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Abstract. Relational Concept Analysis (RCA) constructs conceptual
abstractions from objects described by both own properties and inter-
object links, while dealing with several sorts of objects. RCA produces
lattices for each category of objects and those lattices are connected via
relational attributes that are abstractions of the initial links. Navigating
such interrelated lattice family in order to find concepts of interest is not
a trivial task due to the potentially large size of the lattices and the need
to move the expert’s focus from one lattice to another. In this paper, we
investigate the navigation of a concept lattice family based on a query
expressed by an expert. The query is defined in the terms of RCA. Thus
it is either included in the contexts (modifying the lattices when feasible),
or directly classified in the concept lattices. Then a navigation schema
can be followed to discover solutions. Different navigation possibilities
are discussed.

Keywords: Formal Concept Analysis, Relational Concept Analysis, Re-
lational Queries.

1 Introduction

Recently [1], we worked on the problem of selecting suitable Web services for
instantiating an abstract calculation workflow. This workflow can be seen as a
DAG whose nodes are abstract tasks (like book a hotel room) and directed edges
are connections between the tasks, which often correspond to a data flow (like
connecting reserve a train ticket and book a hotel room: train dates and time-
table are transmitted from reserve a train ticket to book a hotel room). The
selection is based on quality-of-service (QoS) properties like response time or
availability and on the composability quality between services chosen for neigh-
bor tasks in the workflow. Besides, we aim at identifying and storing a set of
backup services adapted to each task. To be efficient in the replacement of a fail-
ing Web service by another, we want to organize each set of backup Web services
by a partial order that expresses the quality criteria and helps to choose a good
trade-off for instantiating the abstract workflow. Analyzing such multi-relational
data is a complex problem, which can be approached by various methods includ-
ing querying, visualization, statistics, or rule extraction (data mining).



We proposed an approach based on Relational Concept Analysis (an itera-
tive version of Formal Concept Analysis) to solve this problem, because of its
multi-relational nature. Web services are filtered and grouped by tasks they may
satisfy (e. g. the Web services for booking a hotel room). In formal contexts (one
for each task), we associate the Web services and their QoS criteria. For exam-
ple, the service HotelsService by lastminutetravel.com would be described by low
response time, medium availability (classical scaling is applied to the QoS val-
ues). In relational contexts we encode the composability levels in each directed
edge of the workflow. Given an edge of the workflow, the composition quality
depends on the way output data of the source task cover input data of the end-
ing task, and the need for data adaptation. A relational context encodes for
example the relation Adaptable-Fully-Composable between services for reserve
a train ticket and services for book a hotel room. In this relation TravelService
by puturist.com is connected to HotelsService by lastminutetravel.com if output
data of TravelService can be used, with a slight adaptation, to fill input data of
HotelsService.

The concept lattice family we obtain (one Web service lattice for each task of
the workflow) makes it possible: (1) to select a Web service for each task based
on QoS and composability criteria, (2) to memorize classified alternatives for
each task.

Due to the nature of our problem, we are interested in classifying indepen-
dently the Web services corresponding to the tasks and not classifying the solu-
tions. By solution, we mean a set of Web services, each of which can instantiate a
task of the workflow. If a particular service fails or is no more available, the goal
is to constitute a new working combination out of the old one, with the smallest
number of service replacements. To the best of our knowledge, this problem area
has not been investigated in-depth prior to our study, especially in the context
of Relational Context Analysis [7, 6]. Therefore, we believe that it would be use-
ful to generalize and report what we learned in our experience. In more general
terms, we have multi-relational data and a question which contains variables we
want to instantiate, and we aim at:

– Finding a specific set of objects that satisfy the query. An answer is composed
of objects, each object instantiates one variable;

– Classifying, for each variable, the objects depending on the way they satisfy
(or not) the query, to find alternative answers.

In this paper, we put the problem in a more general framework, which as-
sumes an unrestricted relational context family and a query given by an expert.
The query can be seen as a DAG, where some nodes are labelled by variables and
some others are labelled by objects. The nodes roughly correspond to the formal
(object-attribute) contexts and the edges correspond to the relational (object-
object) contexts. A set of lattices is built using Relational Concept Analysis and
the existential scaling operator. We assume that an expert gives a total ordering
of the edges of the DAG. Then an algorithm navigates the lattices following this
ordering. This navigation allows us to determine objects that answer the query.



These objects with their position in the lattices are what the expert wants to
explore, to extract a solution and store the alternatives.

In the following, Section 2 reminds the main principles of Relational Concept
Analysis (RCA). Section 3 defines the model of queries in the RCA framework
that we consider in this paper. Section 4 presents and discusses an algorithm that
navigates the concept lattice family using a query. Related work is presented in
Section 5 and we conclude in Section 6.

2 Background on Relational Concept Analysis

For FCA, we use the notations of [4]. In RCA [5], the objects are classified not
only according to the attributes they share, but also according to the links be-
tween them. Let us take the following case study. We consider a list of countries,
a list of restaurants, a list of Mexican dishes, a list of ingredients, and finally a
list of salsas. We impose some relations between these entities {Country, Restau-
rant, MexicanDish, Ingredient, Salsa}, such that: a Country ”has” a Restaurant;
a Restaurant ”serves” a MexicanDish; a MexicanDish ”contains” an Ingredient;
an Ingredient is ”made-in” a Country; and finally a Salsa is ”suitable-with” a
MexicanDish. We express these entities and their relations by the DAG in Fig. 1.
We capture an instantiation of this entity-relationship diagram in a relational
context family.

Fig. 1. The entities of the Mexican food example (left). The query schema (right)

Definition 1. A relational context family RCF is a pair (K, R) where K is a set
of formal (object-attribute) contexts Ki = (Oi, Ai, Ii) and R is a set of relational
(object-object) contexts rij ⊆ Oi ×Oj, where Oi (domain of rij) and Oj (range
of rij) are the object sets of the contexts Ki and Kj, respectively.

The RCF corresponding to our example contains five formal contexts and
five relational contexts, illustrated in Table 1 (except the made-in relational
context, which is not used in this paper for sake of simplicity). An RCF is
used in an iterative process to generate at each step a set of concept lattices.
First concept lattices are built using the formal contexts only. Then, in the
following steps, a scaling mechanism translates the links between objects into



Table 1. Relational Context Family for mexican dishes
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England × ×
France × ×
Lebanon × ×
Mexico × ×
Spain × ×
USA × ×
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Chili’s ×
Chipotle ×
El Sombrero ×
Hard Rock ×
Mi Casa ×
Taco Bell ×
Old el Paso ×
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Burritos ×
Enchiladas ×
Fajitas ×
Nachos ×
Quesadillas ×
Tacos ×

Ingredient i1 i2 i3 i4 i5 i6 i7 i8 i9 i1
0
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chicken ×
beef ×
pork ×
vegetables ×
beans ×
rice ×
cheese ×
guacamole ×
sour-cream ×
lettuce ×
corn-tortilla ×
flour-tortilla ×
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Fresh Tomato × ×
Roasted Chili-Corn × ×
Tomatillo-Green Chili × ×
Tomatillo-Red Chili × ×

contains chickenbeefporkvegetablesbeansricecheeseguacamolesour-creamlettucecorn-tortillaflour-tortilla

Burritos × × × × × × × × × × ×
Enchiladas × × × ×
Fajitas × × × × × × × ×
Nachos × × × ×
Quesadillas × × × × ×
Tacos × × × × × × ×

has Chili’s Chipotle El Sombrero Hard Rock Mi Casa Taco Bell Old el Paso

Canada × × × × ×
England × × ×
France × × ×
Lebanon × × ×
Mexico × × ×
Spain × ×
USA × × × × × ×

serves Burritos Enchiladas Fajitas Nachos Quesadillas Tacos

Chili’s × × ×
Chipotle × ×
El Sombrero × × × × × ×
Hard Rock × ×
Mi Casa × × × × ×
Taco Bell × × × ×
Old el Paso ×

suitable-with Burritos Enchiladas Fajitas Nachos Quesadillas Tacos

Fresh Tomato × × × × × ×
Roasted Chili-Corn × ×
Tomatillo-Green Chili × ×
Tomatillo-Red Chili × × × × × ×

conventional FCA attributes and derives a collection of lattices whose concepts
are linked by relations. For example, the existential scaled relation (that we will
use in this paper) captures the following information: if an object os is linked to
another object ot, then in the scaled relation, this link is encoded in a relational
attribute assigned to os. This relational attribute states that os is linked to a
concept, which clusters ot with other objects. This is used to form new groups,
for example the group (See Concept 84) of restaurants, which serve at least one
dish containing sour cream (such dishes are grouped in Concept 75). The steps
are repeated until reaching the stability of lattices (when no more new concepts
are generated). For mexican dishes, four lattices of the concept lattice family are
represented in Figures 3 and 4. The ingredient lattice is presented in Fig. 2.



Definition 2. Let rij ⊆ Oi × Oj be a relational context. The exists scaled
relation r∃ij is defined as r∃ij ⊆ Oi ×B(Oj , A, I), such that for an object oi and

a concept c: (oi, c) ∈ r∃ij ⇐⇒ ∃ x, x ∈ o′i ∩ Extent(c).

In this definition, A is any set of attributes maybe including relational at-
tributes, which are defined below.

Definition 3. A relational attribute (s r c) is composed of a scaling operator s
(for example exists), a relation r ∈ R, and a concept c. It results from scaling a
relation rij ∈ R where rij ⊆ Oi ×Oj. It expresses a relation between the objects
o ∈ Oi with the concepts of B(Oj , A, I). An existential relational attribute is
denoted by ∃rij c where c ∈ B(Oj , A, I).

For example: the Concept 50 in the Country lattice owns the relational
attribute ∃has Concept 60. This expresses that each country in Concept 50
(Canada and USA) has at least a restaurant in Concept 60 extent (El Som-
brero or Mi Casa).

Fig. 2. The concept lattice for ingredients of the RCF in Table 1 (concepts names are
reduced to C n).

3 Introducing Relational Queries

In this section, we define the notion of query and answer to a query. First (section
3.1) we recall simple queries that help navigating concept lattices [7]. Then
(section 3.2), we generalize to relational queries that lead the navigation across
a concept lattice family.

3.1 Simple queries

Definition 4. A query (including its answer) on a context K = (O,A, I), de-
noted by q|K (or q when it is not ambiguous), is a pair q = (oq, aq), such that
oq is the query object(s) i.e. the set of objects satisfying the query (or the an-
swer set), and aq is the set of attributes defining the constraint of the query. By
definition, we have: o′q ⊇ aq, where aq ⊆ A.



Fig. 3. Country and restaurant lattices for exists and the RCF in Table 1.

For example q|Kcountry
= ({England, France, Spain}, {Europe}) is a query

on the country context (in Table 1), asking for countries in Europe. Another
example q|KMexicanDish

= ({}, {rice, corn-tortilla})

When aq is closed, solving the query consists in finding the concept C =
(a′q, aq). To ensure that such a concept exists, a virtual query object ovq that
satisfies ov′q = aq can be added to the context (as an additional line). Then,
three types of answers can be interesting: the more precise answers are in a′q, less
constrained (with less attributes) answers are in extents of super-concepts of C,
more constrained (with more attributes) answers are in extents of sub-concepts
of C. When aq is not closed, and we don’t use the virtual query object, searching
for answers needs to find first the more general concept C whose intent contains
aq. Now we will define more generally what we mean by relational queries.



Fig. 4. Dishes and salsa lattices for exists and the RCF in Table 1.

3.2 Relational queries

In this study, a relational query is composed of several simple queries, to which
we add relational constraints. The relational constraints are expressed via virtual
query objects (variables), one for each formal context, where we want to find an
object. A virtual query object may have relations (according to the relational
contexts) with objects of other contexts, as well as with other virtual query
objects.

Definition 5. A relational query Q on a relational context family (K, R) is a
pair Q = (Aq, Ovq, Rq), where:

1. Aq is a set of simple queries
Aq = {q|Ki = (oq|Ki , aq|Ki) | q|Ki is a query on Ki ∈ K}

2. There is a one-to-one mapping between Aq and Ovq, where Ovq is the set of
virtual query objects.

3. Rq is a set of relational constraints Rq = {(ovq|Ki
, rij , Oq)}, where ovq|Ki

is
the virtual object associated with q|Ki

, Oq ⊆ Oj ∪ {ovq|Kj
}, with ovq|Kj

is

the virtual object associated with Kj.



For example, let us consider the following query: I am searching for a country
with the attribute ”fr”, a restaurant in this country serving Mexican dish contain-
ing (chicken, cheese, and corn-tortilla), and a salsa which is ”hot” and suitable
with the dish. This query can be translated into a relational query Qexample =
(Aq, Ovq, Rq) as follows: Aq = {qcountry, qrest., qdish, qsalsa}, aqcountry

= {fr},
aqrest. = aqdish = ∅, aqsalsa

= {hot}.
Ovq = {ovqdish , ovqcountry , ovqrest. , ovqsalsa

}
Rq = {(ovqdish , contains, {chicken, cheese, corn-tortilla}), (ovqcountry

, has,
{ovqrest.}), (ovqrest. , serves, {ovqdish}), (ovqsalsa

, suitable-with, {ovqdish})}.
By definition, a query corresponds to the data model, and must respect the
schema of the RCF (see in Fig. 1).

An answer to the relational query is included in the answers of the simple
queries. For our example, the answers of the simple queries would be oqcountry

=
{France}, oqrest. contains all the restaurants, oqdish contains all the dishes,
oqsalsa

= {Tomatillo-Red Chili}. If we consider these objects connected with
the relations, this forms what we call the maximal answer graph. In this graph,
we are interested in the subgraphs that cover the query (they have at least one
object per element of Aq). These subgraphs are included in the graph of Fig. 5.
There are various interesting forms of answer: having exactly one object per
element of Aq, or having several objects per element of Aq.

Fig. 5. The subgraph containing all the answers with the relations between the objects
corresponding to the relational query example.

Definition 6. An answer to a relational query Q = (Aq, Ovq, Rq) is a set of
objects X having a unique object per each context that is involved in the query:

X =< oi | oi ∈ Oi with 1 ≤ i ≤ n >

These objects satisfy the query Q = (Aq, Ovq, Rq), when
they have the requested attributes: ∀ q|Ki ∈ Aq, ∃ oi ∈ X : o′i ⊇ aq|Ki



and they are connected as expected:
∀ (ovq|Ki

, r, Oq) ∈ Rq with r ⊆ Oi × Oj , (and thus : Oq ⊆ Oj ∪ {ovq|Kj
}) and

∀ o ∈ Oq, we have :

1. if o ∈ Oj , we have (oi, o) ∈ r
2. if o = ovq|Kj

, we have (oi, oj) ∈ r with oj ∈ X ∩Oj

For our example, the set of answers to the relational query, is:

{{France, El Sombrero, Enchiladas, Tomatillo- Red Chili}, {France, El
Sombrero, Quesadillas, Tomatillo-Red Chili}, {France,El Sombrero, Tacos,
Tomatillo-Red Chili}, {France, Old el Paso, Tacos, Tomatillo-Red Chili}}.

Answers can be provided with an aggregated form which can be found in
lattices, as we explain below. They allow us to discover sets of equivalent objects
relatively to the answer. E.g. {Enchiladas,Quesadillas, Tacos} are equivalent
objects if we choose France and ElSombrero.

Definition 7. An aggregated answer to a query Q = (Aq, Ovq, Rq) is the set AR
containing the sets Si, such that:

– there is a one-to-one mapping between AR and Aq which maps each q|Ki
to

a set Si

– ∀ q|Ki ∈ Aq, ∀ oi ∈ Si, o
′
i ⊇ q|Ki (objects of Si have the requested attributes)

– when (ovq|Ki
, r, Oq) ∈ Rq

- if ovq|Kj
∈ Oq, r ⊆ Oi × Oj , thus : ∀ oi ∈ Si, ∀ oj ∈ Sj , Sj ∈

AR, we have (oi, oj) ∈ r (virtual objects are connected if requested)

- for each oj ∈ Oq∩Oj we have : (oi, oj) ∈ r (connections with particular
objects are satisfied).

For example, an aggregated answer for our query is {Scountry, Srest., Sdish, Ssalsa}
= {{France}, {ElSombrero}, {Enchiladas,Quesadillas, Tacos}, {Tomatillo-
RedChili}}

4 Navigating a Concept Lattice Family w.r.t. a Query

In this section, we explain how the navigation between the concept lattices can
be guided by a relational query. Following relational attributes that lead us from
one lattice to another, we navigate a graph whose nodes are the concept lattices.
In a first subsection, we propose an algorithm which gives a general navigation
schema that applies to concept lattices built with the existential scaling. Then
we present several variations of this navigation algorithm.



4.1 A query-based navigation algorithm

Our approach for navigating the concept lattices along the relational attributes is
based on the observations made during an experimental use of RCA, for finding
the appropriate Web services to implement an abstract calculation workflow [1].
We consider an RCF and a query that respects the RCF relations. From our
experience, we observed that an expert often expresses his query by a phrase,
where the chronology of the principal verbs (relations) gives a natural path for
the query flow. This will be our hypothesis. Let us consider the query previously
specified: I am searching for a country, with the basic attribute ”fr”, that has a
restaurant which serves dishes containing chicken, cheese and corn-tortilla; I am
searching for a hot salsa suitable with this dish. In order to simplify the notation,
we use the same notation for queries q|ki and the virtual objects ovq|Ki

.

The query path is a total ordering of the arcs of the query (the query itself is
a DAG in general). For our example, the path is the total ordering for Rq given
by {(qcountry, has, {qrestaurant}), (qrestaurant, serves, {qdish}), (qdish, contains,
{chicken, cheese, corn-tortilla}), (qsalsa, suitable-with, {qdish})}. Each arc cor-
responds to a relation used in the query. All the relations involved inside a
query are covered by this path. This translation of the expert query determines
a composition on the relations. The query path does not always correspond to a
directed chain in the object graph (e.g. dishes are the end of two of the considered
relations (serves and suitable-with)).

We propose the algorithms 1 to 3 (an additional procedure is needed which
combines two others) for navigating through a concept lattice family using
queries. During the exploration, we fill a set X by objects that will constitute an
answer at the end (at most one object for each formal context). In this section,
the algorithm is presented as an automatic procedure. Its use to guide an expert
in its manual exploration of the data is discussed afterwards.

Algorithm 1 identifies three main cases:

– line 2, the arc connects two query objects, e.g. (qcountry, has, {qrestaurant});
– line 5, the arc connects a query object to original objects e.g. (qdish, contains,
{chicken, cheese, corn-tortilla});

– line 8, the arc connects a query object to another query object and to original
objects e.g. (qdish, contains, {qingredient, chicken, cheese, corn-tortilla}).

Each of these cases considers, for a given arc a, whether the partial answer X
already contains a source object or (inclusively) a target object.

When the arc connects a query object to another query object a = (q|Ks
, rst, q|Kt

),
(Algorithm 2), four cases are possible.

– X does not contain any object for Ks and any ot for Kt: we identify the
highest concept that introduces the attributes of q|Ks and we select an object
in its extent (lines 3-5). Then the algorithm continues on the next conditional
statement (to find a target).



– X contains an object os for Ks and an object ot for Kt selected in previous
steps: we just check if os owns the relational attribute pointing at the object
concept introducing ot, that is γot (line 8)1.

– X contains only an object os for Ks. We should find a target. We identify,
under the meet of the concepts that introduce the attributes of q|Kt

, one of
the lowest concepts to which os points (lines 12-14). We select a target in its
extent.

– X contains only an object ot for Kt. We should find a source. We identify the
meet of the concepts that introduce the attributes of q|Ks and the relational
attribute that points to ot (lines 20-23). We select a source in its extent.

When the arc connects a query object to original objects a = (q|Ks , rst, Oq)
(Algorithm 3):

– Either X contains an object for Ks and we need to check if the relational
attributes confirm that this object is connected to all the original objects in
Oq) (line 4);

– Or we have to select an object for Ks, owning the attributes of the query
q|Ks

and owning the relational attributes ending in the concepts introducing
the original objects (line 9-11).

The algorithm for the last case is a combination of the algorithms for the two
other cases. Note that whenever a condition is not verified, we have to backtrack,
this is not specified in the algorithm for sake of simplicity. If the query path forms
also a directed chain in the entity-relationship diagram, the main algorithm is a
depth-first search. But in the general case, in some steps, when we consider an
arc, we assigned to X an object for the end of the arc, and we need to find a
source object.

For example, we start with the arc (qcountry, has, {qrestaurant}) where the
query path begins. We have to identify a source object os satisfying the query
{fr} (Definition 4). For example, we choose the object France appearing the
extent of Concept4, whose intent contains fr.

We extract the relational attributes of os = France, having the form
∃rst C). They are in practice in the lattices denoted by r : C. For example,
we obtain has:Concept 19, has:Concept 15, has:Concept 60, has:Concept 16, etc.
We keep the relational attributes with the concepts satisfying the target query
in the corresponding lattice and discard the rest. In our example, the qrestaurant
is empty. A relational attribute with the smallest concept (Ct) is the one to
consider that leads us to find a solution. We choose Concept 15 among the
available smallest concepts. Let ∃ rst Ct be the selected relational attribute (if
it exists). The object ot must be in the extent of Ct. In our example, we select
El Sombrero.

Then we consider the query-to-query arc (qrestaurant, serves, {qdish}). Given
that an object is selected for Krestaurant, we look for a possible target object,
led by the query qdish = ∅ and the relational attributes owned by the object

1 We remind that γo is the object concept introduced by o.



concept Concept 15 which introduces El Sombrero. Suppose we choose (line 13)
a relational attribute that targets one of the minimum concepts, namely serves :
Concept 23 (but serves : Concept 26 or serves : Concept 25 are also possible).
This leads us to Concept 23, in the extent of which we select Enchiladas.

Dealing with the next arc (qdish, contains, {chicken, cheese, corn-tortilla})
involves, since we have already selected a dish, to verify (Algorithm 3, line 4)
that, the object concept γEnchiladas owns all the relational attributes that
go to object concepts introducing chicken, cheese, and corn-tortilla. These are
contains : γ chicken = Concept 29, contains : γ cheese = Concept 36 and
contains : γ corn − tortilla = Concept 40 and they are indeed inherited by
γEnchiladas = Concept 23.

When the arc (qsalsa, suitable-with, {qdish}) is considered, the target (Enchi-
ladas) is in X. Thus we identify a source in the extent of the Concept 47, which
satisfies the target query {hot}. Its intent contains suitable−with : Concept 23
which is Enchiladas. A target object (Tomatillo-Red Chili) is selected in the
extent of Concept 47. The answer is now complete.

Algorithm 1: Navigate(RCF,Q, PQ) //PQ = (ak) | ak = rij and rij ∈ RQ

Data: (K, R): an RCF; Q = (Aq, Ovq, Rq): a query on (K, R); and a query path
Result: X: an object set (answer for Q) or fail

1foreach arc a ∈ PQ do
2if a = (q|Ks , rst, q|Kt) then
3Case pure query
4else
5if a = (q|Ks , rst, Oq) with Oq ⊆ Ot then
6Case pure objects
7else
8if a = (q|Ks , rst, q|Kt) with q|Kt ∈ Oq then
9Case query and objects

4.2 Variations about the algorithm

Integrating queries into the contexts. One approach that was investigated in
the case of simple queries consists of integrating the virtual query object in
the context, then building the concept lattice. This can also be done for rela-
tional queries. A relational query Q = (Aq, Ovq, Rq) can be integrated into an
RCF by adding the virtual query objects ovq|Ki

into the context Ki. Each vir-

tual query object ovq|Ki
owns the attributes of the query aq|Ki

and for each arc
(ovq|Ki

, rij , ovq|Kj
), the relational context of rij is enriched by a line for ovq|Ki

,



Algorithm 2: Case pure query

1Let a = (q|Ks , rst, q|Kt)
2if // X does not contain a source and a target for the current arc a

X ∩Os = ∅ and X ∩Ot = ∅ then
3// select a source in the extent of a concept that verifies the source query

Let Cs be the highest concept having Intent (Cs) ⊇ q|Ks

4select os ∈ Extent(Cs)
5X ← X ∪ {os}
6if // X contains a source and a target for the current arc a

X ∩Os = {os} and X ∩Ot = {ot} then
7// verify that the source is connected to the target
8check ∃rst γot ∈ Intent(γos)

9else
10if // X contains a source for the current arc a

X ∩Os = {os} then
11// select a target in the extent of a concept that verifies the target query

and is connected to the source
12Let Ct be the highest concept having Intent (Ct) ⊇ q|Kt

13and Ct ∈ min(C | ∃ (∃rst C) ∈ Intent(γos))
14select ot ∈ Extent(Ct)
15X ← X ∪ {ot}
16else
17// X contains a target for the current arc a
18// select a source in the extent of a concept that verifies the source query
19and is connected to the target
20Let ot ∈ X ∩Ot

21Let Cs be the highest concept having Intent (Cs) ⊇ q|Ks

22and ∃rst γot ∈ Intent(Cs)
23select os ∈ Extent(Cs)
24X ← X ∪ {os}

Algorithm 3: Case pure objects

1Let a = (q|Ks , rst, Oq) with Oq ⊆ Ot

2if // X contains a source for the current arc a
X ∩Os = {os} then

3// verify that the source is connected to the objects in Oq

4check ∀o ∈ Oq,∃rst γo ∈ Intent(γos)

5else
6// X does not contain a possible source
7// select a source in the extent of a concept that verifies the source query
8// and is connected to the target objects
9Let Cs be the highest concept having Intent (Cs) ⊇ q|Ks

10and ∀o ∈ Oq,∃rst γo ∈ Intent(Cs)
11select os ∈ Extent(Cs)
12X ← X ∪ {os}



a column for ovq|Kj
and the relation (ovq|Ki

, ovq|Kj
)2. We generate the corre-

sponding concept lattice family, considering the existential scaling 3. Locating
the highest concept that introduces all the attributes of each query of each con-
cerned context, now is much more easy because it introduces the virtual query
object. Then, we can navigate in a similar way as before.

Opportunities of browsing offered by the exploration. As we explained before, the
algorithm described in the previous section can be understood as an automatic
procedure to determine a solution to a query. Nevertheless, it is more interesting
to use it as a guiding method for the exploration of data by a human expert. Each
object selection is a departure point for inspecting the objects of the selected
concept, and, explore the neighborhood, going up by relaxing constraints or
going down by adding constraints.

A point in favor of the lattices is that they do not only give us a solution, but
they also classify the objects of the solutions and provide a navigation structure.
They also carry other information about the objects which can be useful for the
expert: attributes that objects of the answer set have necessarily, attributes that
appear simultaneously as attributes of the answer, etc.

In our Web service application, we preferred the solution which integrates the
query in RCF because it was easier to identify the answers. The lattices show how
the existing objects match and differ from the query, thanks to the factorization
of attributes between the query and the existing objects. Nevertheless, having
several queries at the same time would not be efficient. Thus, the solution has
been used only for specific problems. An incremental algorithm can be used to
introduce the query, which enlightens the process of modifying the lattice and
highlights the structure of the data. We can keep the original lattice (before query
integration), and save the query objects together with the resulting concepts in
an auxiliary structure. This way, we can always easily go back to the original
lattices.

5 Related Work

ER-compatible data, e.g., relational databases, and concept lattices have a long
history of collaboration. First attempts to apply FCA to that sort of data go
back to the introduction of concept graphs by R. Wille in the mid-90s [8]. The
standard approach is rooted in the translation of an ER model into a power-
context family (PCF) where basically everything is represented within a formal
context [9]. Thus, inter-object links of various arities (i.e., tuples of different
sizes) are reified and hence become formal objects of a dedicated context (one per
arity). The overall reasoning is therefore uniformly based on the formal concepts.

2 See our example in Table http://www.lirmm.fr/~huchard/RCA_queries/

mexicoExistsWithQuery.rcft.html)
3 It is represented in Figure http://www.lirmm.fr/~huchard/RCA_queries/

mexicoExistsWithQuery.rcft.svg



While this brings an undeniable mathematical strength in the formalization of
the data processing and, in particular, querying, there are some issues with the
expressiveness. Indeed, while formal concepts are typically based on a doubly
universal quantification, the relational query languages mostly apply existential
one.

Alternatives to the PCF in the interpretation of concept graphs have been
proposed that involve the notions of nested graphs and cuts [2]. It was shown that
the resulting formalism, called Nested Query Graphs, have the same expressive
power over relational data as first order predicate logic and hence can be used
as a visual representation of most mainstream SQL queries.

Existing approaches outside the concept graphs-based paradigm (see [3, 6])
follow a more conventional coding schema. Here inter-object links are modeled
either through a particular sort of formal attributes or they reside in a differ-
ent binary tables that match two sorts of individuals among them (instead of
matching a set of individuals against a set of properties). Our own relational
concept analysis framework is akin to this second category of approaches, hence
our querying mechanisms are closer in spirit to those presented in the aforemen-
tioned papers.

For instance, in [3], the author proposes a language modeled w.r.t. SPARQL
(the query language associated with the RDF language) to query relational data
within the logical concept analysis (LCA) framework. The idea is to explore the
relation structure of the data, starting from a single object and following its links
to other objects. The language admits advanced constructs such as negation and
disjunction and therefore qualifies as a fully-fledged relational query language.

Recently, a less expressive language has been proposed in [6] for the brows-
ing of a relational database content while taking advantage of the underlying
conceptual structure. As the author himself admits, the underlying data for-
mat used to ground the language semantics, the linked context family, is only
slightly different from our own relational context family construct. The queries
are limited here to conjunctions and existential quantifiers, yet variables are ad-
mitted. Consequently, query topologies are akin to general graphs: In actuality,
the browsing engine comprises a factorization mechanism enabling the discovery
of identical extensions in the query graph which are subsequently merged.

The downside of remaining free of the extensive commitments made by the
concept graphs formalism both in terms of syntax and of semantics is the lack of
unified methodological and mathematical framework beneath this second group
of approaches. As a result, these diverge on a wide range of aspects which makes
their in-depth comparison a hard task.

First, there is an obvious query language expressiveness gap: On that axis, the
two extremes are occupied by the LCA- and the RCA-based approaches, respec-
tively, the former being the most expressive and the latter, the less expressive
one. Then, the role played by the concept lattices vs. the query resolution is
specific in each case. While in the LCA-based approach the concepts seem to
be formed on the fly, in [6] the author seems to imply that they are constructed
beforehand. Despite this distinction, in both cases the concept lattice is a sec-



ondary structure that supports query resolution. In our own approach however,
lattices are not only constructed prior to querying, but they also incorporate
relational information in the intents of their concepts. In this sense, they are the
primary structures whereas the queries are intended as navigational support.

6 Conclusion

In this paper, we have presented a query-based navigation approach that helps
an expert to explore a concept lattice family. The approach was based on an ap-
plication of Relational Concept Analysis to the selection of suitable Web services
for instantiating an abstract service composition. There are many perspectives of
this work. In our Web service experience, we tested other scaling operators (like
the covers operator) that offers other results, and helps to find more easily the
aggregate answers. The query language can be made more expressive (including
quantifiers). For example, we can request dishes containing only {chicken, cheese,
...}, which means that the universal scaling operator shall be used in the RCA
process for this particular relation. Besides, the query path can be calculated,
rather than being defined by the expert, suggesting more efficient exploration
paths.
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