrium. The produced power 

is simply: 

a a aP T   (4) 

a is the virtual rotational velocity of the actuator. 

To compute the consumed power Pf, we need the contact 

points, I1 I2 and I3, velocities. Indeed, the contact point 

positions are given by the vectors: 

1

1 1 1

1

1 2 1 2 2 2

1 1 2

1 2

1 1 2

1 3 1 2 2 3 3 3

1 2 31 1 2

1 2 3

1 2 31 1 2

sin

cos

sin sin( )

cos cos( )

sin( )sin sin( )

cos( )cos cos( )

O I K

O I O O O I

L K

O I O O O O O I

L L K





  

  

    

    




 

  
 



  

    
  

 

 (5) 

To get the velocities, we need to derivate the positions 

with respect to the time: 

1 1

1 1

1 1

1 1 1 2 1 2

2 1 2

1 1 1 2 1 2

1 1 1 2 1 2

3 1 2

1 1 1 2 1 2

1 2 3 1 2 3

3

cos .

sin .

cos . cos( )( )

sin . sin( )( )

cos . cos( )( )

sin . sin( )( )

cos( )( )

v k

v L K

v L L

K

 

 

     

     

     

     

     






   
 

   

   
 

   

    


 2 3 1 2 3sin( 1 )( )        

. (6) 
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Contact forces are normal to the phalanxes. They are 

given by the vectors: 

1

1 1

1

1 2

2 2

1 2

1 2 3

3 3

1 2 3

cos

sin

cos( )

sin( )

cos( )

sin( )

f f

f f

f f





 

 

  

  






 


 

  


  

 (7) 

and the consumed power Pf is: 

1 1 2 2 3 3

1 1 1 1 2 2 1 2 2 1 2

1 3 2 3 1 2 3 3 1 2

3 3 1 2 3

. . .

cos( ) ( )

cos( ) cos( )( )

( )

fP f v f v f v

k f L f k f

L f L f

f k

    

     

  

   

  

   

  

 (8) 

what can be written in the form: 

 

   

1

1 2 2 2

1 2 3 2 3 3 2 3 3 3

1 2 3 1 2 3

0 0

cos 0

cos( ) cos cos

T

f

TT

P f T

k

T L k k

L L k L k k

f f f f





   

   

   

 
 

 
 
     

       

 (9) 

On the other hand we have ‎[22]: 

1

2 2 3

2

1 1 2

3

1 i i

a

e

r r r

r r r



 



 
   

    
   

 

. (10) 

The power balance gives: 

 2 2 3

1 1 2

1
Ti i

a a a a

e

r r r
P T T f T

r r r
  

 
          

 
 (11) 

Then we get: 

2 2 3

1 1 2

1 1

2 1 2 2 2

3 1 2 3 2 3 3 2 3 3 3

1

0 0

cos 0

cos( ) cos cos

i i

a

e

T

r r r
T

r r r

f k

f L k k

f L L k L k k



   

 
 

 

   
   


   
         

 (12) 

and then: 

2

1 1 2 2

1 1 2

2 3 1

2 2 3 3 1 2 3

1 2 3 2

2 2 3

2 2 3 3

2 1 1 2 3

2 3

3

3 1 2

1 ( cos )

{ cos ( cos ) cos( )}

( cos )

a i

i

e

a i i

e

a i

e

T r
f L k A

k r k

r r L
A L k L

r r k k

T r r r
f L k

k r r r k

T r r
f

k r r



   



 
    

 

   

 
   

 



 (13) 

As equation (13) gives the distal force free of folding 

angles, the middle force depends on θ3 and the proximal 

force depends on θ2 and θ3 simultaneously. In ‎[20] a cam 

was used to create isotropy between two contact forces. 

A cam is a pulley with variable radius of curvature. The 

radius of curvature of a curve depends on one variable 

only. That is why we cannot use a planar cam to create 

isotropy in a three-phalanx under-actuated finger. In the 

following, we will try to find a cam that ensures a pseudo 

isotropy in the grasping. 

V Cam design 

A gripper can be assumed isotropic if it provides contact 

forces proportional to the lengths of its phalanxes. We are 

looking for the ratio computed in equation (2), which 

leads to: 
2

3 2 1f f f   . (14) 

By replacing f1, f2 and f3 by their values we get: 

2 3 3 3 2

3

3 2 2 2 3

3 2 2

3

2 3 3

3

2
3

(1 cos )

[ (1 cos )]

1
2cos

e e e

e

e

k r r r L

k r r r k

r k L
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r
R

r

 
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

 


  

   

  

 

 (15) 

And: 

2 2 3 2 3 2 1 2 2

3 2

2 1 1 2 1 2 3 1 2 1 1

2 1 2 21 2
3 2

2 1 3 2 1 1

( cos ) 1 cos

(1 cos ) 1 cos

a i i i a i i

e e

i i i

T r r r r r L T L r r
A

k r r r r r k k k r r

r L r rk L
R R A

k r k k r r
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  

 
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 

 
       

 

 (16) 

(A is defined in equation (13)). 

That gives: 

2

1

1
32

2 2 2 3 2 3

1 2
cos

4 2
2cos 2 cos cos cos cos( )

ir
R

R Rr
B

R R
B R



 
  

     
 

 

   

    

 (17) 

These formulas define the transmission ratios R=r3/r2e 

and R1=r2i/r1. Using the ratio R we can straightforwardly 

get the profile of the cam between the middle and the 

distal phalanx ‎[20]. The problem is to find the cam that 

gives the right reduction ratio between the torque Ta and 

the torque T2 applied on the pulley P2. This ratio is R1. To 

get it, we need r2i, the lever arm for the tendon, function 

of θ2 and θ3 simultaneously. This goal is not easy to 

reach. That is why we will discretize θ3. For each value 

of θ3 we will compute the profile of the cam when θ2 

varies that gives us the well transmission ratio. Finally 
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we will take the average profile of all the obtained 

profiles. 

However the problem is a little bit more complicated than 

the first case (between the middle and distal phalanxes). 

In fact, in the first case P3 was welded to the distal 

phalanx and θ3 gives the rotation of P3 with respect to the 

middle phalanx. Now the pulley P2 is free and the profile 

should be computed as a function of 
2

r

p (the rotation of 

P2 with respect to the proximal phalanx). 

In order to be able to sketch the profile for the cam used 

in P2 we need the ratio R1 function of 2

r

p . We know ‎[2]: 

 

 

2 3 2

3

2 2

3

2 2 3
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1 3

3

1
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1
4
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1 2
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p
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d
d d
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 

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 






 

  

 
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 
    

   
   

  
 
 

 (18) 

Let assume that 2 0r

p  when 2 3 0   . Then: 

    

    

2

1

3 2 32

2 3 3 2 3 3

1 2
cos 2 1 cos

4 2
cos cos cos( )

i

r

p

r r

p p

U
r

V

U r

R R
V R f

R R
f f



   
 

     
 






     
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 (19) 

U

O1

O2

θ2

H

M

r2i

r1



M0

 
Fig. 2. Cam tendon system 

Equation (19) gives the lever arm of the tendon force 

with respect to O2 function of 
2

r

p and θ3. r2i is simply the 

distance between O2 and the tendon A rotation of P2 by 

an angle 
2

r

p  with respect to the proximal phalanx is 

equivalent to a rotation of the phalanx by an angle 2

r

p  

with respect to P2. (Figure 2). Mathematically the tendon 

can be modeled by a line. For given values of 
2

r

p and θ3 

the line is at a distance r2i of O2 and r1 of O1. We will 

consider n discret values for θ3 between 0 and /2. For 

each value θ3i of θ3 (i=1…n), we consider the set of lines 

defined by the variation of θ2 between 0 and /2. The 

envelope curve of this set of lines is the cam that 

provides isotropy for this special value θ3i.(figure 3). 

O2 x2

y2

Envelope curve

O2 x2

y2

Envelope curve

 
Fig. 3. Envelope curve 

Let‎ γ‎ be the angle between O1O2 and the tendon. The 

geometry gives: 

1 21

1 1

ir rO H
Sin

L L



    (20) 

Let M0 the nearest point of the tendon to O2. It is 

described by the vector: 

2 2

2 0

2 2

cos( )

sin( )

r

i p

r

i p

r
O M

r

 

 





. (21) 

Let M be any point of the tendon. It is described by the 

vector: 

2 2 0O M O M u   (22) 

Where u  is the‎unit‎vector‎of‎the‎tendon‎and‎λ‎is‎a‎real‎

parameter. Therefore we have: 

2 2 2

2

2 2 2

cos( ) cos( )
2

sin( ) sin( )
2

r r

i p p

r r

i p p

r

O M

r


    


    

   



   

 (23) 

Equation [23] is the equation of a set of lines. We have to 

derivate the vector 2O M with respect to λ and to 2

r

p . The 

envelope curve is gotten by the values of λ that give: 

2 2

2

det( ; ) 0
r

p

O M O M 


  (24) 
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2 2
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And: 
' '

2 2 2 2

'

2
2
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'
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so: 

2
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r

p
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then: 
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'

2

' '
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'
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     ( 1)cos( )
2

cos( ) sin( )( 1)

     ( 1)sin( )
2

r r

p p

r r

i p i p

r

p

r r

i p i p

r

p

E F

E r r

F r r

   

    


   

    


   

   

    

   

    

   

 (28) 
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 (29) 
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In other words we have: 

2

2

2

22

2

1
1

1

r

p

i
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p

ii
r
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
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
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



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 (32) 

But equation (20) gives: 

2

2 1 1 1sin cosi

i

r
r r L L 




    


 (33) 

The derivative of equation (19) gives: 

' '

2

2

2

i

r

p

r U V UV

V

 



 (34) 

(This derivative is taken for a special value of θ3 and the 

derivative of θ3 is zero) 

    

  

  

2 3

3 2 3

2 3 3

0

2 1 sin

2cos sin2

sin

r

p

r

p

r

p

U

V R f

fR

f

 

  

   

 

    

 
 
   
 

 (35) 

then: 
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If we replace λ in the equation (23) we get: 
'
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Fig. 4. Cam profiles for different values of θ3 

We get a set of cams. Each cam corresponds to a special 

value of θ3 and its corresponding value of r3. The profiles 

for r1=7.5mm, r2e=5mm and L1=50mm are shown in 

figure 4. 

The coordinates X and Y of the vector 2O M are in reality 

X(θ3i) and Y(θ3i). For our finger, we will take the average 

cam on θ3. Then the profile of the cam is given by: 

 

 

3

1

3

1

n

i

i

n

i

i

X

X
n

Y

Y
n
















 (38) 

The average cam profile is shown in figure 5: 
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Fig. 5: Average cam profile 

In conclusion, thanks to the envelope curve, we found for 

each value of θ3 a cam. This cam ensures isotropy when 

the middle phalanx folds alone. In order to get isotropy 

everywhere we need to choose the right cam for each 

value of θ3. The average cam found in this paragraph 

provides for a given value of θ2 the average transmission 

ratio when θ3 varies from 0 to /2. The grasping gotten is 

not perfectly isotropic but it is pseudo-isotropic. To 

check up the isotropy, we need to recalculate the grasping 

forces. 

VI Forces recalculation according to the average cam 

After the use of the average cam, the recalculation of the 

value of the forces 1 2 3, and f f f  is a necessity to specify to 

which limit the force isotropy was lost and to define 

wether this limit is acceptable or not. 

The only difference imposed by the use of the average 

cam that can affect 1 2 3, and f f f  is the value of the 

internal 2
nd

 pulley (cam) radius 2ir . Therefore, we have to 

recalculate r2i according to the new average cam profile 

then replace its value in 1 2 3, and f f f . 

 ,X YO2

O1
r1

r2i

 
Fig. 6: recalculation of r2i 

For each value of 
2

r

p , we know the coordinates  ,X Y  

of the point of tangency to the cam. The slope of the line 

is computed numerically, by computing the derivatives of 

X  and Y with respect to 2

r

p . We have then the equation 

for the support line of tendon. The value of r2i, can is the 

minimum distance between O2 and the tendon (figure 6) 

Once 2ir is known we can replace its new value in 

1 2 3, and f f f and recalculate the forces new ratios in order 

to specify the limit to which the isotropy was lost. The 

results can be clearly visualized in the 3-D surface scans 

of figure 7: 

 
Fig. 7: Ratio f3/f2 

This surface shows perfect isotropy conservation 

between 2 3&f f . It was predictable since at P3 we need 

only one cam to ensure this isotropy. 

 
Fig. 8: ratio f2/f1 

Figure 8 depicts the variation of the ratio f2/f1 in the joint 

space. Ideally this ratio should be equal to 0.618 

evrywhere (see eq. [1]). The graph shows a smooth 

variation in the center of the space. The ratio becomes 

greater than one for a high difference between folding 

angles. However, even with the human finger, this case is 

approximatly non used. In conclusion to get perfect 

isotropy we need a complicated mechanism that adjusts 

the right redcution ratios. With our solution we got an 

acceptable grasping with a great simplification. 

VII Conclusions and further works 

In this paper we have proposed a method to design a 

three-phalanxe pseudo-isotropic under-actuated finger. 

We have carried out a detailed kineto-static analysis. We 
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have elicited the contact forces. The distal force depends 

on the distal transmission ratio (at P3 only). It is 

independent from the folding angles. The middle force 

depends on the first transmission ratio (at P2). It depends 

also on the folding angle θ3. A cam have been used 

instead P3. This cam insures perfect isotropy between the 

middle and distal phalanxes. The proximal force depends 

on both folding angles,, and then on two parameters. We 

have found a set of cams that should be used to ensure 

perfect isotropy. However, the use of a set of cams is 

very complicated, that is why we have proposed to make 

use of the average cam of the set even though it does not 

provide perfect isotropy. In order to verify our idea, we 

carried out a recalculation of the contact forces with the 

cams used. The recalculation has shown a perfect 

isotropy between the middle and distal phalanxes. On the 

other hand there is an acceptable trade-off in the center 

on the joint space. The critical values are in the non used 

field. To summarize, a great simplification has led to a 

very acceptable result. 

To get a perfect isotropy we would need a sort of gear 

box to choose the right cam function of θ3. Moreover the 

under-actuation has the drawback to providing 

conditional stability only, thus a grasp stability analysis 

should be carried out for this finger. In this paper, the 

forces developed by the springs were ignored. This 

assumption holds as long as the stiffness of the spring is 

very low. In order to be more accurate the spring stiffness 

should be taken into consideration, which will change the 

shape of the cam. Another weak point of such 

mechanisms is the high internal forces mainly in the 

tendons. These forces should be studied for safe 

dimensioning purpose. Finally, of course the best 

validation of our work will be done with a real prototype. 
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