
HAL Id: lirmm-00647733
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00647733

Submitted on 2 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rekindling Parallelism
Frédéric Gruau, Fabien Michel

To cite this version:
Frédéric Gruau, Fabien Michel. Rekindling Parallelism. Jacob Beal and Stefan Dulman and Olivier
Michel and Antoine Spicher. SASO: Spatial Computing Workshop, Oct 2011, Ann Arbor, Michigan,
United States. IEEE, pp.007-012, 2011, <http://www.spatial-computing.org/scw11:start>. <lirmm-
00647733>

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00647733
https://hal.archives-ouvertes.fr


Rekindling Parallelism
Frédéric Gruau∗†

∗ Laboratoire de Recherche en Informatique
Université de Paris-Sud 11, France

Email: gruau@lri.fr

Fabien Michel†
†Laboratoire d’Informatique de robotique et de Microélectronique

de Montpellier - Université Montpellier II - CNRS, France
Email: fmichel@lirmm.fr

Abstract—Computing in parallel means performing computa-
tion simultaneously, this generates two distinct views:

• Performance view A mean to accelerate computation using
coarse grain parallelism.

• Decentralization view A new way of programming by decen-
tralizing massive fine grain parallelism.

Researchers on massive parallel models study the programming
expressiveness, i.e. new bio-inspired ways of computing such as
artificial neural network or multi agent systems solving new kinds
of problems, but are usually not directly concerned about high
performance. In contrast, researchers on high performance tend
to narrow the scope of parallel expressiveness by preserving the
sequential model of computation and defining specific language
constructs that can lead to parallel run-time performance for
more classical parallel algorithms. We argue that parallelism will
really fully blossom only when both views get unified through
the achievement of a new generic computing model that, while
enabling decentralized computation, also supports classical way
of programming and incorporates the hardware constraints to
provide parallel performance. We are working on such a generic
model called self developing self mapping network. This paper
first justifies the motivation for such a model, and then sketches
the fundamental principles of this model.

Index Terms—parallel computing; cellular automata; decen-
tralized computation

I. OVERVIEW

In section II, we analyze the overwhelming presence of the
sequential way of programming parallel computer. In section
III, we formulate what is the additional expressiveness that
justifies and promotes decentralization as the real essence of
parallelism. A formal property of state reachability is put
forward. We show the advantages of decentralization using
three examples: Multi-Agent Systems (MAS), the brain, and
Artificial Neural Networks (ANN).

The rest of the paper discusses the challenges that need
to be met so that decentralized parallelism also integrates
a more classic structured programming framework, with the
high performance recompense. Section IV first shows that the
difficulty of programming massive parallel systems could be
related to the fact that dynamic structures cannot be instanti-
ated, and thus proposes the Self development of network as a
computing model designed with this issue in mind. Section V
considers performance issues, analyzes how high performance
is obtained within the sequential dogma, and highlights the
underlying scalability problems. We make precise the map-
ping problem that needs to be solved when massive parallel
hardware is targeted and introduce a new solution called self-
mapping, which can be applied to self-developing networks.

II. HIGH PERFORMANCE PARALLELISM AS A
CONTINUATION OF THE ‘SEQUENTIAL DOGMA’

Our programming abstraction, as well as the hardware of
our computers reflects a sequential dogma:

• Software We think a step-by-step sequence of instructions
that modifies a global state,

• Hardware We partition the hardware between a very big
passive part: The memory that stores this global state
and a hyper active processing part: The processor, which
executes that instruction flow.

Fig. 1. Artistic view of the Von Neumann’s avatar, courtesy of P. Femenias.

The sequential dogma is well accepted, but may look quite
bizarre, as rendered in Fig. 1. This dogma was adapted to
the early days of computers because of the scarce hardware
resources available at that time: The first processor had only
2250 transistors. What now that this number has reached
several billions? To exploit these huge resources, modern
processor chips include devices enabling to compute many
instructions simultaneously. Parallel processing has replaced
sequential processing. A chip is now hierarchically organized,
divided in several computing cores, each core having many
functional units, each functional unit processing hundreds of
bits simultaneously. Memory is also a hierarchy from register
to cache and hard disk. However, the sequential dogma, as
we stated it, is still almighty. Everyday programming is still
about a step-wise modification of a coherent global state. The
hardware is still divided between memory and processing.
Parallelism is commonly understood as an additional shortest-
as-possible set of constraints put on the programming style
that, if fulfilled, will enable a parallel compiler to produce

lir
m

m
-0

06
47

73
3,

 v
er

si
on

 1
 - 

2 
D

ec
 2

01
1

Author manuscript, published in "Spatial Computing Workshop 2011 at IEEE SASO'11, Ann Arbor, Michigan, USA : United States
(2011)"

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00647733/fr/
http://hal.archives-ouvertes.fr


code that exploit the hierarchical architecture and lead to best-
as-possible performance. In short:

Definition 1: Computing in parallel means computing in
sequential, but troublesome and faster.
The sequential dogma’s robustness can be explained by its low
cost, and its suitability to current social needs. Giving up the
global state hypothesis means programming a decentralized
system made of many interacting parts. Such complex systems
are much more difficult to program, or even to harness.
Furthermore, our usual applications are not naturally decen-
tralized. The sequential dogma is a key hole through which
we look at parallelism because it considers only a tiny bit
of the spectrum of computation that can be run on hardware,
ignoring the natural expressiveness of a parallel computing
medium. Let us now try to characterize this expressiveness.

III. NATURAL EXPRESSIVENESS OF A COMPUTE MEDIUM

A. An Alternative to the Sequential Dogma

As a set of interacting computing devices, a parallel machine
is usually controlled and programmed top-down to compute
faster a given well defined high level task. This misses an
important point: If we reason bottom-up, and directly study
such a set of interacting devices as a computing model,
each device can maintain a local state, and be programmed
in a decentralized way allowing it to compute differently
rather than simply ”acceleratingly”. Performance can also be
tremendous, because it can scale with the number of devices,
thanks to decentralization. This shift of mindset on parallelism
arises by considering it as the aggregation of basic resources
available in massive quantity: An arbitrary large number of
smallest as possible devices. The smallest computing device is
a Finite State Automata (FSA). The resulting theoretical model
of a parallel machine is thus a network of automata that can
each read the state of adjacent automata and update their own
local state. Arbitrary scalability imposes some further locality
constraint on the interconnection between automata: We con-
sider a natural way to obtain it, which consists in distributing
the automata homogeneously in euclidean space, and establish
connections locally in space. Three common examples are
Field Programmable Gate Arrays (FPGA), Cellular Automata
(CA), and sensor networks. Those architectures make the
object of study of the spatial computing community [1] that
refers to them as computing media. In a computing medium,
there is no dichotomy between a huge passive memory part
and a hyperactive small processing part. When programmed
in a decentralized way, each automaton potentially takes any
of its local states, partially independently from its neighbors.
If each automaton can choose between 2 states, a network of
n automatons can choose in one step, between 2n states. This
actually lead to a formal definition of decentralization.

Definition 2: A computer architecture is decentralized if the
number of states that can be reached in one time unit grows
exponentially according to its size.

The potential number of states stored in a memory grows
exponentially with its size, but classically, a memory only
stores a passive state, e.g. a collection of data. In a sequential

program, a single memory cell id changed at each time step.
The number of states accessible from a given state is linear in
the memory size, instead of exponential. In practice, sequential
programs tend to cycle through a small number of well
designed states, which remain proportional to the program’s
length. This is illustrated by the concept of flowchart which
summarizes all the possible states. In contrast, because each
automaton updates itself in parallel, a point in the state space
of an automata network is an active state like an enormous
program pointer. In an ANN, this program pointer follows
a rich dynamic which is the computation itself, whereas in
sequential programs, the program pointer stubbornly cycles
through the same bunch of loop nests and recursive calls.

Forcing an automata network to go through a specific
sequence of global states, is a misuse considering its great
expressiveness: Automata would have to behave in a predeter-
mined centrally organized way and would not be independent
any more, collapsing the state space. So, if we are interested
in preserving the intrinsic state richness property, we obtain
the alternative definition for parallelism:

Definition 3: Programming in parallel means programming
a decentralized system with a style enforcing an exponential
number of reachable states in one system transition.

If each automaton had a single choice. the number of
reachable state would be one, therefore, a decentralized system
needs automata to be non deterministic. On the other hand, if
an automaton behaved totally independently from its neighbor,
it would prevent a coherent collective computation to go on,
therefore the independence of an automaton with respect to its
neighbor should be only partial.

B. Examples of Decentralized Parallelism.

Engineering Application Specific Circuit, or FPGA circuits
for digital signal processing is a common industrial application
of automata network. The pipelined parallelism implicit in
this domain can be exploited by laying out circuits of op-
erators processing a flow of identical units of computations.
However this programming approach is not decentralized. We
distinguish two types of successful decentralized programming
MAS and ANN. In MAS, automata are embodied in agents
that can move in the medium, reproduce or die, and interact
with many other changing neighbors, so the virtual network
allowing automata to exchange messages is not fixed. In con-
trast, ANN neurons are wired into circuit, thus communicating
with the same neighbors for a long duration.

1) Multi-Agent Systems: MAS is a modeling [2] and pro-
gramming paradigm [3] which underlying philosophy strongly
relies on decentralized parallelism. Each agent is modeled as
a computational unit which perceives and acts locally in an
environment, according to its own internal clock. Although
MAS can therefore benefit from parallel hardware, they have
always been priorly considered for the computing features
arising from their decentralized nature: Quoting the pioneer
work on the Distributed Vehicle Monitoring Testbed [4] :

Distributed problem solving also differs from much
of the work in AI because of its emphasis on repre-

lir
m

m
-0

06
47

73
3,

 v
er

si
on

 1
 - 

2 
D

ec
 2

01
1



senting problem solving in terms of asynchronous,
loosely-coupled process networks that operate in
parallel with limited interprocess communication.

Decentralization is today the foundation of a whole trend
of research relying on a bio-inspired approach similar to
ANN’s, but from a collective perspective. Related researches
are inspired by the structural and functional aspects of natural
MAS (e.g. ant colonies). As thoroughly explained by Parunak
in [5], such MAS not only fulfill global functions but also
exhibit robustness and adaptiveness thanks to their very nature:

Firstly, at the micro-level, each agent is small in (1) mass,
(2) time, and (3) scope: (1) An agent is negligible compared
to the whole system so that its performance variations do not
destabilize the system: Collective dynamics prevail. (2) Agents
are forgetful. In such systems, agents produce, exchange and
deal with information which is made ephemeral by environ-
mental dynamics: As pheromones evaporate, obsolete ant paths
disappear rather than misleading other colony members, thus
making the whole system adaptive. (3) Local sensing and
actions: Agents cannot and do not need to know the global
state of the system: Control is done from the bottom up. Agents
rather sense and act only on their immediate vicinity so that
they compute and behave only according to a small set of data.

Secondly, at the macro-level, the behavior space of the entire
system is huge compared to the programming effort so that
massive MAS fall under the definition 3 given earlier. MAS are
able to generate numerous different trajectories, especially be-
cause of non-determinism in agent decisions and nonlinearity
of interactions [6]. Roughly, for 100 agents with 10 behaviors,
if the system’s state transition function is computed by having
each agent acting once, the number of reachable system states
is on the order of 10100 for each transition [6]. Furthermore,
such systems are fully decentralized: There is no central agent.
If such agent would exist, it would be both a single point of
failure and a potential performance bottleneck for the system.
As highlighted by Parunak, many transversal research works
emphasize that this feature is the fundamental key that enable
diverse complex systems to efficiently fulfill their purpose.

So, from a high level perspective, the computation which
is globally done by natural MAS is performed horizontally:
It is the interactions among the agents, and how they are
structured thanks to environmental dynamics, that produce
the global behavior. Moreover, these systems efficiently fulfill
global functions, while showing robustness and adaptiveness
to dynamically changing circumstances, precisely because they
are decentralized [5], [7], [8].

2) The Brain: A good large scale example of existing
decentralized automata network is given by nature: The brain
contains roughly 15 − 33 billion neurons, linked with up
to 10,000 synaptic connections each. Execution involves a
stirring of every bit of information which is continuous,
decentralized, non-deterministic and massively parallel. The
memory part and the computing part of each processing
element are intimately mixed to the point that they cannot be
separated. The brain has the ability to perform a wide variety
of tasks (programmability), involving sensing and actuating

in the real world, which are very difficult for a computer.
Brain’s computing spectrum can be termed general-purpose in
real world. Here is an example of difficult task solved with a
high degree of parallelism in a decentralized way: Experiments
show that the brain can decide if an image contains an animal
in less than 150 ms [9]. Since it takes approximately 1 ms
for a neuron to fire a spike, electric signals starting on the
retina bounce back and forth between neurons about 150 times.
Given the complexity of the task and the elementary nature
of neuron processing, the computation undoubtedly implies
a huge number of neurons simultaneously, i.e. a significant
portion of the gross 1015 synapses. In contrast, the parallelism
exposed in sequential programming style is usually no more
than the size of the array data structure used in the program,
but the processing involves millions, if not billions of stages.
Assume we draw computation and data (or signal) movements
so that simultaneous computations are drawn on the same
horizontal line and data dependencies are edges going up
vertically: Each node takes 1cm2 of paper, where the height
unit corresponds to a gate or neuron switching time constant.
A one second run of a high performance computer would
then fit on a sheet of paper, a few meter width, but with an
height easily reaching the moon. In contrast, a one second run
of the brain would be only 10 meters high, while wrapping
around the earth several times. High performance computers
compute vertically while the brain computes horizontally. This
indicates the existence of a decentralized way of computing
that is different in means and goals.

3) Artificial Neural Networks: ANN form a computational
model inspired by the structure and functional aspects of the
brain. It is a specific instance of automata network. Each
automaton models a simplified biological neuron. For example,
it can make a weighted sum of inputs, and applies a threshold
function. ANN process information using a connectionist
approach to computation, which stresses the parallel nature of
neural processing and the distributed nature of neural repre-
sentations. It is worth noting that connectionism was originally
known as Parallel Distributed Processing (PDP), which was a
popular terminology in the 1980s with the milestone book [10]
by McClelland, Rumelhart and the PDP Research Group. This
shows that at that time parallelism was indeed considered as
a different rather than faster way of processing.

C. Using Analog Time: A Core Step toward Decentralization

We advocate that there is one stepping stone toward decen-
tralization: Use the hardware devices in their analog regime
and Abandon the clock! The resulting model is yet more
difficult to program with, but has yet considerable more
intrinsic power. Relaxing the clock enables each device to
independently choose the precise moment of its activity. Time
is analog, and comes free at an infinite precision, which is
effectively used by the brain. Neurons’ firing are interleaved
in time, and the precise moment of firing plays a critical
role. This is believed to be a key factor accounting for visual
discrimination speed [9]. Developers see time scheduling as a
heavy constraint requiring time-expensive mechanisms such

lir
m

m
-0

06
47

73
3,

 v
er

si
on

 1
 - 

2 
D

ec
 2

01
1



as barrier synchronization, nature deals with it as a basic
ingredient useful to compute with and speed up computation.

IV. PROGRAMMING COMPUTING MEDIA

A. What Makes a Computing Medium Hard to Program

Fascinating they may look as brute computational force, raw
computing media such as a FPGA, or CA, have never been
popular as a computing model. They are inherently hard to
program for general purpose computing, no compiler from
some high level computing language exists: ANN are not
compiled from algorithms. FPGA are compiled, but using a
language describing circuits instead of algorithms. We argue
that the key impediment is the static topology: A given point
in the medium, an automaton, always takes its inputs from the
same neighborhood. The automata network is fixed. In the con-
nectionist approach to ANN, each neuron remains connected to
the same neurons. In FPGA, parts of a given circuit are usually
not dynamically reconfigured even if it is within technological
reach. A fixed circuit cannot express parallel algorithms with
dynamic data dependence such as Quicksort. Programming a
fixed circuit to compute an algorithm needs a very specific
mindset and is mainly adapted for signal processing. The brain
itself is not a static circuitry: It evolves during embryogenesis,
after birth, and in fact, throughout the entire life time.

The power of a programming language is to control the
dynamic unfolding from structures, be it with the stack or
the heap, be it for the data structure, or the hierarchical
function calls. We argue that the basic framework of automata
network misses a similar dynamic property that would free the
programmer from the burden to specify individually what each
particular point of the medium should do. Our goal is to relax
the static constraint, in order to enable the programming of
parallel complex systems. We propose to consider a network
structure that can dynamically develop. Of course, it will
not be the hardware that grows new connections and new
processing nodes, but a software system layer placed right
on top of the medium, making it look like developing.

B. Self Developing Machine

Self development machines are automata networks with a
programmable topology. New automata and new connections
can be added at run time. Each automaton must do more
than compute its next state: It should also specify an action
that adds a new node or deletes itself, or modifies its local
connections as well. This is formally known and studied
as graph rewriting. The repertoire of actions is fixed. The
automaton chooses its output action together with its next state.
Formally, this is a mealy machine, and since the execution of
the actions produces a development, we call it a self developing
machine (SDM). For clarity, it is convenient to distinguish
the network nodes from the automaton. A node is called self
developing agent or more simply agent.

A canonical initial configuration consists of a single ances-
tor agent connected to a set of fixed agents doing the parallel
input and output to an external host. The ancestor generates
new agents and connections, and develops a network. Each

agent runs the same automaton, but has its own state. Unlike
automata network or computing medium, self development is
a computing model, not a hardware model. The primitives are
designed so that executing a SDM on a computing medium is
feasible. A self developing agent is simulated on the medium
by a connected set of processing elements called its support.
Two adjacent agents must have adjacent supports. The creation
of new agents is done by dividing the support of an agent.
The different rules implementing preservation of support, or
division, and communication can be implemented as a system
layer on a computing medium, transforming it into an easier
to program virtual SDM. Besides, the agent’s neighborhood
integrates the hardware constraint, e.g. for the reasonable case
of a 2D computing medium, the network must remain planar.

C. Self Development as Programming Model

The fine-grain nature of each agent -lighter than a thread-
is an important aspect distinguishing self development from
multi-threading. Lightweight is required so that moving con-
stantly agents across the computing medium is feasible. Con-
ceptually, each agent should carry an elementary piece of data:
A single scalar value, and an elementary piece of code telling
how to use its data. So an agent cannot compute anything
by itself and needs to communicate and combine its value
with the ones of its neighbors. A non-trivial computation can
take place only by unfolding a network and communicating
data along the network edges. So programming a SDM really
means programming a dynamic network.

As a beginning, one can work out a small finite state au-
tomaton (FSA) to develop generic architectures reflecting com-
puter science data structures, such as binary trees or 2D grids.
Computation takes place when agents communicate along the
dynamic network, which can happen during development or
after. We showed in [11] that complete parallel algorithms
such as sorting or matrix algebra, can be compactly compiled
into a single FSA from a higher level language description. In
contrast to the sequential dogma, the resulting programs are
an homogeneous description that does not separate the code
from the data stored in an external memory.

V. HIGH PERFORMANCE ON COMPUTING MEDIA

A. Stating the Problem of Massive Parallel Performance

1) The Sequential Dogma Promotes Architectures that are
not Arbitrarily Scalable: Preserving the sequential dogma is
the major force shaping the silicon of industrial chip market,
at the expense of scalability. As a result, shared memory
machines are the underlying model of today multi-core pro-
cessors, because it fits the sequential dogma by preserving
the model of a Uniform Memory Architecture (UMA). We
are interested in long term massive parallel hardware, and
shared memory is well known to not scale very well above
tens of processors [12]. The alternative is to use distributed
memory machines. Graphics Processing Units (GPU) card is
a promising example offering an impressive computational
power. However, distributed memories are in general always
implemented together with an all-to-all router, which goal is to

lir
m

m
-0

06
47

73
3,

 v
er

si
on

 1
 - 

2 
D

ec
 2

01
1



allow any two PEs to communicate, using processor’s id. Two
arbitrary PEs are considered as being close together. But the
performance of these features cannot be scaled either, because
the time required for a signal to travel the length of the wire
is not taken into account.

2) Defining Computing Media as Scalable Architectures:
We therefore consider only distributed memory machines with
no global router: Each processor communicates only with its
direct neighbors. Thus the network topology must be taken
into account. Communication is done in constant time between
neighboring processors. Communication between remote pro-
cessors should be relayed through a path of intermediate pro-
cessors. Pushing scalability to millions of processors put more
constraint on the architecture: One must evaluate performance
according to the VLSI model of complexity stating that it takes
one unit of time for a signal to travel one unit of distance.
A typical scalable architecture on a 2D chip is the 2D grid.
[13] shows that any regular grid in 2D space complying with
VLSI complexity is similar to the 2D grid in some sense. One
can go further and considers scalability above the million of
processors, by relaxing the clocked behavior, and the crystal
regularity of the arrangement. Amorphous computers [14] are
made of loosely couple computing devices, homogeneously
scattered in 2D or 3D space. They should be of sufficient
density, so that local radio signals sent by a device reach an
average of 15 surrounding devices. Amorphous computers are
mainly used as distributed sensor networks. But they can also
simulate discretized physical laws like CA [15], making them
a plausible target architecture for self development, since the
parallelism is precisely based on simulating simple physics.
The term computing medium used throughout this work refers
precisely to those scalable architecture, regular 2D grid or
amorphous computers, that discretize space.

3) Mapping a Parallel Model to a Scalable Parallel Hard-
ware: Consider a scalable architecture, which is as discussed,
a network of distributed memory processors. The performance
of the mapping depends on two conditions:

• Load balancing: Balance the number of computations
done by each processor.

• Communications: Match the dependence graph with the
processor network.

Load balancing is necessary to maximize processor usage.
E.g. when synchronization barriers are used, and one PE gets
double of work than others, everybody have to wait for this
one. Communication is often the bottleneck for performance.
To minimize communication, computations depending on each
other should preferably map on the same processor, or at least
on neighboring processors. The idea is that if the dependence
graph has to be sliced into clusters of dense connectivity, each
cluster’s nodes should be mapped to the same processor, and
adjacent clusters should map on adjacent processors.

B. Existing Mappings toward Scalable Parallel Hardware

We now review the different ways in which the mapping
from software to hardware tackles the main two problems
mentioned: load balancing, and communication minimization.

1) The Mapping Underlying the Data Parallel Approach:
Data parallelism proposes to solve the mapping by distributing
data and applying variations of the owner compute rule, stating
that computations using a data are done by the processor
holding this data and computations are proportional to data.

• Load balancing: Arrays are tiled into regular blocks, and
distributed homogeneously.

• Communications: The lattice of dependence is projected
to the lattice of processors.

A loop nest is called regular when all the array accesses are
affine expressions of the loop indexes. The dependence graph
has a crystalline many dimensional lattice structure that can
be automatically projected on a regular lattice of processors
such as the 2D grid. This approach can provide massive
parallel performances that scale. However, if the program
holds several loop nests, the underlying optimization problem
of remapping arrays across loop nests is NP complete in the
number of loop nests [16]. Furthermore the approach limits
the parallel expressiveness, e.g. functional or heterogeneous
pipelined parallelism cannot be addressed.

2) The Mapping of Generic Automata Network: Automata
networks such as ANN provide an interesting intermediate
stage of mapping compared to generic dependence graph, and
can be seen as a folded form of a dependence graph where
each automata performs many computations of the underlying
dependence graph. Assuming that the overall computation
contained in n node of a given dependence graph, in evenly
distributed between m automaton, where m � n each doing
n/m computation, the size of the mapping problem is effec-
tively reduced from n to m. The mapping is now formulated
using this coarser grain building block:

• Load balancing: Balance the number of automata mapped
to each processor.

• Communications: Match the automata network with the
processor network;

This matching means that automata which are neighbors
and need to communicate must be mapped to either the same
processor, or at least to neighboring processors. It is difficult
to check these two conditions, the structure of the automata
network does not necessarily correspond to the processor
network structure. Even in the case where it would match,
the actual finding of the match between two graphs, called
graph homomorphism, is a NP hard problem, not solvable on
large scale. This difficulty explains why ANN are not famous
for efficient distributed implementation. In the literature, we
found mainly examples where only the ANN’s global structure
is taken into account to partition it into clusters [17].

3) The Mapping of Pipelined Circuits on FPGA: Recon-
figurable platforms perfectly fit our definition of scalable par-
allel hardware. Parallelism is usually obtained using pipelined
circuits made of operators that process computation streams.
The mapping problem is called placement and routing: The
operator with lowest throughput is bottlenecking the global
throughput. Therefore, more hardware should be devoted to it
to improve the overall performance:

lir
m

m
-0

06
47

73
3,

 v
er

si
on

 1
 - 

2 
D

ec
 2

01
1



• Load balancing: Speed up the least bandwidth operator.
• Communications: Minimize the longest wire.
A VLSI circuit is hierarchically organized using library

elements, reducing the problem size and making the mapping
more feasible. One circuit mapping technique of interest is
called force-directed placement [18] and consists in optimizing
a random initial placement by simulating physical laws: Con-
nections between nodes act as springs, pulling nearer any pair
of communicating automata to reduce communication latency.

C. The Self Mapping of Self Developing Network

The mapping of self developing network is done using a
generalization of force directed placement:

• Load balancing: All the agents exert a repulsive force
• Communications: Connected agents exert an attractive

force
Repulsive forces between neighbor agents in space lead to

an homogeneous distribution. Until now we have implemented
only repulsive force and homogenization. The 1D case is
simple enough (9 bits of state) to prove the convergence [19].
The 2D case needed around 200 bits states and has not been
published yet, but a Java applet shows the homogenization
rule in action for different initial situations [20]. Because
agents are gradually added, there is no need to deal with a
tangled random initial situation. The initial ancestor agent
starts in the middle of the computing medium, and the
input/output agents are fixed on the border. An agent is
allowed to compute only when the forces acting on it are
locally in equilibrium. Whenever new agents are added, the
computing medium takes the control, simulates the forces,
and moves the agents accordingly until a new equilibrium
is reached and then gives back the control to the agents.
Since the network is a planar graph, the adjustment needed
at each step is sufficiently simple so that each agent is
directly attracted toward its new equilibrium position. This
secures speed, and prevents the apparition of local minima.The
parallelization effort is shared between the user specifying
the self development and the machine doing the dynamic
mapping. There is no need for a treatment in-between, such as
a complex mathematical analysis, an intelligent compiler, or a
placement and routing software. The simulation of the force is
done throughout the same computing medium. The elementary
computing resources holding an agent can also simulate the
forces throughout the space using a CA discretization of
physical laws. Mapping is thus parallelized in an homogeneous
way with the computation itself. The mapping is considered
as a central run-time hard task rather than an offline static
optimization. Consequently, it is allocated a fixed percentage
of the processing power of each PE.

VI. CONCLUSION

This paper is a discussion about parallelism: It proposes
an analysis of the actual situation and advocates for research
directions that consider decentralization as a core feature
of parallel hardware. Such a perspective does not necessar-
ily means abandoning the traditional modular programming

approach. However, going on with traditional programming
with such a different context requires new principles enabling
structuring a raw computing medium into an easier to program
virtual machine. Considering this purpose, we sketch a model
called self developing self mapping network. This model now
needs to be turned into a working simulator which will be used
both as a proof of concept and as an empirical study tool.

REFERENCES

[1] A. Dehon, J.-L. Giavitto, and F. Gruau, Eds., Computing Media and Lan-
guages for Space-Oriented Computation 2006, Dagstuhl international
workshop 06361, 2006.

[2] F. Michel, J. Ferber, and A. Drogoul, “Multi-Agent Systems and
Simulation: a Survey From the Agents Community’s Perspective,” in
Multi-Agent Systems: Simulation and Applications, ser. Computational
Analysis, Synthesis, and Design of Dynamic Systems, D. Weyns and
A. Uhrmacher, Eds. CRC Press - Taylor & Francis, 05 2009, pp. 3–52.

[3] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Longman Publishing Co., Inc., 1999.

[4] V. R. Lesser and D. D. Corkill, “The distributed vehicle monitoring
testbed: A tool for investigating distributed problem solving networks,”
AI Magazine, vol. 4, no. 3, pp. 15–33, 1983.

[5] H. V. D. Parunak, “Go to the ant: Engineering principles from natural
multi-agent systems,” Annals of Operations Research, Special Issue on
Artificial Intelligence and Management Science, vol. 75, pp. 69–101,
1997.

[6] ——, “Generation and analysis of multiple futures with swarming
agents,” in 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010), Toronto, Canada, May 10-14, 2010,
Volume 1, W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck,
and S. Sen, Eds. IFAAMAS, 2010, pp. 1549–1550.

[7] M. Resnick, Turtles, termites, and traffic jams: explorations in massively
parallel microworlds. Cambridge, MA, USA: MIT Press, 1994.

[8] K. Kelly, Out of control: the rise of neo-biological civilization. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1994.

[9] A. K. Engel, P. Fries, and W. Singer, “Dynamic predictions: oscillations
and synchrony in top-down processing.” Nature reviews. Neuroscience,
vol. 2, no. 10, pp. 704–716, October 2001.

[10] D. E. Rumelhart, J. L. McClelland, and the PDP research group., Eds.,
Parallel distributed processing: Explorations in the microstructure of
cognition, Volume 1: Foundations. MIT Press, 1986.

[11] F. Gruau, C. Eisenbeis, and L. Maignan, “The foundation of self-
developing blob machines for spatial computing,” physica D:Nonlinear
Phenomena, vol. 237, 2008.

[12] B. Nitzberg and V. Lo, “Distributed shared memory: a survey of issues
and algorithms,” Computer, vol. 24, no. 8, pp. 52 –60, aug. 1991.

[13] P. M. B. Vitányi, “Locality, communication, and interconnect length in
multicomputers,” SIAM Journal on Computing, vol. 17, no. 4, pp. 659–
672, Aug. 1988.

[14] H. Abelson, D.Allen, D. Coore, C. Hanson, G. Homsy, J. T. F. Knight,
R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss, “Amorphous
computing,” Commun. ACM, vol. 43, no. 5, pp. 74–82, 2000.

[15] E. Rauch, “Discrete, amorphous physical models,” International Journal
of Theoretical Physics, vol. 42, no. 2, pp. 329–348, feb 2003.

[16] J. Li and M. C. Chen, “Index domain alignment: Minimizing cost of
cross-referencing between distributed arrays,” in Third Symposium on
the Frontiers of Massively Parallel Computation, College Park, Md.,
Oct. 1990, pp. 424–433.

[17] J. Ghosh and K. Hwang, “Critical issues in mapping neural networks
on message-passing multicomputers,” in ISCA ’88: Proceedings of the
15th Annual International Symposium on Computer architecture. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1988, pp. 3–11.

[18] K. Shahookar and P. Mazumder, “VLSI cell placement techniques,” ACM
Computing Surveys, vol. 23, no. 2, p. 143, Jun. 1991.

[19] L. Maignan and F. Gruau, “A 1D cellular automaton that moves particles
until regular spatial placement,” Parallel Processing Letters, vol. 19,
no. 2, pp. 315–331, 2009.

[20] F. Gruau and L. Maignan, “Homogeneization of particles on a 2d hexag-
onal CA,” 2010. [Online]. Available: http://blob.lri.fr/animation/blob.htm

lir
m

m
-0

06
47

73
3,

 v
er

si
on

 1
 - 

2 
D

ec
 2

01
1


