Tight Approximation for Scheduling Parallel Job on Identical Clusters
Marin Bougeret, Pierre-Francois Dutot, Denis Trystram, Klaus Jansen, Christina Robenek

To cite this version:
Marin Bougeret, Pierre-Francois Dutot, Denis Trystram, Klaus Jansen, Christina Robenek. Tight Approximation for Scheduling Parallel Job on Identical Clusters. RR-12001, 2012. lirmm-00656780

HAL Id: lirmm-00656780
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00656780
Submitted on 5 Jan 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tight approximation for scheduling parallel job on identical clusters

Marin Bougeret†, Pierre-Francois Dutot†, Denis Trystram†, Klaus Jansen‡, Christina Robenek‡

January 5, 2012

Abstract

In the grid computing paradigm, several clusters share their computing resources in order to distribute the workload. Each of the N clusters is a set of m identical processors (connected by a local interconnection network), and n parallel jobs are submitted to a centralized queue. A job J_j requires q_j processors during p_j units of time. We consider the Multiple Cluster Scheduling Problem (MCSP), where the objective is to schedule all the jobs in the clusters, minimizing the maximum completion time (makespan). This problem is closely related to the multiple strip packing problem, where the objective is to pack n rectangles into m strips of width 1, minimizing the maximum height over all the strips.

MCSP is 2-inapproximable (unless $P = NP$), and several approximation algorithm have been proposed. However, ratio 2 has only been reached by algorithms that use extremely costly and complex subroutines as “black boxes” (for example area maximization subroutines on a constant ($\approx 10^4$) number of bins, of PTAS for the classical $P||C_{\text{max}}$ problem).

Thus, our objective is to find a reasonable restriction of MCSP where the inapproximability lower bound could be tightened in almost linear time. In this spirit we study a restriction of MCSP where jobs do not require strictly more than half of the processors, and we provide for this problem a 2-approximation running in $O(\log^2(nh_{\text{max}})n(N + \log(n)))$, where h_{max} is the maximum processing time of a job. This result is somehow optimal, as this restriction of MCSP (and even simpler ones, where jobs require less than $\frac{m}{2}$, $c \in \mathbb{N}, c \geq 2$) remain 2-inapproximable unless $P = NP$.

†LIRMM, Montpellier
‡LIG, Grenoble, France
‡Department of Computer Science, University Kiel, 24118 Kiel, Germany
1 Introduction

1.1 Problem statement

In the grid computing paradigm, several clusters share their computing resources in order to distribute the workload. Each cluster is a set of identical processors connected by a local interconnection network. Jobs are submitted in successive packets called batches. The objective is to minimize the time when all the jobs of a batch are completed, so that the jobs of the next batch can be processed as soon as possible. Many such computational grid systems are available all over the world, and the efficient management of the resources is a crucial problem.

Let us start by stating the Multiple Cluster Scheduling Problem (MCSP) more formally (see Figure 1).

![Figure 1: Example (for n = 9 jobs and N = 2 clusters) of a solution that is feasible for the MCSP and not feasible for the MSPP. Notice that J₁ is packed in a "non continuous" way (using non consecutive indexes of processors).](image)

Definition 1 (MCSP). We are given \(n \) parallel rigid jobs \(J_j \), \(1 \leq j \leq n \), and \(N \) clusters. A job \(J_j \) requires \(q_j \) processors during \(p_j \) units of time, and each cluster owns \(m \) identical processors. The objective is to schedule all the jobs in the clusters, minimizing the maximum completion time (makespan). Constraints are:

1. the \(q_j \) processors allocated to job \(J_j \) must belong to the same cluster

2. at any time, the total number of used processors in any cluster must be lower or equal to \(m \)

We now recall the Multiple Strip Packing problem (MSPP), which is closely related to MCSP.
Definition 2 (MSPP). We are given \(n\) rectangles \(r_j, 1 \leq j \leq n\), and \(N\) strips. Rectangle \(r_j\) have height \(h_j\) and width \(w_j\), and all the strips have width 1. The objective is to pack all the rectangles in the strips such that the maximum reached height is minimized. Constraints are

1. a rectangle must be entirely packed in a strip (saying it differently cannot be split between two strips)

2. at any level of any strips, the total width of packed rectangle must be lower or equal to 1

3. a rectangle must be allocated "contiguously"

Thus, the only difference between MCSP and MSPP is constraint 3), which in terms of job scheduling amounts to force jobs to use consecutive indexes of processors (see Figure 1). Of course, results for MCSP generally not apply to MSPP, because of the additional contiguous constraint. The converse is also not clear, as ratio of approximation algorithms for MSPP may not be preserved when considering MCSP, as optimal value of an MCSP instance may be strictly better than the corresponding one for MSPP. However, as we can notice in Figure 2, many results for MSPP directly apply to MCSP, as the proposed algorithms build contiguous schedules that are compared to non-contiguous optimal solutions.

We chose to adopt the "packing" vocabulary in this paper, so that solutions can be described using classical vocabulary of packing problems (like shelves for example). Thus, the problem treated in this paper (MCSP) is seen as the MSPP, without constraint 3).

1.2 Related Work

As shown in [Zhu06] using a gap reduction from the 2 partition problem, MCSP (and MSPP) are 2-inapproximable in polynomial time unless \(P = NP\), even for \(N = 2\). The main positive results for MCSP are summarized in Figure 2.

We must distinguish the 3-approximation of [STY08] and the \(\frac{3}{2}\)-approximation of [BDJ+10] that have a low computational complexity (that are usable on real size instances) from the 2-approximation in [BDJ+09] and the \(2 + \epsilon\)-approximation in [YHZ09]. Indeed, the 2-approximation requires using high running time algorithm when the number of clusters is lower than a constant \(N_0\). Thus, any exponential dependency in \(N_0\) is hidden, and the value of this constant \((N_0 \approx 10^4)\) makes this algorithm impossible to use. The \(2 + \epsilon\)-approximation requires solving the famous \(P//C_{\text{max}}\) problem (which is makespan minimization when scheduling sequential jobs on identical machines) with a ratio \(1 + \frac{\epsilon}{2}\). Thus, to give an ough idea, applying this technique with \(\epsilon = \frac{1}{4}\) would lead to a \(\Omega(n^{36})\) algorithm, using the famous PTAS of [HS87].

\[\text{\footnotesize \[1\] Even if some recent advances in the PTAS design for \(P//C_{\text{max}}\) allowed to decrease the asymptotic dependencies in \(\frac{1}{\epsilon}\) (like \(2^{O(\frac{1}{\epsilon}\log^3(\frac{1}{\epsilon}))}\) in [Jan09], the running time of these new algorithms remain very high due to constants.\]}

3
Figure 2: Main results

At last, notice that the remark in [YHZ09] even states that any ρ-approximation for P/\textit{C}$_{\text{max}}$ can be turned into a 2ρ-approximation for MCSP (using the Steinberg’s algorithm).

1.3 Motivations and contributions

Our previous $\frac{5}{2}$-approximation in [BDJ+10] is based on the discarding technique presented in Section 2.2. What we call discarding technique is a classical framework in scheduling problems. The idea is to define properly a set of "negligible" items (items are rectangles here), and to prove that it is possible to add these items only at the end of the algorithm without degrading the approximation ratio. Thus, the effort can be focused on the set I' of remaining "large" items, that are generally more structured.

The $\frac{5}{2}$-approximation was obtained through a basic application of the technique (i.e. with a set I' containing only really huge rectangles, for example rectangles whose width is larger than $\frac{1}{2}$). As we believe that the discarding technique of Section 2.2 is well suited for the MCSP problem, we are intended to apply it again using a more "challenging" set I'. A natural direction would be to improve the $\frac{5}{2}$ ratio for MCSP by targeting a fixed ratio $\rho < \frac{5}{2}$. Typically, one could target $\rho = \frac{7}{3}$ by defining the small jobs as jobs whose length is lower than $\frac{1}{3}$ (instead of $\frac{1}{2}$). However, as the relative performance improvement is getting smaller, and the difficulty of these "ratio tailored" proofs is likely to increase rapidly, we considered a different approach.

Our objective is to find a reasonable restriction of MCSP where the inapproximability lower bound could be tightened. In this spirit we study a restriction of MCSP where all rectangles have width lower than $\frac{1}{2}$ (i.e. jobs submitted to clusters do not require strictly more than half of the processors), and we provide for this problem a very fast 2-approximation, running in $O(\log(\text{n}h_{\text{max}})n(N + \log(n)))$. It turns out that this result is somehow optimal, as this restriction of MCSP (and even simpler ones, where width of rectangles

<table>
<thead>
<tr>
<th>Problem</th>
<th>Ratio</th>
<th>Remarks</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCSP, MSPP</td>
<td>2ρ</td>
<td>Need solving P/\textit{C}$_{\text{max}}$ with a ratio ρ</td>
<td>[YHZ09]</td>
</tr>
<tr>
<td>MCSP</td>
<td>$5/2$</td>
<td>Fast algorithm</td>
<td>[BDJ+10]</td>
</tr>
<tr>
<td>MCSP, MSPP</td>
<td>2</td>
<td>Costly algorithm</td>
<td>[BDJ+09]</td>
</tr>
<tr>
<td>MCSP, MSPP</td>
<td>AFPTAS</td>
<td>Additive constant in $O(\frac{1}{\rho})$, and in $O(1)$ for large values of N</td>
<td>[BDJ+09]</td>
</tr>
<tr>
<td>MCSP</td>
<td>3</td>
<td>Fast (and decentralized) algorithm that handle clusters having different size</td>
<td>[STY08]</td>
</tr>
<tr>
<td>MCSP</td>
<td>2</td>
<td>Requires max $w_j \leq \frac{1}{2}$</td>
<td>this paper</td>
</tr>
</tbody>
</table>

Fast algorithm
is lower than $\frac{1}{c}$, $c \in \mathbb{N}, c \geq 2$) remain 2-inapproximable unless $P = NP$.

2 General principles

In this section, we generalize the framework used in the $\frac{5}{2}$-approximation of [BDJ+10]. This framework will be applied in Section 3 to get the 2-approximation.

2.1 Preliminaries

Recall that our objective is to (non contiguously) pack n rectangles r_j into N strips of width 1. Rectangle r_j has a height h_j and a width w_j. We denote by $s(r_j) = w_jh_j$ the surface of r_j. These notations are extended to $W(X)$, $H(X)$ and $S(X)$ (where X is a set of rectangles), which denote the sum of the widths (resp. heights, surfaces) of rectangles in X.

A *layer* is a set of rectangles packed one on top of the other in the same strip (as depicted Figure 3). The height of a layer Lay is $H(\text{Lay})$, the sum of the height of all the rectangles in Lay. A *shelf* is a set of rectangles that are packed in the same strip, such as the bottom level of all the rectangles is the same. Even if it is not relevant for the non-contiguous case, we consider for the sake of simplicity that in a shelf, the right side of any rectangle (except the right most one) is adjacent to the left side of the next rectangle in the shelf. Given a shelf sh (sh denotes the set of rectangles in the shelf), the value $W(sh)$ is called the *width* of sh. Packing a shelf at level l means that all the rectangles of the shelf have their bottom at level l. A *bin* is a rectangular area that can be seen as reserved space in a particular strip for packing rectangles. As a bin always has width 1, we define a bin by giving its height h_b, its bottom level l_b and the index i_b of the strip it belongs to. Packing a shelf sh in a bin b means that sh is packed in strip S_{i_b} at level l_b. Moreover we always guarantee that the height of any rectangle of sh is lower than h_b.

The *utilization* $u_\pi^i(l)$ of a packing π in strip S_i at level l (sometimes simply denoted by $u(l)$ or $u_i(l)$) is the sum of the width of all the rectangles packed in S_i that cut the horizontal line-level l (see Figure 3). Of course we have $0 \leq u_\pi^i(l) \leq 1$ for any l and i.

Let us now describe three useful procedures. The $\text{CreateLayer}(X, h)$ procedure creates a layer Lay (using rectangles of X) of height at most h, using a Best Fit (according to the height) policy (BFH). Thus, $\text{CreateLayer}(X, h)$ adds at each step the highest rectangle that fits. Of course, the layer produced by the procedure is such that $H(\text{Lay}) \leq h$. Moreover, notice that we will always pack the layers in the strips with *narrowest rectangles on the top*. The $\text{CreateShelf}(X, w)$ creates a shelf sh (using rectangles of X) of width at most w, using the Best Fit (according to the width) policy (BFW). Thus, $\text{CreateShelf}(X, w)$ adds at each step the widest rectangle that fits. Of course, the shelf produced by the procedure is such that $W(sh) \leq w$. Throughout the paper, we consider that the sets of jobs used as parameters in the algorithms are modified after the calls.
Let us now state a standard lemma about the efficiency of the “best fit” policies.

Lemma 3. Let Sh denote the shelf created by $\text{CreateShelf}(X, w)$. If the k widest rectangles of X are added to sh, then $W(Sh) > \frac{k}{k+1}w$.

Proof. Let x be the cardinality of X. Let us assume that $w_i \geq w_{i+1}$ for $1 \leq i < x$. Let $i_0 \geq k + 1$ be the first index such that r_{i_0} is not in Sh. Let $a = \sum_{i=1}^{i_0-1} w_i$. We have $W(Sh) \geq a \geq (i_0 - 1)w_{i_0} > (i_0 - 1)(w - a)$ leading to $a > \frac{i_0 - 1}{i_0}w \geq \frac{k}{k+1}w$. \hfill \square

2.2 Discarding technique applied to MCSP

2.2.1 How to pack all rectangles in three steps

Discarding techniques are common for solving packing and scheduling problems. As mentioned before, the idea is to define properly a set of “small” items (rectangles here), and to prove that adding these small items only at the end of the algorithm will not degrade the approximation ratio. Thus, the effort can be focused on the remaining “large” items. In this section we present an adaptation of this general technique to the context of non-contiguous multiple strip packing. As usual, the set of big rectangles $I'(\alpha, \beta) \subseteq I$ depends on parameters (α and β here) that we chose, and the larger the set $I'(\alpha, \beta)$ we can handle, the better the approximation ratio will be (as the remaining small rectangles become really negligible).

In order to partition rectangles according to their height, we need to use the well-known dual approximation technique [HS88], and we denote by v the guess of the optimal value. Given an instance I, let $L_{WD} = \{w_j > \alpha\}$ be
the set of wide rectangles, \(L_W = \{ r_j > \beta v \} \) be the set of high rectangles, and
\(I' = L_W \cup L_H \) be the set of big rectangles, with \(0 < \alpha < 1 \) and \(0 < \beta < 1 \).
Let \(r(\alpha, \beta) = \left(\frac{1}{1-\alpha} + \beta \right) \) be the approximation ratio we target (the origin of this formula will be explained in Section 2.2.2). We also need the following definition.

Definition 4. A packing is \(x \)-compact (see Figure 4) if and only if for every strip \(S_i \) there exists a level \(l_i \) such that for all \(l \leq l_i \), \(u_i(l) > x \) and \(u_i \) restricted to \(l > l_i \) is non-increasing.

Let us now describe the three main steps of our approach. Notice that what we call a preallocation is a "normal" packing (i.e. that define the bottom level of each rectangle, which is sufficient) that is based on simple structures like shelves and layers. We will prove that to get a \(r(\alpha, \beta) = \left(\frac{1}{1-\alpha} + \beta \right) \) ratio, it is sufficient to:

a) construct a preallocation \(\pi_0 \) of \(I' \) that fits in \(r(\alpha, \beta)v \), and such that rectangles of \(L_W \subset I' \) are already packed in a \((1-\alpha)\)-compact way

b) turn \(\pi_0 \) into a \((1-\alpha)\)-compact packing \(\pi_1 \) by repacking rectangles of \(I' \setminus L_W \) using the list algorithm \(LS_{\pi_0} \) of Lemma 5

c) add the small remaining rectangles \((I \setminus I') \) using \(LS \) (see Lemma 6)

![Figure 4: Example showing a \((1-\alpha)\) compact packing, and why step c) is simple. Indeed, adding as soon as possible a small rectangle \(r_j \) (having \(h_j \leq \beta v \) and \(w_j \leq \alpha \)) to a \((1-\alpha)\) compact packing cannot exceed \(v(\frac{1}{1-\alpha} + \beta) \). The \(l_i \) values are defined according to Definition 4.](image)

Step a) is the most difficult one. Thus, Section 3 is entirely devoted to the construction of \(\pi_0 \) (for \((\alpha, \beta)\) equal to \((\frac{1}{2}, \frac{1}{3})\)). Of course, building the preallocation becomes harder when \(\alpha \) and \(\beta \) are small, as the number of rectangle of \(I' \) increases and \(r(\alpha, \beta) \) decreases. Roughly speaking, the simple shapes of rectangles of \(I' \) allows us to construct \(\pi_0 \) with a simple structure. We will denote by \(\pi_0^* \) the set of rectangles packed by \(\pi_0 \) in \(S_i \).
2.2.2 Proving steps b) and c)

We now prove that applying steps b) and c) leads to a $r(\alpha, \beta)$ ratio. In this section, we suppose that we are given a guess v, and a packing π_0 (called the preallocation) of $I' = L_{WD} \cup L_H$ that fits in $r(\alpha, \beta)v$, and such that rectangles of $L_{WD} \subset I'$ are already packed in a $(1 - \alpha)$-compact way. We consider step b): how to turn π_0 into a $(1 - \alpha)$-compact packing.

Lemma 5 (Step b)). Let π_0 be the preallocation of I' constructed in Step a). Let $\pi_1 = \pi_0 \cap L_{WD}$ denote π_0 when keeping only rectangles of L_{WD}. Recall that π_1 is already a $(1 - \alpha)$-compact packing of rectangles of L_{WD}.

Then, we can complete π_1 into a $(1 - \alpha)$-compact packing π_1 of I', such that the height of π_1 is lower or equal to the height of π_0.

Proof. Let us define the LS_{π_0} algorithm that adds rectangles of $I' \setminus L_{WD}$. Let us consider a single strip S_i. Let $\pi_0' = \pi_0$ restricted to S_i, and π_1' denote π_1 restricted to S_i. Let $X = \{r_1, \ldots, r_p\}$ be the set of preallocated rectangles of $I' \setminus L_{WD}$ that we have to add to S_i. We assume that $lvl(j) \leq lvl(j + 1)$, where $lvl(j)$ is the bottom level of r_j in π_0.

For our considered strip S_i, the LS_{π_0} algorithm executes $AddAsap(r_j, \pi_1')$, for $1 \leq j \leq p$, where $AddAsap(r, \pi_1')$ adds rectangle r to π_1' (in S_i) at the smallest possible level. Notice first that adding with $AddAsap$ a rectangle r_j with $w_j \leq \alpha$ to a $(1 - \alpha)$-compact packing creates another $(1 - \alpha)$-compact packing. Thus it is clear that π_1 is $(1 - \alpha)$-compact.

For any $1 \leq j \leq p$, let (π_1', j) denote the packing in S_i just before adding r_j with $AddAsap$, and let (π_0', j) denote the packing $\pi_0' \cap (L_{WD} \cup \{r_1, \ldots, r_{j-1}\})$.

Let us prove by induction on $j \in \{1, \ldots, p\}$ that $u(\pi_1', j)(l) \leq u(\pi_0', j)(l)$, for any $l \geq lvl(j)$. We assume that the property is true for $j = 1$ (we even have an equality). Let us suppose that the property is true for j, and prove it for $j + 1$. Let $l \geq lvl(j + 1)$. The induction property for rank j implies that r_j is added by $AddAsap$ at a level lower or equal to $lvl(j)$. Thus, if r_j intersects l in $(\pi_1', j + 1)$, then it also occurs in $(\pi_0', j + 1)$.

Thus in this case we have

$$u(\pi_1', j + 1)(l) = u(\pi_1', j)(l) + w_j \leq u(\pi_0', j)(l) + w_j = u(\pi_0', j + 1)(l)$$

If r_j does not intersect l in (π_1', j), then clearly $u(\pi_1', j + 1)(l) = u(\pi_1', j)(l) \leq u(\pi_0', j + 1)(l)$

Thus we proved that for any $1 \leq j \leq p$ we have $u(\pi_1', j)(l) \leq u(\pi_0', j)(l)$ for any $l \geq lvl(j)$, implying that every r_j is added by $AddAsap$ at a level lower or equal to $lvl(j)$. Thus, the height of π_1 is lower or equal to the height of π_0.

\[\square \]
We now prove in Lemma 6 that after adding rectangles in step c), the height of the packing do not exceed \(r(\alpha, \beta)v = (\frac{1}{1-\alpha} + \beta)v\). This explains why the height of the pre-allocation should also be bounded by \(r(\alpha, \beta)v\).

Lemma 6 (Step c)). Let \(\pi_1\) be a
\((1 - \alpha)\)-compact packing of \(I'\). Adding to \(\pi_1\) rectangles of \(I \setminus I'\) with a List Scheduling algorithm (LS) leads to a packing \(\pi\) having height lower than \(\max(\text{height}(\pi_1), v(\frac{1}{1-\alpha} + \beta))\).

Proof. The LS algorithm scans all the strips from level 0, and at any level adds any rectangle of \(I \setminus I'\) that fits. Notice that the final packing \(\pi\) is \((1 - \alpha)\)-compact, since we add rectangles \(r_j\) with \(w_j \leq \alpha\) to an \((1 - \alpha)\)-compact packing.

Let us assume that the height of \(\pi\) is due to a rectangle \(r_j \in I \setminus I'\) that starts at level \(s\). This implies that when packing \(r_j\) we had \(l_i \geq s\) for any strip \(i\) (with \(l_i\) defined as in Definition 4). According to this definition we have \(u_i(l) > 1 - \alpha\) for any \(l \leq l_i\). Thus, we have \(S(l) > \sum_{i=1}^{N} l_i (1 - \alpha) \geq N (1 - \alpha)s\), implying that \(s < v(\frac{1}{1-\alpha})\), and thus that of height of \(\pi\) is lower or equal to \(s + \max_{j \in I' \setminus I} h_j \leq v(\frac{1}{1-\alpha} + \beta)\).

Thus, we now apply this framework with \(\alpha = \frac{1}{2}\) and \(\beta = \frac{1}{2}\) to get a 2-approximation.

3 A 2-approximation for a special case of MCSP

3.1 Motivation

As explained in the related work, the \(2 + \epsilon\)-approximation in [YHZ09] and the 2-approximation we recently proposed in [BDJ+09] are rather complexity results than practical algorithms. We aim at constructing a low cost algorithm that could be used in a practical context. Thus, we are looking for a (reasonable) restriction of the MCSP that would help to tighten the bounds, and we consider that all the rectangles have width lower or equal to \(1/2\).

Lemma 7. The MCSP where every rectangle has width lower (or equal) to \(\frac{1}{2}\) has no polynomial algorithm with a ratio strictly better than 2, unless \(P = NP\).

Proof. As in [Zhu06] for the general version, we construct a gap reduction from the 2-partition problem. Let \(\{x_1, \ldots, x_n\} \subset \mathbb{N}^n\) and \(a\) such that \(\sum_{i=1}^{n} x_i = 2a\).

Without loss of generality, let us assume that for any \(i\), \(x_i < a\). In order to only have items with size at least two, we define \(x'_1 = 2x_1\) for any \(i\), and \(a' = 2a\). We construct the following instance \(I_{MSP}\) of "restricted" MCSP.

We chose \(N = 2\) strips, each strip having size \(2a' - 1\). The set of rectangle is \(\{r_1, \ldots, r_n, r_{n+1}, r_{n+2}\}\), with \(w_i = x'_i \) for \(1 \leq i \leq n\), \(w_{n+1} = w_{n+2} = a' - 1\), and \(h_i = 1\) for \(1 \leq i \leq n + 2\). We have \(w_i \leq \frac{2a' - 1}{2}\) for any \(i\), as all the \(x_i\) are strictly lower than \(a\). Notice that any solution to \(I_{MSP}\) that packs \(r_{n+1}\) and \(r_{n+2}\) is the same strip have a height of at least \(2\), as the available width of size 1 in that strip cannot be used by any rectangle.

Obviously, if there is a 2-partition, then \(Opt(I_{MSP}) = 1\). Otherwise, as \(r_{n+1}\) and \(r_{n+2}\) cannot be packed together, we have \(Opt(I_{MSP}) = 2\) \(\square\)
The previous proof can easily be adapted for any fixed value \(c \in \mathbb{N}, c \geq 2 \). Therefore, the fast 2-approximation presented in this section is the best result we can hope, even for simpler versions of the MCSP.

3.2 Preliminaries

We follow the ideas presented in Section 2, and thus we re-use the notion of layer, shelf, bin, and the procedures named CreateLayer and CreateShelf.

We use the dual approximation technique [HS88], and we denote by \(v \) the guess of the optimal value. Conforming to the dual approximation technique, we will prove that either we pack \(I \) with a resulting height lower than \(2v \), or \(v < \text{Opt} \). Notice that for the sake of simplicity we did not add the “reject” instructions in the algorithm. Thus we consider in all the proof that \(v \geq \text{Opt} \), and it is implicit that if one of the claimed properties is wrong during the execution, the considered \(v \) should be rejected.

Recall that all rectangles have \(w_j \leq \frac{1}{2} \). Let us define the following sets:

- let \(L_{WD} = \{ r_j | w_j > \frac{1}{3} \} \) be the set of wide rectangles
- let \(L_{XH} = \{ r_j | h_j > \frac{2v}{3} \} \) be the set of extra high rectangles
- let \(L_H = \{ r_j | 2v/3 \geq h_j > v/2 \} \) be the set of high rectangles
- let \(L_B = (L_{XH} \cup L_H) \cap L_{WD} \) be the set of huge rectangles, and \(b = \text{Card}(L_B) \).
- let \(I' = L_{WD} \cup L_{XH} \cup L_H \)

Notice than we only consider the values \(v \) such that

- \(W(L_{XH} \cup L_H) \leq N \)
- \(H(L_{WD}) \leq 2Nv \)

As we expected, the set \(I' \) corresponds in our framework to the set of big rectangles for \(\alpha = \frac{1}{3} \) and \(\beta = \frac{1}{2} \). The construction of the preallocation \(\pi_0 \) of \(I' \) is presented from Section 3.3 to 3.5. The final steps to turn \(\pi_0 \) into a \(\frac{2}{3} \)-compact packing \(\pi_1 \) and to turn \(\pi_1 \) into the final packing \(\pi \) are quickly described in Section 3.6, as they follow the steps presented in Section 2.2.

We now provide a two phases algorithm that builds the preallocation \(\pi_0 \) of the rectangles of \(I' \). Let \(\pi_0 \) denote the set of rectangles packed in \(S_i \). Phase 1 (see Section 3.3) preallocates rectangles of \(L_{WD} \), and phase 2 (see Section 3.5) preallocates rectangles of \(L_H \cup L_{XH} \).

3.3 Phase 1

3.3.1 Description of phase 1

Phase 1 packs the rectangles of \(L_{WD} \) by calling for each strip (until \(L_{WD} \) is empty) two times CreateLayer\((L_{WD}, 2v)\). Let us denote by \(\text{Lay}_{2i} \) and \(\text{Lay}_{2i-1} \)
the layers created in strip S_i. Let us say that $Lay_{2i−1}$ is packed left justified, and Lay_{2i} is packed right justified. Moreover, each layer is repacked in non increasing order of the widths, such that the narrowest rectangles are packed on the top.

Let N_1 denote the number of strips used in phase 1, and let i_1 denote the index of the last created layer (Lay_{i_1} is of course in S_{N_1}). Let L_H^1 and L_{XH}^1 denote the set of remaining rectangles after phase 1 of L_H and L_{XH}, respectively. Thus, for the moment we have $\pi_0^1 = Lay_{2i} \cup Lay_{2i−1}$ for all $i \leq N_1$.

3.3.2 Analysis of phase 1

Lemma 8. If $\exists i_0 < i_1$ such that $H(Lay_0) \leq \frac{3w}{2}$ then it is straightforward to preallocate I'.

Proof. Let $i_0 < i_1$ such that $H(Lay_0) \leq \frac{3w}{2}$. This implies that we ran out of rectangles of $L_{Wd} \setminus (L_H \cup L_{XH})$ while creating layer i_0. Thus, because of the BFH order there are at least two rectangles of L_B in every layer Lay_i, for $1 \leq i < i_1$, implying that the width of high and extra high rectangles packed in each of these layers is strictly larger than $2/3$. Thus, $W(\pi_0^1 \cap (L_H \cup L_{XH})) > 4/3 > 1$ for $1 \leq i < N_1$. Thus, the total width of remaining high and extra high rectangles is lower than $N - (N_1 - 1)$.

Let us prove that we can pack all the remaining rectangles of I' (which are included in $(L_H \cup L_{XH})$) in the remaining strips. For each $i \in [(N_1 + 1, N)]$ we create two shelves in S_i (one at level 0 and one at level v). If there are still some unpacked rectangles, then all the shelves are “full”, that is the width of each shelf is larger than $2/3$ (as all the width of any rectangle of $L_H \cup L_{XH}$ is lower than $1/3$). Thus, we have $W(\pi_0^1 \cap (L_H \cup L_{XH})) > 4/3 > 1$ for $N_1 + 1 \leq i \leq N$. This implies that the total width of remaining rectangles of $L_H \cup L_{XH}$ (including those in strip S_{N_1}) is now lower than 1. Thus, we can pack all of them in one shelf in S_{N_1}.

From now we assume that $H(Lay_i) > \frac{3w}{2}$ for all $i < i_1$. This implies that $S(\pi_0^1) > v$ for $i < N_1$. Moreover, we have $2Nv \geq H(L_{Wd}) \geq \sum_{i=1}^{N_1-1} H(\pi_0^1 \cap L_{Wd}) > (N_1 - 1)2(3w/2)$, implying $N_1 < \frac{3}{2}N + 1$.

Lemma 9. If there is a rectangle of L_B in lay_{i_1-1}, then it is straightforward to preallocate I'.

Proof. We first consider the case where there are two layers in strip N_1. Let us count the cumulative width of high and extra high rectangles that already packed. In the first $N_1 - 1$ strips, we packed at least two rectangles of B in each layer, implying $\sum_{1 \leq i \leq N_1-1} W(\pi_0^1 \cap (L_{XH} \cup L_H)) \geq \frac{3}{4}(N_1 - 1)$. In strip N_1, we have $W(\pi_0^{N_1} \cap (L_{XH} \cup L_H)) > 1/3$ by hypothesis. Let $N_2 = N - N_1$. As in Lemma 8, we create two shelves (using a widest first policy) of rectangles of $L_{XH} \cup L_H$ in each strip S_{N_1+i}, for $1 \leq i \leq N_2$. If we don’t run out of rectangles, the remaining width of high and extra high rectangles after packing the first $2N_2 - 1$ shelves is strictly larger than 1. Given that each shelf has width at least $\frac{3}{4}$ (see Lemma 3),
we have $N \geq W(L_{XH} \cup L_{H}) > \frac{4}{3}(N_1 - 1) + \frac{1}{3} + \frac{1}{3}(2N_2 - 1) + 1 = -\frac{N_1}{3} + \frac{4N_2}{3} - \frac{3}{2}$, leading to $N_1 \geq 3N - \frac{9}{2}$. As $N_1 < \frac{3}{2}N + 1$, we conclude that $3N - \frac{9}{2} < \frac{2N}{3} + 1$, which is a contradiction for $N \geq 3$.

If $N = 2$, we have $W(L_{XH} \cup L_{H}) \leq 2$ and $H(L_{WD}) \leq 4v$. Given that $H(\pi_0 \cap L_{WD}) > 3v$, we get $H(\text{lay}_3) \leq v$ and $H(\text{lay}_4) = 0$ which is a contradiction because we supposed that there were two layers in strip N_1.

The case where there is only one layer in strip N_1 can be treated using the same arguments for $N \geq 3$. If $N = 2$, then we have (as before) $H(\text{lay}_3) \leq v$. Moreover, $W(\pi_0 \cap (L_{XH} \cup L_{H})) > \frac{4}{3} > 1$ because there are at least two rectangles of L_{H} in lay_1 and one rectangle of L_{H} in lay_2. Thus, there is enough space in strip S_2 to pack one shelf of $L_{XH} \cup L_{H}$, which is sufficient.

Naturally we consider from now on that the area packed in the first $N_1 - 1$ is strictly more than $(N_1 - 1)v$, and that there is no huge rectangle in the last two layers created by phase 1. It remains now to pack $L_{H} \cup L_{XH}$. Notice that $(L_{H} \cup L_{XH}) \cap L_{WD} = \emptyset$ (we say that $(L_{H} \cup L_{XH})$ contains purely high and extra high rectangles).

3.4 Packing techniques for (purely) high and extra high rectangles

3.4.1 Preliminaries

Let $N_2 = N - N_1$ denote the number of free strips after phase 1. Roughly speaking, phase 2 packs shelves of high of extra high rectangles in each of the N_2 last strips and merges some high or extra high rectangles with the ones packed in strip N_1 (using the Merge procedure).

In this section we present a technique to fill α empty strips with high or extra high rectangles. In the Section 3.5, we use this technique for $\alpha = N_2$ (using strips $S_{N_1+1} \ldots S_N$) and an additional merging algorithm (that fills efficiently strip S_{N_1}) to pack $L_{H} \cup L_{XH}$.

Let us now introduce the procedure GreedyPack(X, seq). Given an ordered sequence of bins seq, GreedyPack creates for each empty bin $b \in \text{seq}$ a shelf of rectangles of X using CreateShelf$(X, 1)$ and packs it into b (an example of a shelf packed in a bin is depicted Figure 3, Page 6). This procedure returns the last bin in which a shelf has been created, or null if no shelf is created. Notice that we will always use sequence of bins that have always width 1, and the same height h_b such that $\max_{x \in X} h_x \leq h_b$.

We now define the two sequences of bins seq$_{XH}$ and seq$_{H}$ that will be used by GreedyPack. Every bin of seq$_{XH}$ (resp. seq$_{H}$) will (possibly) contain one shelf of rectangles of L_{XH} (resp. L_{H}). Notice that in a free strip it is possible to pack two bins of height v (width of bins is always 1), three bins of height $2v/3$, or one bin of size v and one bin of size $2v/3$. Thus, seq$_{XH}$ is composed of 2α bins $(b_1, \ldots, b_{2\alpha})$ of height v, considering that we created two bins of height one in each of the strips $S_1, \ldots S_{\alpha}$. More precisely, for all i we locate b_{2i-1} and b_{2i} in S_i, with b_{2i-x} at level $v(1-x)$ for $x \in \{0, 1\}$. The sequence seq$_{H}$ is composed
of 3α bins \((b'_1, \ldots, b'_{3\alpha})\) of height \(2v/3\), considering that we created three bins in each of the strips \(S_\alpha, \ldots, S_1\). It means that for all \(i \geq 1\), bins \(b'_{3i-2}, b'_{3i-1}\) and \(b'_{3i}\) are located in \(S_{\alpha-i+1}\), with \(b'_{3i-x}\) at level \(\frac{2v}{3}\) for \(x \in \{0, 2\}\). This sequences of bins will be used in Lemma 11, and later in phase 2.

Finally, let us define the \(\text{Add}(X, S_{i_{last}})\) procedure that packs the set of rectangles \(X \subset L_H \setminus L_W D\) in \(S_{i_{last}}\). As one can see in Lemma 11, \(S_{i_{last}}\) is the last strip where \(\text{GreedyPack}\) created a shelf. Thus, we assume for the moment that \(S_{i_{last}}\) may only contain two different shapes of packing, and define the \(\text{Add}\) procedure accordingly.

In the first case \(S_{i_{last}}\) contains a first “full” shelf (full means that the surface of the shelf is at least \(v/2\)) of rectangles of \(L_X H\) at level 0, and a shelf \(sh\) of rectangles of \(L_X H\) packed at level \(v\), right justified. In this case, \(\text{Add}\) creates a shelf \(sh_1\) using \(\text{CreateShelf}(X, 1 - W(sh))\) and preallocate \(sh_1\) at level \(v\), left justified.

In the second case (see Figure 5), \(S_{i_{last}}\) contains only a shelf of rectangles of \(L_X H\) packed at level 0, right justified. In this case, \(\text{Add}\) first moves some rectangles from \(sh\) to a new shelf \(\tilde{sh}\) until \(W(sh) \leq 2/3\). Then, \(\text{Add}\) packs (right justified) the widest of these two shelves (denoted by \(sh_A\)) at level 0, and the other one (denoted by \(sh_B\)) at level \(v\). Finally, \(\text{Add}\) creates two shelves \(sh_1\) and \(sh_2\) using \(\text{CreateShelf}(X, 1 - W(sh_A))\) and one shelf \(sh_3\) using \(\text{CreateShelf}(X, 1 - W(sh_B))\). Then, \(sh_i\) is packed at level \(\frac{2(v-i-1)}{3}\), left justified. Notice that stacking shelves \(sh_1, sh_2, sh_3\) does not exceed \(2v\).

We end preliminaries with the following Lemma about the efficiency of \(\text{Add}\).

Lemma 10. Let \(X \subset L_H \setminus L_W D\) and \(S_i\) be a strip packed as expected for \(\text{Add}(X, S_i)\). Let \(\pi_i^0\) denote the rectangles packed in \(S_i\) before the call \(\text{Add}(X, S_i)\). If \(X \neq \emptyset\) after calling the procedure, then \(S(\pi_i^0 \cup X) > v\).
Proof. Remember that two cases are possible according to what is already packed in S_i before the call. Let us first suppose that there is one full shelf (of area strictly larger than $v^2/2$) of extra high rectangles (at level 0) and another shelf sh of extra high rectangles at level α. Then, $X \neq \emptyset$ after the call implies that $W(X) > 1 - W(sh)$, and we have $S(\pi_0 \cup X) > \frac{\pi}{2} + W(sh) \frac{\pi}{2} + W(X) \frac{\pi}{2} > v$.

Let us now suppose that S_i contains only one shelf sh of L_{XH} at level 0. Let $sh_A, sh_B, sh_1, sh_2, sh_3$ be defined as described in the Add procedure. As $W(sh_A) \leq \frac{v}{2}$ ($W(sh_b) \leq \frac{v}{2}$ is also true), and $X \cap L_{WD} = \emptyset$, sh_1 and sh_2 contain at least one rectangle, implying that $W(sh_1)$ and $W(sh_2)$ are strictly larger than $1 - W(sh_A)$ according to Lemma 3. Moreover, $X \neq \emptyset$ after the call implies that after creating sh_1 and sh_2 the total width of remaining rectangles of X was strictly larger than $1 - W(sh_B)$. Putting this together, we get $S(\pi_0 \cup X) > (1 - W(sh_A)) \frac{\pi}{2} + (1 - W(sh_B)) \frac{\pi}{2} + (W(sh_A) + W(sh_B)) \frac{\pi}{2} > v$.

\[\Box\]

3.4.2 Filling α empty strips with high and extra high rectangles

The next lemma shows how to fill α free strips.

Lemma 11. Let $\overline{L_{XH}} \subset L_{XH} \setminus L_{WD}$ and $\overline{L_H} \subset L_H \setminus L_{WD}$ be two sets of rectangles that we have to pack. Suppose that we execute the following calls:

1. $last = GreedyPack(\overline{L_{XH}}, seq_{XH})$
2. $GreedyPack(\overline{L_H}, seq_H)$
3. $Add(\overline{L_H}, S_{last})$, where S_{last} denotes the strip containing bin last.

Then, we get the following properties:

- If $\overline{L_{XH}} \neq \emptyset$ after 1, then $S(\overline{L_{XH}}) > (\alpha + \frac{1}{2})v$
- Otherwise, if $\overline{L_H} \neq \emptyset$ after 3, then $S(\overline{L_{XH}} \cup \overline{L_H}) > \alpha v$.

Remark 12. Notice that before the call to Add_2, S_{last} is the only strip that maybe already contains high and extra high rectangles. Moreover, this can happen only if the last shelf of extra high rectangles is at level 0, (because otherwise the places corresponding to $b'_{3i_{last} - 2}$ and $b''_{3i_{last} - 2}$ are not completely free, and thus GreedyPack do not pack any high rectangles in these bins).

Remark 13. Let X such that $X \cap L_{WD} = \emptyset$ and let sh denote a shelf created by $CreateShelf(X, 1)$, supposing that we didn’t run out of rectangle while creating the shelf. Then, according to Lemma 3, as at least three rectangles fit we have $W(sh) > \frac{v}{2}$. Moreover, if $X \subset L_{XH}$ then $S(sh) > v/2$, and if $X \subset L_H$ then $S(sh) > \frac{3v}{s}$.

Proof of lemma 11. Let us first suppose that $\overline{L_{XH}} \neq \emptyset$ after step 1. It implies that after creating the first $2\alpha - 1$ shelves of width at least $\frac{3}{4}$ (according to
Remark 13), the total remaining width of rectangles of L_{XH} was strictly larger than 1. Thus, $S(L_{XH}) > \frac{1}{4}(2\alpha - 1)\frac{2\alpha}{3} + \frac{2\alpha}{3} = (\alpha + \frac{1}{6})v$.

Let us now suppose that $L_{XH} = \emptyset$ and $L_H \neq \emptyset$ after step 3. Let sH denote the shelf of rectangles of L_{XH} contained in bin last. Remind that i_{last} is the index of the strip containing last. For all $i \in [i_{last} - 1]$, $S(\pi_i \cap (L_{XH} \cup L_H)) > 2\frac{v}{\alpha} = v$.

For all $i \in [i_{last} + 1, \alpha]$, $S(\pi_i \cap (L_{XH} \cup L_H)) > 3\frac{v}{\alpha} > v$. According to Lemma 10, $L_H \neq \emptyset$ implies $S(\pi_{i_{last}} \cap L_H) > v$. Thus, we get that $S(L_{XH} \cup L_H) > \alpha v$. □

3.5 Phase 2

In phase 1 we preallocated L_{WD} in strips S_1, \ldots, S_N. Recall that each layer created in phase 1 is sorted with the narrowest rectangles on the top. It remains now to preallocate $L^1_{XH} \cup L^1_H$ in S_{N_1}, \ldots, S_N.

Lemma 14. It is possible to preallocate $L^1_{XH} \cup L^1_H$ in S_{N_1}, \ldots, S_N with a resulting height lower than 2v.

The general idea to pack $L^1_{XH} \cup L^1_H$ is to call `GreedyPack` on strips S_{N_1}, \ldots, S_N, and to finish the packing by carefully studying what was packed in S_{N_1} by phase 1. Thus, Lemma 14 is proved by case distinction according to the shape of the preallocation in S_{N_1}. Notice that the sequence of bins used by `GreedyPack` is the one described in Section 3.4.1, replacing strips S_1, \ldots, S_α by strips S_{N_1}, \ldots, S_N.

For the sake of clarity, we define for several cases an appropriate `Merge` procedure that is responsible for adding rectangles in S_{N_1}. Finally, let us introduce the notation av(l) to denote the available width at level l (in a given strip).

3.5.1 Cases where two layers are preallocated in S_{N_1}

Recall that i_1 is the index of the last created layer in phase 1. As two layers are preallocated in S_{N_1}, we have here $i_1 = 2N_1$. Let $p_1 = H(Lay_{i_1})$, $p_2 = H(Lay_{i_1 - 1})$ and $k = \text{Card}(Lay_{i_1})$. Without loss of generality, let us denote by $\{r_1, \ldots, r_k\}$ the rectangles of Lay_{i_1}, with $r_j, 1 \leq j \leq k$ sorted in non increasing order of their heights. Remember that we assume that the last two layers of phase 1 do not contain any rectangle of L_B. We proceed by case analysis according to the value of p_1.

If $p_1 > \frac{4v}{\alpha}$.

The algorithm makes the following calls:

1. $\text{last} = \text{GreedyPack}(L^1_{XH}, \text{seq}_{XH})$

2. $\text{GreedyPack}(L^1_H, \text{seq}_H)$

3. $\text{Add}(L^1_H, S_{i_{last}})$
Let us prove that \(p_1 + p_2 > 3v \). We have \(p_2 > 2 - h_k \) as \(r_k \) was not included in \(Lay_{i_1-1} \), and \(p_1 \geq \max(kh_k, \frac{4v}{3k}) \). Thus \(p_1 + p_2 \geq \max(2 + (k-1)h_k, 2 - h_k + \frac{4v}{3k}) \). This last term is minimized for \(h_k = \frac{4v}{3k} \), leading to \(p_1 + p_2 \geq 2 + \frac{4v}{3}(1 - \frac{1}{k}) \) which is greater than \(3v \) for \(k \geq 4 \).

Moreover, \(k > 2 \) as \(p > \frac{4v}{3} \) and no rectangles of \(L_B \) are packed in strip \(S_{N_1} \), according to Lemma 9. Thus, it remains to consider the case where \(k = 3 \). Given that there is at least 4 rectangles in \(Lay_{i_1-1} \) (as no rectangles of \(L_B \) are packed in strip \(N_1 \)) we have \(p_2 > 4h_1 \), and as \(h_1 > \frac{4v}{3k} \), we get \(p_1 + p_2 > \frac{16v}{3k} + \frac{4v}{3} > \frac{28v}{9} > 3v \).

Thus in this case it is not necessary to preallocate anything else in \(S_{N_1} \) as we have \(p_1 + p_2 > 3v \) implying \(S(\pi_{0_{N_1}}) > v \). Then, we conclude that no rectangle of \(L_{XH} \cup L_H \) remains after step 3 using Lemma 11.

If \(\frac{4v}{3} \geq p > v \).

Let us first define the \(Merge(X) \) procedure for this case. In this case (see Figure 6 Page 16), \(merge(X) \) creates one shelf \(sh \) using \(CreateShelf(X, x) \), where \(x = av(\frac{4v}{3}) \), and packs it at level \(\frac{4v}{3} \), right justified.

![Figure 6: Example of Merge for two different cases.](image)

The algorithm makes the following calls:

1. \(Merge(L^1_{H}) \)
2. \(last = GreedyPack(L^1_{XH}, seq_{XH}) \)
3. \(GreedyPack(L^1_{H}, seq_{H}) \)
4. \(Add(L^1_{H}, S_{last}) \)

Let us consider a first case where \(L^1_{H} \) is not empty after step 1. According to Lemma 3, \(W(sh) > \frac{v}{2} \). After step 1, we have \(S(\pi_{0_{N_1}}) > \frac{1}{3}(p_1) + S(Lay_{i_1-1}) + \).

16
Moreover, $S(L_{i-1}) + S(sh) \geq (1-x)\frac{4v}{3} + (p_2 - \frac{4v}{3}) \frac{1}{2} + \frac{4v}{3}$, (see Figure 6 Page 16), which is decreasing in x. Thus, the lower bound is reached for $x = \frac{3}{4}$, and in this case $S(\pi_1) > \frac{5v+p_2}{6} + W(sh) \frac{1}{2} > \frac{5v}{6} + \frac{1}{3} \frac{v}{2} = v$. Then, according to Lemma 11, no rectangle remains after step 4.

We now suppose that L_{iH} is empty after step 1. Before 1, $S(\pi_0) > \frac{5v+p_2}{3} > (\frac{3}{2} + 1) \frac{v}{2} = \frac{5v}{6}$. If $L_{iXH} \neq \emptyset$ after step 2, then according to Lemma 11 $S(L_{iXH}) > (N_2 + \frac{1}{3})v$ implying $S(\pi_1) + S(L_{iXH}) > (N_2 + 1)v$. Thus in this case no rectangle remains after step 2.

If $v \geq p > \frac{2v}{3}$.

We first analyze the case where $N_1 > 1$. Let us consider the same algorithm as in the previous case (with in particular the same definition of x). Let us first suppose that $L_{iH} \neq \emptyset$ after step 1. We will bound the surface of rectangle preallocated in π_0 after step 2 as before, except that we also take into account the $N_1 - 1$ first strips. Thus, after step 2 we have $S(\bigcup_{i=1}^{N_1} \pi_i) > (N_1 - 2)v + (H(L_{i-3}) + H(L_{i-2}) + p_1) \frac{1}{2} + S(L_{i-1}) + S(sh)$. As before, $S(L_{i-1}) + S(sh)$ is decreasing in x, and we replace x by $\frac{3}{4}$. Moreover, notice that $H(L_{i-3}) + H(L_{i-2}) + p_1 > 4v$ as there is at least two rectangles in l_{i-1}, and none of these rectangles has been included in L_{i-3} or L_{i-2}. Finally, we get $S(\bigcup_{i=1}^{N_1} \pi_i) > (N_1 - 2)v + \frac{3v}{4} + \frac{5v}{6} + \frac{1}{3} \frac{v}{2}$. Using $p_2 \geq \frac{2v}{3}$, we get $S(\bigcup_{i=1}^{N_1} \pi_i) > N_1v$ The case where L_{iH} is empty after step 1 can be adapted in the same way.

Let us now consider the case with $N_1 = 1$. In this case it is sufficient to create two shelves of rectangles of L_{iH} in each S_i for $2 \leq i \leq N$. If we don’t run out of rectangles, the total width of high and extra high rectangles packed in each of these strips is strictly larger than $\frac{1}{2}$. Thus, the total width λ of remaining rectangles of L_{iH} is at most $N - \frac{1}{2}(N-1)$ which is negative for $N \geq 3$. If $N = 2$, $\lambda \leq \frac{1}{2}$, and we can finish packing L_{iH} using one bin of width $\frac{1}{2}$ and height v whose bottom is located at level v.

If $\frac{2v}{3} \geq p > 0$.

Let us first define the $Merge(X)$ procedure for this case. If $X \subseteq L_{XH}$, $merge(X)$ creates one shelf sh using $CreateShelf(X, x)$, where $x = av(v)$, and packs it at level v, right justified.

If $X \subseteq L_{iH}$, two sub-cases are possible according to what is packed in strip S_{N_i}. If no shelf of L_{XH} is preallocated in S_{N_i}, $merge(X)$ creates two shelves sh_1 and sh_2 using $CreateShelf(X, x_1)$ and $CreateShelf(X, x_2)$ respectively, where $x_i = av(\frac{6v-2v}{3})$. Notice that if sh_2 is not empty then $W(sh_1) + W(sh_2) > x_1$ as all the rectangles of sh_2 were not included in sh_1. Then, sh_1 is packed at level $\frac{6v-2v}{3}$, right justified.

If there is a shelf sh of rectangles of L_{XH} preallocated in S_{N_i} (right justified, at level v), $merge(X)$ creates one shelf sh_1 using $CreateShelf(X, x)$ where $x = av(v)$ (x takes into account the wide rectangles added in phase 1 and the
extra high ones in \(sh\), and packs it at level \(v\).

The algorithm makes the following calls:

1. \textit{last} = \textit{GreedyPack}(\(L_{XH}^1, seq_{XH}\))
2. \textit{Merge}(\(L_{XH}^1\))
3. \textit{Merge}(\(L_H^1\))
4. \textit{GreedyPack}(\(L_{XH}^1, seq_{XH}\))
5. \textit{Add}(\(L_H^1, S_{i_{na}}\))

Let us prove that \(L_{XH}^1\) is empty after step 2 by contradiction. If \(L_{XH}^1\) is not empty after step 2, then we claim that \(S(I') > Nv\). Let \(L_{XH}^{-1}\) and \(\pi_0^{N_{i1}}\) be respectively \(L_{XH}^1\) and \(\pi_0^{N_{i1}}\) just before step 2. Just before step 2, the area packed in each of the \(N_2\) last strips is strictly larger than \(v\) as \textit{GreedyPack}(\(L_{XH}^1, seq_{XH}\)) packs two shelves of area strictly larger than \(v\) using \(S\) that after step 3 we have \(p_{1XH}\) not empty after step 2, then we claim that \(p_{i}\) is packed in \(S\) before, \(S\) is empty after step 2. There is now two cases according to what is packed in \(S_{i_{na}}\): (1) \(S_{i_{na}}\) is empty after step 2. There is now two cases according to what

In the second case some rectangles of \(L_{XH}^1\) are packed in \(S_{i_{na}}\). Let us start with the first case where no extra high rectangle packed in \(S_{i_{na}}\). In the second case some rectangles of \(L_{XH}^1\) are packed in \(S_{i_{na}}\) during step 2. Thus, the area packed (with rectangles of \(L_{XH}^1\)) in each of the last \(N_2\) strips using \textit{GreedyPack} is strictly larger than \(v\). We prove by contradiction that \(L_{XH}^1\) must be packed at step 3. We use the same argument as before: the case which minimizes the our lower bound on \(S(p_{0i}^{N_{i1}}) + S(L_H^1)\) occurs when all the rectangles of \(L_{XH}^1\) have width \(\frac{1}{3}\). Thus, if \(L_H^1\) is not packed at step 3 we get \(S(p_{0i}^{N_{i1}}) + S(L_H^1) > v\), leading as usual to \(S(I') > Nv\).

3.5.2 Cases where one layer is preallocated in \(S_{N_1}\)

We consider now cases where \(i_1 = 2N_1 - 1\). Let \(p_1 = H(Lay_{i_1}), p_2 = H(Lay_{i_1 - 1}), p_3 = H(Lay_{i_1 - 2})\) and \(k = \text{Card}(Lay_{i_1})\). Without loss of generality, let us de-
where \(x \) of \(W \) (right justified.

Proof. We start with property 1. If \(x \) respectively, where \(x \)

Notice that property 3 states that we can improve the naive bound.

We start treating all these cases with one layer by stating some useful properties in Lemma 15.

Lemma 15. For the cases with one layer in \(S_{N_{1}} \), we have

1. if \(N_{1} = 1 \) then it is straightforward to preallocate \(L_{H}^{1} \cup L_{X H}^{1} \)

2. for all the cases where \(p_{1} > 1 \), then \(N_{1} < N \)

3. if \(p_{1} > \lambda \) with \(\lambda > 5 \), then \(p_{1} + p_{2} + p_{3} > 3v + \lambda + \max(2, v - 2\frac{1}{k}) \).

Notice that property 3 states that we can improve the naive bound.

Proof. We start with property 1. If \(N_{1} = 1 \) we can pack two shelves of rectangles of \(L_{H}^{1} \cup L_{X H}^{1} \) in each strip \(S_{i}, i \geq 2 \), implying a that the width packed rectangles of \(L_{H}^{1} \cup L_{X H}^{1} \) is at least \(\frac{2}{3} \) in each strip. Therefore, the remaining width of rectangles of \(L_{H}^{1} \cup L_{X H}^{1} \) will be at most \(\frac{1}{2} \), and all these rectangles must fit in one shelf in \(S_{1} \).

Property 2 is true as \(2N \geq H(L_{WD}) > 3(N_{1} - 1) + p_{1} \), leading to \(N_{1} < \frac{2N-1}{3} + 1 \).

We now prove property 3. First notice that \(\lambda > \frac{5}{2} \) implies \(k \geq 2 \). Moreover, \(p_{2} \) and \(p_{3} \) are strictly greater than \(2v - h_{k} \) as \(r_{k} \) did not fit in \(L_{y_{i-1}} \) and \(L_{y_{i-1}} \). On one side, we have \(p_{1} + p_{2} + p_{3} > b_{1} \) with \(b_{1} = \lambda + 2(2v - h_{k}) \), which is large for small values of \(h_{k} \). On the other side (for large values of \(h_{k} \)), we have \(p_{1} + p_{2} + p_{3} > b_{2} \) with \(b_{2} = \lambda + (2v - h_{k}) + 4h_{k} \) as there is at least four rectangles in \(L_{y_{i-1}} \), and \(p_{1} + p_{2} + p_{3} > b_{3} \) with \(b_{3} = kh_{k} + 2(2v - h_{k}) \) as \(p_{1} \geq kh_{k} \). Thus, \(p_{1} + p_{2} + p_{3} \) is larger than \(\max(b_{1}, b_{2}) \) and \(\max(b_{1}, b_{3}) \). Then, we just prove that \(\max(b_{1}, b_{2}) \geq \frac{v}{2} \) and \(\max(b_{1}, b_{3}) \geq v - 2\frac{1}{k} \). \(\square \)

We now study the different cases, assuming that \(N_{1} > 1 \).

If \(p_{1} > 2p_{2} \).

Let us first define the \(\text{Merge}(X) \) procedure for this case. If \(X \subset L_{X H} \), \(\text{Merge} \) creates two shelves \(sh_{1} \) and \(sh_{2} \) using \(\text{CreateShelf}(X, x_{1}) \) and \(\text{CreateShelf}(X, x_{2}) \) respectively, where \(x_{2} = av((i - 1)v) \). Notice that if \(sh_{2} \) is not empty then \(W(sh_{1}) + W(sh_{2}) > x_{1} \), as rectangles of \(sh_{2} \) were not included in \(sh_{1} \). Then \(sh_{1} \) is packed at level \((i - 1)v\), right justified. If \(X \subset L_{H} \), \(\text{Merge} \) creates two shelves \(sh_{1} \) and \(sh_{2} \) using \(\text{CreateShelf}(X, x_{1}) \) and \(\text{CreateShelf}(X, x_{2}) \) respectively, where \(x_{2} = av((i - 1)v) \) (we take into account wide rectangles preallocated in phase 1 and maybe extra high rectangles). Then \(sh_{1} \) is packed at level \((i - 1)v\), right justified.

The algorithm makes the following calls:

1. \(\text{Merge}(L_{X H}^{1}) \)
2. \textit{last} = GreedyPack(L^1_{XH}, seq_{XH}) \\
3. GreedyPack(L^1_H, seq_{H}) \\
4. Add(L^1_H, S_{last}) \\
5. Merge(L^1_H) \\

Let first suppose that two shelves of extra high rectangles are created in step 1. Recall that in this case $W(sh_1) + W(sh_2) > x_1$. Thus, after phase 1 we get $S(\pi^N_{0}) > (1-x_1)v + (p_1-v)\frac{1}{4} + \frac{2}{\pi}x_1$, which is a decreasing function of x_1. With $x_1 = \frac{2}{3}$ we get $S(\pi^N_{0}) > \frac{5v}{9} + \frac{4v}{9} = v$. Therefore we conclude that step 2, 3 and 4 must pack the remaining rectangles using Lemma 11.

We now suppose that step 1 created only one shelf, implying that L^1_{XH} is empty after step 1. Let L^1_{H} denote the remaining rectangles of L^1_{H} just before step 5. If L^1_{H} is not empty after step 5 the end, we get $S(\pi^N_{0}) > v$ for any $i \in ||N_1+1, N||$. Moreover, $S(\pi^N_{0} \cup L^1_{H}) > (1-x_2)v + (p_1-v)\frac{1}{4} + S(sh_1) + x_2\frac{4}{9}$ which is a decreasing function of x_2. With $x_2 = \frac{2}{3}$ we get $S(\pi^N_{0} \cup L^1_{H}) > \frac{5v}{9} + \frac{3v}{9} > v$, leading to $S(I') > v$.

If $\frac{2v}{3} \geq p_1 > \frac{4v}{9}$.

In this case, we first repack Lay_{i} by calling two times CreateLayer(Lay_{i}, v).

Let Lay'_{i} and Lay''_{i} be respectively the first and the second new layers. We repack these layers at level 0, with Lay'_{i} left justified and Lay''_{i} right justified, with the narrowest rectangles on the top. As there no huge rectangles remaining, we have $H(Lay'_{i}) > \frac{2v}{9}$, implying $H(Lay''_{i}) \leq v$.

In this case, the Merge(X) procedure creates a shelf sh using CreateShelf(X, x) where $x = av(v)$, and packs it at level v, right justified. Notice that when $X \subseteq H$, x can be lower than 1 as there may be some extra high rectangles at level v.

The algorithm makes the following calls:

1. Merge(L^1_{XH}) \\
2. last = GreedyPack(L^1_{XH}, seq_{XH}) \\
3. GreedyPack(L^1_H, seq_{H}) \\
4. Add(L^1_H, S_{last}) \\
5. Merge(L^1_H)

According to Lemma 15, we get $p_1 + p_2 + p_3 > 3v + \frac{2v}{9} + \frac{v}{9}$. If L^1_{XH} is not empty after step 1, then $S(\pi^N_{0} \cup \pi^N_{0} - 1) > (p_1 + p_2 + p_3)\frac{1}{2} + S(sh) > v + \frac{2v}{9} + \frac{v}{9} + \frac{v}{9} > 2v$.

Then step 2, 3 and 4 must pack all the remaining rectangles according to Lemma 11.

If L^1_{XH} is empty after step 1, then step 3 packs at least a surface v in each of the last N_2 strips. Then, if L^1_{H} is not empty after step 4 we get $S(\pi^N_{0} \cup \pi^N_{0} - 1 \cup L^1_{H} \cup L^1_{XH}) > v + \frac{4v}{9} + \frac{v}{18} + \frac{v}{2} > 2v$.

20
If \(\frac{4}{7} \geq p_1 > v \).

In this case we also repack the wide rectangles, but not in every sub-cases. Let us describe the Merge procedure in this case (see Figure 6 Page 16 for an example of Merge(X)). If \(\pi_i \in L_{XH} \) and \(\pi_i \in \emptyset \), Merge(X) repacks the \(L_{XH} \) by calling two times CreateLayer(\(L_{XH} \), v). Let \(L_{XH}^a \) and \(L_{XH}^b \) be respectively the first and the second new layers. Merge repacks these layers at level 0, with \(L_{XH}^a \) left justified and \(L_{XH}^b \) right justified, with the narrowest rectangles on the top. As there no huge rectangles remaining, we have \(\Delta \leq \frac{2v}{3} \), implying \(\Delta \leq \frac{2v}{3} \). Then, Merge(X) creates a shelf sh using CreateShelf(X, 1) and packs it at level v, left justified.

If \(\pi_i \in L_{XH} \), two cases are possible as \(L_{XH} \) had maybe been already repacked by a previous call to Merge. If \(L_{XH}^a \) is already repacked, Merge(X) creates two shelves sh1 and sh2 using CreateShelf(X, x1) and CreateShelf(X, x2) respectively, where \(x_1 = \text{avg}(\frac{2v}{3}) \) and \(x_2 = \text{min}(x_1, \text{avg}(\frac{2v}{3})) \). Then sh1 is packed right justified at level \(\frac{6-2v}{3} \). If \(L_{XH}^a \) is not already repacked (then \(S_{NH} \) does not contain any extra high rectangle), Merge(X) creates three shelves shi for \(1 \leq i \leq 3 \) using CreateShelf(X, x1), where \(x_i = \text{avg}(\frac{6-2i}{3}v) \). Then, shi is packed at level \(\frac{6-2i}{3} \), right justified. Notice that if sh3 is not empty then \(W(sh_3) > x_2 \) as rectangles of sh3 were not included in sh2.

The algorithm makes the following calls:

1. last = GreedyPack(\(L_{XH}^1, \text{seq} \)XH)
2. Merge(\(L_{XH}^1 \))
3. Merge(\(L_{XH} \))
4. GreedyPack(\(L_{XH}^1, \text{seq} \)H)
5. Add(\(L_{XH}^1, S_{last} \))

According to Lemma 15, we have \(p_1 + p_2 + p_3 > 3v + v + (v - \frac{2}{7}) > 4v + \frac{9}{7} \) as \(k > 3 \) in this case (remember that we assume that there is no huge rectangles in the last two layers of phase 1).

Let us suppose first that \(L_{XH}^1 \) is not empty after step 2. Then after step 1 each of the last \(N_2 \) strips is filled with an area strictly larger than \(v \). Let \(L_{XH}^1 \) denote \(L_{XH} \) after step 1 and \(\pi_0^{N_1} \) denote the set packed in \(S_{NH} \), before step 2.

We have \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1} \cup L_{XH}^1) > \frac{4v}{9} + \frac{9}{7} + \frac{9}{7} > 2v \), leading to \(S(N') > Nv \).

If \(L_{XH}^1 \) is empty after step 2, two cases are possible according to what is packed in \(S_{NH} \). If no extra high rectangle is packed in \(S_{NH} \), then \(L_{XH}^a \) is not repacked by Merge. After step 3, if \(L_{XH}^1 \) is not empty we get \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1}) > S(s_1) + (W(s_2) + W(s_3)) + (p_1 + p_2 + p_3) \frac{1}{2} > \frac{4v}{9} + \frac{x_2}{7} + \frac{1}{2} + (1 - x_2) \frac{2v}{3} + \frac{1}{2} \frac{4v}{9} + \frac{p_1}{2} + \frac{2v}{3} + \frac{p_2 + p_3}{2} \frac{1}{2} \) which is decreasing in \(x_2 \). For \(x_2 = \frac{2}{3} \) we get \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1}) > 2v \), and according to Lemma 11 step 4 and 5 must pack all the remaining rectangles.

If a shelf sh of extra high rectangles is placed in \(S_{NH} \), then \(L_{XH}^a \) is repacked by Merge. Before step 3 the area packed in the last \(N_2 \) strips is already strictly larger than \(v \). Let us analyze what happen if \(L_{XH}^1 \) is not packed after step 3.
Let \(\pi_i^{N_i} \) denote the set of packed rectangles before step 1. We proceed by case analysis according to \(W(sh) \). If \(W(sh) \leq \frac{1}{3} \) then \(x_2 \) is the available width at level \(\frac{2v}{3} \), and we get \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1} \cup sh \cup L_{H1}^i) > (1-x_2) \frac{2v}{3} + (p_1 - \frac{2v}{3} + p_2 + p_3) \frac{1}{3} + x_2 \frac{v}{2} + \frac{1-W(sh)}{2} \frac{v}{2} + W(sh) \frac{2v}{3} \) which is a decreasing function of \(x_2 \). For \(x_2 = \frac{2}{3} \) we get \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1} \cup sh \cup L_{H1}^i) > \frac{13w}{3} + \frac{v}{2} + \frac{1-W(sh)}{2} \frac{v}{2} + W(sh) \frac{2v}{3} \), which is an increasing function of \(W(sh) \). Replacing \(W(sh) \) by 0 we get \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1} \cup sh \cup L_{H1}^i) > 2v \). If \(W(sh) > \frac{1}{3} \) then we only need to use that \(W(L_{H1}^i) > 1 - W(sh) \).

Thus we have \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1} \cup sh \cup L_{H1}^i) > \frac{13w}{3} + W(sh) \frac{2v}{3} + (1 - W(sh)) \frac{v}{2} \), leading for \(W(sh) = \frac{1}{3} \) to \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1} \cup sh \cup L_{H1}^i) > 2v \).

If \(v \geq p_1 > \frac{2v}{3} \).

Let us first describe the \(\text{Merge}(X) \) in this case. If \(X \subset L_{XH}^1 \), \(\text{Merge} \) creates two shelves \(sh_1 \) and \(sh_2 \) using \(\text{CreateShelf}(X, 1) \) and \(\text{CreateShelf}(X, x_2) \) where \(x_2 = av(0) \). Then, \(sh_1 \) is packed right justified at level \((2 - i)v \). If \(X \subset L_{H1}^i \), \(\text{Merge} \) creates two shelves \(sh_1 \) and \(sh_2 \) using \(\text{CreateShelf}(X, 1) \) and \(\text{CreateShelf}(X, x_2) \) where \(x_i = av(\frac{(2i-1)v}{3}) \). Then, \(sh_i \) is packed at level \(\frac{v(2i-1)}{3} \), right justified.

The algorithm makes the following calls:

1. \(\text{Merge}(L_{XH}^1) \)
2. \(\text{last} = \text{GreedyPack}(L_{XH}^1, seq_{XH}) \)
3. \(\text{GreedyPack}(L_{H1}^i, seq_{H}) \)
4. \(\text{Add}(L_{H1}^i, S_{last}) \)
5. \(\text{Merge}(L_{H}^i) \)

According to Lemma 15, we have in this case \(p_1 + p_2 + p_3 > 4v \). If step 1 creates two shelves of extra high rectangles, then (after step 1) \(W(\pi_0^{N_1} \cap L_{XH}^1) > 1 \) and we get \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1}) > \frac{2v}{3} + \frac{4v}{3} > 2v \). Thus step 2, 3 and 4 must pack the remaining rectangles according to Lemma 11. Otherwise, \(L_{XH}^1 \) is completely packed (in one shelf) in \(S_{N_i} \). Let us assume that \(L_{H1}^i \) is not packed after step 5. The surface packed in the last \(N_2 \) strips is strictly larger than \(v \). Let \(L_{H1}^i \) be \(L_{H1}^i \) just before step 5. If \(L_{H1}^i \) is not packed by step 5 we get \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1} \cup L_{H1}^1 \cup L_{XH}^1) > (1 - x_1) \frac{2v}{3} + (p_1 - \frac{2v}{3} + p_2 + p_3) \frac{1}{3} + x_1 \frac{v}{2} + \frac{1-W(sh)}{2} \frac{v}{2} + W(sh) \frac{2v}{3} \), which is decreasing in \(x_1 \). Thus, for \(x_1 = \frac{2}{3} \) we get \(S(\pi_0^{N_1} \cup \pi_0^{N_1-1} \cup L_{H1}^1 \cup L_{XH}^1) > \frac{2v}{3} + \frac{v}{2} + \frac{v}{2} = 2v \).

If \(\frac{2v}{3} \geq p_1 \).

If \(k \geq 2 \), then we get \(p_1 + p_2 + p_3 > 4v \), as none of the rectangles of \(Lay_{k-1} \) fit in the previous layers. Thus, the analysis is the same as in the previous case. We now assume that \(k = 1 \), meaning that there is only one wide rectangle \(r_1 \) of height \(h_1 \) and width \(w_1 \).
Let us describe the Merge(X) procedure in this case. If $X \subset L_H$, Merge(X) creates two shelves sh_1 and sh_2, using CreateShelf(X, x_1) and CreateShelf(X, x_1) respectively, where $x_1 = av(0)$. Then sh_1 is packed at level $(i - 1)v$, right justified.

If $X \subset L_H$, Merge(X) creates three shelves sh_i for $1 \leq i \leq 3$ using CreateShelf(X, x_i), where $x_i = av(\frac{(6-2i)}{3})$. Then sh_i is packed at level $\frac{v(i-2i)}{3}$, with sh_1 and sh_2 left justified, and sh_3 right justified.

The algorithm makes the following calls:
1. last = GreedyPack(L_X_H, seq_X_H)
2. Merge(L_X_H)
3. Merge(L_H)
4. GreedyPack(L_H, seq$_H$)
5. Add(L_H, S_i)

Let us first bound $S(Lay_i _2 \cup Lay_i _1 \cup r_1)$. As r_1 did not fit in $Lay_i _2$ and $Lay_i _1, p_2$ and p_3 are greater than $2v - h_1$. Moreover, as no rectangle of L_H is in $Lay_i _1$ we get $p_2 > 4h_1$. Thus $S(Lay_i _2 \cup Lay_i _1 \cup r_1) > \max(\frac{2(2v-h_1)}{1} + w_1h_1, \frac{2w-h_1}{3} + \frac{4h_1}{3} + w_1h_1)$. Notice that the left part of the max is decreasing in h_1 as $w_1 \leq \frac{1}{2}$. Thus, replacing h_1 by $\frac{2w}{7}$ we get $S(Lay_i _2 \cup Lay_i _1 \cup r_1) > \frac{16v}{15} + \frac{2w^2}{5} - \frac{v}{2}$.

Let us suppose first that L_X_H is not empty after step 2. Then after step 1 each of the last N_2 strips is filled with an area strictly larger than v. Let L_X_H denote L_X_H after step 1 and $\pi_0 _N_i$ denote the set packed in S_N_i before step 2. We have $S(\pi_0 _N_i \cup \pi_0 _N_i \cup L_X_H) > \frac{16v}{15} + \frac{2w_1v}{5} + \frac{1-w_1}{2v} \frac{2w}{3} + \frac{2w}{3}$ which is increasing in w_1. For $w_1 = \frac{1}{3}$ we get $S(\pi_0 _N_i \cup \pi_0 _N_i \cup L_X_H) > 2v$, leading to $S(I) > Nv$.

If L_X_H is empty after step 2, two cases are possible according to what is packed in S_N_i. Let us first assume that no extra high rectangle is packed in S_N_i. After step 3, if L_H is not empty we get $S(\pi_0 _N_i \cup \pi_0 _N_i \cup L_H) > \frac{16v}{15} + \frac{2w_1v}{5} + \frac{2w}{3} + \frac{1-w_1}{2v} \frac{2w}{3}$ which is greater than $2v$ for $w_1 = \frac{1}{3}$. Then, step 4 and 5 must pack all the remaining rectangles according to Lemma 11.

We now assume that some extra high rectangles are packed in S_N_i. In this case, the area packed before step 3 in the last N_2 strips is already strictly larger than v. Let $\pi_0 _N_i$ denote the set of packed rectangles before step 1. We proceed by contradiction by supposing that L_H is not packed after step 3.

If only one shelf sh_1 of extra high rectangles is packed in S_N_i, we get

\[
S(\pi_0 _N_i \cup \pi_0 _N_i \cup L_H \cup sh_1) > \frac{16v}{15} + \frac{2w_1v}{5} + \frac{3v}{8} + (1 - W(sh_1)) \frac{v}{2} + \frac{W(sh_1)2v}{3} \\
> \frac{16v}{15} + \frac{2w_1v}{5} + \frac{7v}{8} \\
> 2v
\]
If two shelves sh_1 and sh_2 of extra high rectangles are packed in S_{N_1}, two cases are possible according to $W(sh_2)$. If $W(sh_2) > \frac{2}{3}$, we get

$$S(\pi_0 N_1 \cup \pi_0 N_1^{-1} \cup L_H \cup sh_2 \cup sh_1) > \frac{16v}{15} + \frac{2w_1v}{5} + \frac{(1 - W(sh_2))v}{2}$$

$$+ W(sh_2) \frac{2v}{3} + \frac{1 - w_1 2v}{3}$$

$$> \frac{16v}{15} + \frac{2w_1v}{5} + \frac{v}{6} + \frac{4v}{9} + \frac{(1 - w_1)v}{3}$$

$$> 2v$$

If $W(sh_2) \leq \frac{2}{3}$, we get

$$S(\pi_0 N_1 \cup \pi_0 N_1^{-1} \cup L_H \cup sh_2 \cup sh_1) > \frac{16v}{15} + \frac{2w_1v}{5} + \frac{3}{2} (1 - W(sh_2)) \frac{v}{2}$$

$$+ W(sh_2) \frac{2v}{3} + \frac{1 - w_1 2v}{3}$$

$$> \frac{16v}{15} + \frac{2w_1v}{5} + \frac{v}{4} + \frac{4v}{9} + \frac{(1 - w_1)v}{3}$$

$$> 2v$$

Thus, it is possible to pack the remaining rectangle for all possible cases that may occur after phase 1, and thus Lemma 14 is proved.

3.6 Complexity

According to the main steps defined in Section 2.2, the algorithm that preallocates I' is sufficient to get a 2-approximation. Indeed, we simply add rectangles of $I \setminus I'$ using list algorithms defined in Section 2.2.

Let us now sketch the analysis of the running time of the preallocation algorithm. Roughly speaking, Phase 1 runs in $O(n \log(n) + Nn)$ as for each strip creating a layer can be done in $O(n)$ (by initially sorting wide rectangles according to their heights). Phase 2 also runs in $O(n \log(n) + Nn)$ as for each strip creating a constant number of shelves (generally two or three) can be done in $O(n)$ (by initially sorting high and extra high rectangles according to their widths).

Let us now bound the running time of algorithms of Section 2.2.2 that turn π_0 into the final packing. Due to the simple structure of preallocation, the LS_{π_0} algorithm can be implemented in $O(n \log(n))$. Indeed, instead of scanning level by level and strip by strip, this algorithm can be implemented by maintaining a list that contains the set of “currently” packed rectangles. The list contains 3-tuples (j, l, i) indicating that the top of rectangle r_j (packed on strip S_i) is at level l. Thus, instead of scanning every level from 0 it is sufficient to maintain sorted this list according to the l values (in non decreasing order), and to only consider at every step the first element of the list (i.e. the first job that completes). Then, it takes $O(\log(n))$ to find a rectangle r_m in the appropriate shelf that fits at level l, because a shelf can be created as a sorted array. It also
takes $O(\log(n))$ to insert the new event corresponding to the end of r_j in the list.

The last step, which turns π_1 into the final packing can also be implemented in $O(n \log(n))$ using a similar global list of events. Notice that for any strip S_i, there exists a l_i such that below l_i the utilization is an arbitrary function strictly larger than $1/2$, and a non increasing after. Packing a small rectangle before l_i would require additional data structure to handle the complex shape. Thus we do not pack any small rectangle before l_i as it is not necessary for achieving the 2 ratio. Therefore, we only add those events that happen after l_i when initializing the global list for this step. To summarize, for this step we only need to sort the small rectangles in non increasing order of their required number of processors, and then apply the same global list algorithm.

Thus, taking into account the repetitions due to the binary search on v, this algorithm can be implemented in $O(\log_2(n h_{\text{max}}) n (N + \log(n)))$.

References

