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Abstract— Clustering is probably one of the most frequently 
used approaches when facing a scaling problem in large 
networks. In many situations, however, the choice of the most 
appropriate algorithm for clustering can turn into a real 
dilemma. Numerical criteria have been proposed to evaluate 
the quality of the results of clustering algorithms. However, so 
many different criteria have been proposed that the dilemma 
gets even worse. Most criteria reveal different aspects of the 
quality of the results and hide others. The aim of this paper is 
to help with the understanding of clustering and to facilitate 
the comparison and the choice of clustering algorithm for a 
given purpose. Our proposal consists of studying both quality 
evaluation criteria and clustering algorithms. We start by 
discussing a selected set of representative criteria, and further 
conduct a case study on a large set of real data, measuring not 
only the quality of different representative clustering 
algorithms but also the impact of each criterion on the ranking 
of the algorithms. By providing empirical results on several 
large-scale corpus of either inter-related documents or lexical 
networks, we hope to clarify the field and facilitate designers' 
choices. 

Keywords-component; clustering; networks; quality; visual 
analysis. 

I. INTRODUCTION 
Clustering is often cited as the most efficient way so far 

known to face the challenging scaling problem. Using 
clustering makes it possible to manage and control large and 
complex networks at a higher level of abstraction. However, 
anyone eager to perform clustering on any network has to 
face a very dense, diverse and mature literature about 
clustering and choose amongst thousands of algorithms. As 
recalled by Jain in his recent review on that subject [10], 
"There is no best clustering algorithm". This does not mean 
that the choice of the algorithm does not matter. It just means 
that the choice of the appropriate algorithm for one purpose 
is multi-factorial by nature. Furthermore, the quality of the 
results given by different algorithms may vary significantly 
depending on the criteria used to evaluate the results.. 
Surprisingly, very few efforts have been made to help non-
clustering experts to understand what is at stake and how to 
compare the quality of various clustering algorithms and the 
evaluation of the quality of clustering results, remains mostly 
obscure and difficult to clarify in general. 

Our aim is to propose a selection of criteria and to report 
the results of a case study conducted on large networks of 
inter-related documents and lexical networks. The purpose of 
our case study is to evaluate the quality of clustering, and the 

data on which we have worked was chosen carefully. The 
first set of data was extracted from "Jeux de Mots", a lexical 
network of the French language. Jeux de Mots is one of the 
most accurate and complete publicly available lexical 
network for French[11]. The second set of data is extracted 
from papers published in the information retrieval field since 
1980 and relations between papers are computed on the fly 
as will be explained in the next section. 

Our proposal is twofold. First, we select and discuss a set 
of quality criteria and introduce a graph-based representation 
as a common ground to simplify and unify notations from 
different fields. As most networks can be conceptually 
represented by graphs, most current clustering algorithms 
applicable to networks can be simplified using graph-based 
representations. This notation is useful to compare and 
discuss quality criteria.  

Second, we report the results of empirical evaluation of 
clustering quality based on the criteria and visual analysis to 
explore the results of our experiments. 

In this paper, we first describe the datasets used for the 
experiments. We further describe and discuss the quality 
criteria used to analytically evaluate the results. We then 
rapidly review the clustering algorithms selected for the 
experiment. Finally, the two last sections report the results of 
the comparative evaluation of the selected set of clustering 
algorithms, and further discuss them. 

II. DATASETS 
Four datasets are derived from "Jeux de Mots", JdmAll 

contains Jdm2000 which contains Jdm200 containing in turn 
Jdm20 and that they respectively contains 111701 nodes, 
2000 nodes, 200 nodes and 20 nodes. 
We built two datasets from a corpus of 635 research papers 
in the field of information retrieval and digital libraries. We 
compute similarities between each pair of documents using 
the TF-IDF measure [15] and a Pearson's correlation. A large 
network is then obtained, where nodes are documents and 
similarities are weighted links. We construct Sig1000 and 
Sig10000 by keeping respectively the 1000 and 10000 best 
similarity relations.  For all these six datasets we studied the 
degree distribution. Jdm200, Jdm2000, JdmAll and Sig1000 
have degree distributions following a power-law tail cf. Fig 
1. We note γ the exponent. The Tab. 1 describes the datasets 
by providing the name, the number of nodes N, the total 
number of edges E, the exponent γ, the graph diameter D, the 
averaged clustering coefficient C, an URL describing the 
different datasets and proposing a link for downloading 
them. 
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Figure 1. Degree Distribution for each Dataset 



 
 
 

III. QUALITY CRITERIA 
Criteria for the evaluation of the quality of clustering 

may vary widely in terms of notations and subtlety in 
terms of concept. We propose notations that can express 
different criteria in a consistent notation manner in order 
to help with their comparison. The notation is based on 
graph theory basic concepts. A graph G is composed of a 
set of nodes denoted by N and a set of edges denoted by E 
that represent links between nodes. Applying clustering to 
G usually results in k clusters denoted by {C1...Ck} as k 
subsets of N. 

To describe the six different criteria selected from the 
literature and used in the experiment, we further introduce 
the following notations: 

 
n number of nodes in G 
e	
   number of edges in G	
  
k number of clusters after clustering 
ni number of nodes in the cluster Ci 

wei number of edges within the cluster Ci 
oei number of edges outgoing from the cluster Ci 
beij number of edges between two clusters Ci and Cj 
pei number of possible edges in Ci. For an undirected 

graph: pei= ni(ni-1)/2. For a directed graph: 
pei=ni(ni-1). 

mei number of missing edges in Ci. mei = pei - wei. 
we, 
be, 
pe 

and 
me 

total number of within-cluster edges, between-
cluster edges, possible edges and missing edges. 

  
With these notations, the criteria selected for the 

evaluation can be written as follows:  
 
Cut [23] is computed as the number of between-edges 

(also called extra-edges) over the number of within-edges 
(also called intra-edges). Lowest values correspond to 
best clustering results. 

  (1) 

 
Perf [22] takes into account the number of undesirable 

edges that can be considered as errors compared to an 
ideal clustering. These undesirable links are considered as 
edges between clusters, as well as missing edges within 
clusters. The number of missing edges is equivalent to the 
number of couples of nodes grouped in the same cluster 
without any edge relating them. Perf finally measures the 
ratio of undesirable edges over the number of possible 
edges and compares it to 1. Best values for Perf 
correspond to highest values. 

  (2) 

 
Cond [22] criterion equals an average over the 

conductance of each pair of clusters. The conductance of 
a pair of clusters Ci and Cj is the proportion of edges 
between Ci to Cj divided by the minimum number of 
edges within Ci and Cj. Lowest values correspond to best 
clustering results. To avoid divisions by zero, wei or wej 
equals are set to 1 in case of singleton clusters. 

  (3) 

 
Cov [22] is the ratio of the number of within-edges to 

the total number of edges in the graph. It can be 
considered as the inverse of a normalized version of cut. 

  (4) 

MQ [4] is a difference between the average within-
cluster edge density and between-cluster edge density. 
Therefore it varies between -1 and +1, and highest values 
correspond to best clustering results. In the case of a 

we =
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Name |N| |E| γ  Diam. C URL 

JDM 20 20 19 -1.0 6 0.0 Anonymized for Review 

JDM 200 200 265 -1,58 11 0.1140 Anonymized for Review 

JDM 2000 2000 3476 -1.8 13 0.1357 Anonymized for Review 

JDM ALL 111701 441854 -1.9 13 0.1933 Anonymized for Review 

SIG 1000 378 903 -1.48 20 0.3928 Anonymized for Review 

SIG 10000 626 10000 -0.52 5 0.4002 Anonymized for Review 

 

TABLE I.  DATASETS 



singleton cluster, wei and pei equal 0. In this case, we do 
not compute wei / pei but use the value of 1 instead. 

 
 

  (5) 

 
 
Mod [5] can be considered as a measure of Cov defined 

above corrected by the Cov computed for a random 
clustering of the same graph denoted as rCov. Therefore, 
the highest values for Mod correspond to best clustering 
results according to Cov and values below 0 correspond to 
clustering that are worse than a random clustering 
according to the Cov criteria. However, the computation 
of rCov is probably debatable even though discussing it 
would lead us beyond the scope of this paper. 

  (6) 

IV. CLUSTERING ALGORITHMS 
 

Clustering has a huge and multidisciplinary history 
since it has been used in many scientific fields including 
in information retrieval [19], data visualization [1], 
physics [5], etc. Several surveys have partially reviewed 
this literature [20,10,16]. In order to choose the 
algorithms to be tested in our study we had three criteria 
in mind. First, authors either provide source codes for the 
proposed algorithm or the description of the algorithm is 
sufficiently clear, complete and precise to be 
implemented. Second, the algorithm is relevant to 
clustering data such as complex networks. Third the set of 
algorithms tested should be representative of different 
types of clustering approaches. The Tab. 2 summarizes 
the choices made in terms of algorithms and indicates the 
URL of the implementation used in the experiment. 

 
The CNM algorithm [5] has a bottom-up approach. 

Communities are made for each node and further merged 
iteratively merged with others to increase the criteria of 
modularity defined in equation Equ. 6. CNM results can 
be represented by a hierarchical clustered graph or a 
simple clustered graph depending on how merging is 
handled. 

 
The BGLL algorithm [3] approach is very similar to 

CNM, but the definition of modularity differs and it 
makes the hierarchical clustered graph explicit as well as 
the level at which the clusters are extracted from the 
hierarchical clustered graphs. 

 
The CMJA algorithm [2] has a different approach from 

the two previous ones. CMJA is proposed for detecting 
communities in small world networks by identifying weak 
edges. The algorithm operates in two steps. Firstly, it 
processes a score on each edge, this score is proportional 
with the number of 4-cycles and 3-cycles containing the 
edge. Secondly it removes the k edges with the lowest 
scores. Clusters are the resulting connected components. 

 
The InfoMap approach [14] treats the problem of 

finding community structures in networks as an 
information-coding problem. The approach has three 
steps: (1) Infomap processes a random walk on the graph 
and generates the random path, (2) assigns a codeword to 
each node in the random pass using Huffman coding [8], 
(3) searches a clustering minimizing the average number 
of bits useful to describe it. 

 
The MCL Algorithm [7] detects communities using a 

Markov Matrix. The algorithm computes random walks 
by flow simulation. An operator named “Expansion” 
computes n multiplications of the matrix with itself. An 
operator named “Inflation” computes the Hadamard 

Algorithm Name Article Author’s Impl. Implementation 

CNM [5] Yes http://www.cs.unm.edu/~aaron/research/fastmodularity.htm 

SPK-MEANS [6] Yes http://www.cs.utexas.edu/users/dml/datamining/spkmeans.html 

Cluto [21] Yes http://glaros.dtc.umn.edu/gkhome/views/cluto 

LinLog [13] Yes http://www.informatik.tu-cottbus.de/~an/GD/ 

InfoMap [14] Yes http://www.tp.umu.se/~rosvall/code.html 

CMJA [2] No our implementation (link after blind reviews) 

BGLL [3] Yes http://sites.google.com/site/findcommunities/ 

Simple K-Means [12] No our implementation (link after blind reviews) 

NCut Algorithm [18] Yes http://www.cis.upenn.edu/~jshi/software/ 

MCL [7] No http://www.arbylon.net/projects/ 

 

MQ(G) =
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−
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Mod(G) = Cov − rCov

 
TABLE II.  ALGORITHM'S AND IMPLEMENTATIONS USED IN THIS EVALUATION 



matrix [17]. 

K-Means Algorithm [12] is one of the most frequently 
used algorithms for clustering and many slightly different 
versions have been proposed. The main principle is to 
start with an arbitrary partition of the dataset and try to 
move each element to a better cluster as long as possible 
to improve the overall within clusters cohesion. It is one 
very efficient and very simple algorithm to implement. 
However, it’s based on centroid computation. Therefore it 
requires that as a prerequisite over other algorithms that 
meaningful centroids can  be computed for the datasets. 

LinLog Algorithm [13] is a layout algorithm based on 
an energy model that aims at geometrically exhibiting 
clusters. Its principle is to optimize the layout accounting 
mainly for attraction and repulsion forces between nodes. 

The NCut Algorithm [18] comes from the image 
segmentation domain but can be adapted to graphs. Its 
principle is to optimize a criterion named “Normalized 
Cut”, using a spectral technique. 

The Cluto Toolkit [21] is a toolkit made of several 
clustering algorithms. Four approaches are tested in this 
paper: (1) The rb-based clustering approach proposed 
clustering computed by K-1 bisections, (2) the direct-
based clustering approach, (3) an agglomerative approach, 
(4) the graph-based approach based on a similarity graph 
and a min-cut criterion. 

 
The Spherical K-Means algorithm [6] is an extension 

of the well-known Euclidian K-Means algorithm. This 
algorithm partitions the dimension using great hyper-
circles.  

V. RESULTS 
To analyze the results we started by computing the 

ranking of each algorithm according to each criterion and 
for each dataset. Table 3 reports average ranking over 
different datasets of a subset of algorithms. It also reports 
the aggregated ranking over all criteria and computed as 
the average of all criteria. 

We further computed the Spearman correlation for 
each pair of criteria on each dataset and computed an 
average of all Spearman measures over all datasets. The 
results are reported in the diagram of Fig. 4 where average 
Spearman values between two criteria are written next to 
the edge connecting the two criteria on the diagram. For 
example, the average value found for Spearman 
correlation between cov and mod is 0.43.  Overall, with the 
exception of 1/cut and cov, most criteria are not strictly 
correlated. 

The variability of the results was an incentive to use a 
visual analysis approach to better understand the cause of 
variability. Therefore we used parallel coordinate diagrams 
[9] to interpret the results of the experiments. Figure 2, 3, 
5, 6, 7 and 8 show six such diagrams corresponding to the 
six different datasets. In these diagrams several vertical 
axes are used to embody different dimensions of the data 
explored. In our case, the vertical axes were used to 
embody the different quality criteria. Each item, e.g each 
algorithm is further represented by a polyline that joins the 
values corresponding to that algorithm for all criteria. 
These diagrams offer well-known benefits: (1) 
covariance/contravariance of ranking between two 
adjacent criteria is visually obvious, (2) the distribution of 
the values for each criteria is also visually obvious for all 
criteria and (3) it is very easy to select an algorithm that 
performs best for one criteria and to see how it compares 
to other algorithms in the other criteria. 

Algorithm MQ PERF COV CUT COND MOD Total Average 

CNM 4.5 4.3333 1.6667 4.5 3.1667 2.3333 3,4167 

BGLL 4.1667 3.1667 3.5 3 3.3333 2 3,1933 

CMJA 1 4.5 2.8333 3.5 3.1667 6 3,5 

InfoMap 2.1667 1.3333 5 1.8333 4.3333 4 3.1111 

LinLog 4.3333 3.6666 2.5 3.8333 3.3333 1.5 3.1944 

K-Means 3.8333 2.8333 3.6666 2.5 2.1667 4.1667 3.1944 

 

TABLE III.  AVERAGE OF RANKINGS  



  

MQ Perf. Cond. Cut Cov. Mod

  Cluto (agglo)  

  NCut (K=12)  

  38-Means  

  NCut (K=39)  

  NCut (K=11)  

  NCut (K=38)  

  12-Means  

  BGLL  

  CMJA  

  CNM  

  Cluto (direct)  

  11-Means  

  39-Means  

  Cluto (rb)  

  Spherical 12-Means  

  Spherical 39-Means  

  Cluto (graph)  

  Spherical 11-Means  

  InfoMap  

  LinLog  

  Spherical 38-Means  

MQ Perf. Cond. Cut Cov. Mod

  NCut (K=25)  

  Spherical 25-Means  

  24-Means  

  Spherical 26-Means  

  BGLL  

  CMJA  

  172-Means  

  CNM  

  NCut (K=56)  

  Spherical 57-Means  

  NCut (K=172)  

  Spherical 173-Means  

  56-Means  

  InfoMap  

  LinLog  

  25-Means  

Figure 3. Usage of parallel coordinate on quality criteria for JDM 2000 

Figure 2. Usage of parallel coordinate on quality Criteria for JDM 200 



VI. DISCUSSION 

A. General trends : important variations of ranking over 
criteria and datasets. 
Table 2 shows the average ranking for a subset of 

datasets and algorithms used in the experiment. It 
illustrates (1) important variations over different criteria 
and (2) very average ranking for all algorithms when all 
rankings are combined. These results tend to corroborate 
the position of both Jain and Buxton. Indeed W. Buxton 
used to say: "Everything that is best for something is 
worse for something else". And Jain, recently wrote: 
"While numerous clustering algorithms have been 
published and new ones continue to appear, there is no 
single clustering algorithm that has been shown to 
dominate other algorithms across all application domains 
[...] with the emergence of new applications, it has 
become increasingly clear that the task of seeking the best 
clustering principle might indeed be futile". However, that 
said, it is important to better understand the variations of 
the quality of algorithms measured by different criteria 
over varying datasets, and how the three interact.  

 

 

 

B. What are the dependencies between Cut, Cov, Cond 
and Mod ? 
All criteria used in the experiment try to capture how 

similar the elements inside clusters are and how dissimilar 
the clusters are one from another. Ratio of between-edges 
over within-edges is used in the definition of four (e.g. 
Cut, Cov, Cond and Mod) out of the six criteria used in 
the experiment. However these ratio are not exactly 
computed the same way and small differences in their 
definition sometimes has huge impact on the results. 

Cut and 1/Cov are strictly covariant, because Cov can 
be considered as the normalized version of 1/Cut. 
Therefore Spearman’s correlation between 1/Cut and Cov 
is 1 and parallel coordinates shows no crossing between 
1/Cut and Cov polylines. 

Both empirical and analytical results further suggest 
that Cov and Mod are partially correlated. Both Spearman 
and parallel coordinate diagrams clearly show that the two 
criteria are related but not strictly correlated. As 
mentioned earlier, Mod can be considered as a measure of 
Cov corrected by random, however, more work is needed 

to characterize the relationship between the two criteria 
more accurately. 

Cut and Cond use ratio of between-edges over within-
edges. Cut has a global computation of the ratio, whereas 
Cond not only computes the ratio at the cluster level but 
also considers only the minimum number of within-edges 
in each cluster. This difference between the two criteria 
has an important impact on the final results. Spearman’s 
average correlation between Cond and Cut is 0.20. Most 
parallel coordinate diagrams show that there are crossings 
between Cond and Cut but not too many, confirming a 
partial relation between the criteria. It seems that Cond is 
preferable over Cut when comparing highly variable 
numbers clustering results. Note that Cond and Cut are 
the only two criteria that have to be minimized and not 
maximized. Therefore, Spearman’s correlations have been 
computed with 1/Cut and 1/Cond instead of Cut and 
Cond. It is also the reason why we have reversed their 
axis in the parallel coordinate diagrams so that for all 
criteria best values are on top, worst values at the bottom. 

C. What makes Perf and MQ different from Cov, Cut, 
Cond, Mod ? 
The particularity of MQ, is that it explicitly accounts 

for the number of clusters. The number of clusters clearly 
impacts the number of possible between-edges and 
therefore the overall values of other criteria. When 
comparing clustering with very different numbers of 
clusters, MQ is very useful. Other criteria can exhibit 
severe bias. For example, in the extreme case where a 
clustering results in a single cluster, and is compared to a 
much better clustering that provides 10 clusters, no 
between-edge will be found in the first clustering and 
most criteria will compute a high quality measure despite 
the fact that the clustering is really doing a poor job 
compared to the second. The fact that MQ accounts for 
the number of clusters prevents it from that bias. Also, 
experiments showed no correlation at all with criteria 
such as Cov or mod and these results suggest that using 
MQ capture significantly different aspect of the quality of 
clustering and that using it in conjunction with Cov can be 
useful to balance other biases such as, for example, the 
bias coming from varying numbers of cluster. 

Perf is probably the most debatable criteria amongst 
those reported in this paper. It surely tries to capture a 
different aspect of the quality of the results than the 
others. Perf captures the number of errors compared to an 
clustering that would ideally lead to a disconnected set of 
cliques. However, the fact that the computation of Perf 
computes a ratio of the number of errors (between edges 
and missing within edges) over the total number of 
possible edges can lead to very misleading interpretations 
in many real situations. For example, previous 
experiments showed that random clustering can get better 
Perf ratings than other clustering. 
  

Figure 4. Spearman Rank Correlation on Quality Measures 

Figure 2.   



  

MQ Perf. Cov. Cut Cond. Mod

  1804-Means  

  4678-Means  

  595-Means  

  BGLL  

  CMJA  

  34-Means  

  CNM  

  InfoMap  

  LinLog  

  31-Means  

Figure 5. Usage of parrallel coordinate on quality criteria for JDM 20 

Figure 3.   

Figure 6. Usage of parallel coordinate on quality criteria for JDM ALL 

MQ Perf. Cov. Cut Cond. Mod  MCL  

  Cluto (agglo)  

  Spherical 4-Means  

  4-Means  

  CMJA  

  CNM  

  LinLog  

  BGLL  

  InfoMap  

  Cluto (graph)  

  NCut (K=4)  

  Cluto (direct)  

  Cluto (rb)  



  

Figure 8. Usage of Parrallel Coordinate Merged on Quality Criterion for SIG 1000 

Figure 7. Usage of Parrallel Coordinate on Quality Criterion for SIG 10000 

Figure 4.   

MQ Perf. Cov. Cut Cond. Mod

  MCL  

  InfoMap  
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MQ Perf. Cov. Cut Cond. Mod

  12-Means  
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  NCut (K=11)   
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  Spherical 37-Means  

  CNM  
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  Spherical 12-Means  

  NCut (K=6)   

  Spherical 6-Means  

  Spherical 11-Means  

  NCut (K=12)   

  LinLog  

  InfoMap  



VII. CONCLUSION 
In order to compare clustering results, most existing 

numerical criteria found in the literature focus on 
evaluating the quality of the compromise between intra-
cluster cohesion and inter-cluster differentiation. In this 
paper we report the results of several experiments with 
clustering algorithms over different networks. We have 
combined different criteria and analyzed the results using 
different approaches. The lessons learned are : (1) there is 
a lot of variation in the quality of the same clustering 
technique depending on the criteria / the datasets / the 
parameters used in the algorithm and (2) out of six 
different quality criteria found in the literature, Cov and 
MQ used in conjunction can probably capture most of 
what the others can capture and (3) a lot of different 
aspects of the quality of the results cannot be captured at 
all with existing criteria. This experiment suggests that a 
lot of work is needed to better understand the quality and 
characteristics of automatic clustering results before using 
them to manage and control large and complex networks . 
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