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Abstract

In the grid computing paradigm, several clusters share their comput-
ing resources in order to distribute the workload. Each of the N cluster
is a set of m identical processors (connected by a local interconnection
network), and n parallel jobs are submitted to a centralized queue. A job
Jj requires qj processors during pj units of time. We consider the Mul-
tiple Cluster Scheduling Problem (MCSP ), where the objective of is to
schedule all the jobs in the clusters, minimizing the maximum completion
time (makespan). This problem is closely related to the multiple strip
packing problem, where the objective is to pack n rectangles into m strips
of width 1, minimizing the maximum height over all the strips.

MCSP is 2-inapproximable (unless P = NP ), and several approxi-
mation algorithm have been proposed. However, ratio 2 has only been
reached by algorithms that use extremely costly and complex subrou-
tines as ”black boxes” (for example area maximization subroutines on
a constant (≈ 104) number of bins, of PTAS for the classical P ||Cmax

problem).
Thus, our objective is to find a reasonable restriction of MCSP where

the inapproximability lower bound could be tightened in almost linear
time. In this spirit we study a restriction of MCSP where jobs do
not require strictly more than half of the processors, and we provide for
this problem a 2-approximation running in O(log2(nhmax)n(N + log(n))),
where hmax is the maximum processing time of a job. This result is some-
how optimal, as this restriction of MCSP (and even simpler ones, where
jobs require less than m

c
, c ∈ N, c ≥ 2) remain 2-innapproximable unless

P = NP.

∗LIRMM, Montpellier
†LIG, Grenoble, France
‡Department of Computer Science, University Kiel, 24118 Kiel, Germany
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1 Introduction

1.1 Problem statement

In the grid computing paradigm, several clusters share their computing resources
in order to distribute the workload. Each cluster is a set of identical processors
connected by a local interconnection network. Jobs are submitted in successive
packets called batches. The objective is to minimize the time when all the jobs
of a batch are completed, so that the jobs of the next batch can be processed as
soon as possible. Many such computational grid systems are available all over
the world, and the efficient management of the resources is a crucial problem.

Let us start by stating the Multiple Cluster Scheduling Problem (MCSP )
more formally (see Figure 1).

pj (or hj)
qj (or wj)

J1

Figure 1: Example (for n = 9 jobs and N = 2 clusters) of a solution that is
feasible for the MCSP and not feasible for the MSPP . Notice that J1 is packed
in a ”non continuous” way (using non consecutive indexes of processors).

Definition 1 (MCSP ). We are given n parallel rigid jobs Jj, 1 ≤ j ≤ n, and
N clusters. A job Jj requires qj processors during pj units of time, and each
cluster owns m identical processors. The objective is to schedule all the jobs in
the clusters, minimizing the maximum completion time (makespan). Constraints
are:

1. the qj processors allocated to job Jj must belong to the same cluster

2. at any time, the total number of used processors in any cluster must be
lower or equal to m

We now recall the Multiple Strip Packing problem (MSPP ), which is closely
related to MCSP .
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Definition 2 (MSPP ). We are given n rectangles rj, 1 ≤ j ≤ n, and N
strips. Rectangle rj have height hj and width wj, and all the strips have width
1. The objective is to pack all the rectangles in the strips such that the maximum
reached height is minimized. Constraints are

1. a rectangle must be entirely packed in a strip (saying it differently cannot
be split between two strips)

2. at any level of any strips, the total width of packed rectangle must be lower
or equal to 1

3. a rectangle must be allocated ”contiguously”

Thus, the only difference between MCSP and MSPP is constraint 3), which
in terms of job scheduling amounts to force jobs to use consecutive indexes of
processors (see Figure 1). Of course, results for MCSP generally not apply
to MSPP , because of the additional contiguous constraint. The converse is
also not clear, as ratio of approximation algorithms for MSPP may not be
preserved when considering MCSP , as optimal value of an MCSP instance
may be strictly better than the corresponding one for MSPP . However, as
we can notice in Figure 2, many results for MSPP directly apply to MCSP ,
as the proposed algorithms build contiguous schedules that are compared to
non-contiguous optimal solutions.

We chose to adopt the ”packing” vocabulary in this paper, so that solutions
can be described using classical vocabulary of packing problems (like shelves
for example). Thus, the problem treated in this paper (MCSP ) is seen as the
MSPP , without constraint 3).

1.2 Related Work

As shown in [Zhu06] using a gap reduction from the 2 partition problem, MCSP
(and MSPP ) are 2-inapproximable in polynomial time unless P = NP, even
for N = 2. The main positive results for MCSP are summarized in Figure 2.

We must distinguish the 3-approximation of [STY08] and the 5
2 -approximation

of [BDJ+10] that have a low computational complexity (that are usable on real
size instances) from the 2-approximation in [BDJ+09] and the 2+ǫ-approximation
in [YHZ09]. Indeed, the 2-approximation requires using high running time algo-
rithm when the number of clusters is lower than a constant N0. Thus, any expo-
nential dependency in N0 is hidden, and the value of this constant (N0 ≈ 104)
makes this algorithm impossible to use. The 2+ǫ-approximation requires solving
the famous P//Cmax problem (which is makespan minimization when schedul-
ing sequential jobs on identical machines) with a ratio 1 + ǫ

2 . Thus, to give
an rought idea, applying this technique with ǫ = 1

3 would lead to a Ω(n36)
algorithm, using the famous PTAS of [HS87]. 1

1even if some recent advances in the PTAS design for P//Cmax allowed to decrease the

asymptotic depedencies in 1
ǫ

(like 2
O( 1

ǫ2
log3( 1

ǫ
))

) in [Jan09], the running time of these new
algorithms remain very high due to constants
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Problem Ratio Remarks Source

MCSP , MSPP 2ρ Need solving P//Cmax with a ra-
tio ρ

[YHZ09]

MCSP 5/2 Fast algorithm [BDJ+10]
MCSP , MSPP 2 Costly algorithm [BDJ+09]
MCSP , MSPP AFPTAS Additive constant in O( 1

ǫ2
), and

in O(1) for large values of N
[BDJ+09]

MCSP 3 Fast (and decentralized) algo-
rithm that handle clusters hav-
ing different size

[STY08]

MCSP 2 Requires maxj wj ≤ 1

2

Fast algorithm
this paper

Figure 2: Main results

At last, notice that the remark in [YHZ09] even states that any ρ-approximation
for P//Cmax can be turned into a 2ρ-approximation for MCSP(using the Stein-
berg’s algorithm).

1.3 Motivations and contributions

Our previous 5
2 -approximation in [BDJ+10] is based on the discarding tech-

nique presented in Section 2.2. What we call discarding technique is a classical
framework in scheduling problems. The idea is to define properly a set of ”neg-
ligeable” items (items are rectangles here), and to prove that it is possible to
add these items only at the end of the algorithm without degrading the approx-
imation ratio. Thus, the effort can be focused on the set I ′ of remaining ”large”
items, that are generally more structured.

The 5
2 -approximation was obtained through a basic application of the tech-

nique (i.e. with a set I ′ containing only really huge rectangles, for example
rectangles whose width is larger than 1

2 ). As we believe that the discarding
technique of Section 2.2 is well suited for the MCSPproblem, we are intended to
apply it again using a more ”challenging” set I ′. A natural direction would be
to improve the 5

2 ratio for MCSP by targeting a fixed ratio ρ < 5
2 . Typically,

one could target ρ = 7
3 by defining the small jobs as jobs whose length is lower

than 1
3 (instead of 1

2 ). However, as the relative performance improvement is
getting smaller, and the difficulty of these ”ratio tailored” proofs is likely to
increase rapidly, we considered a different approach.

Our objective is to find a reasonable restriction of MCSP where the in-
approximability lower bound could be tightened. In this spirit we study a
restriction of MCSP where all rectangles have width lower than 1

2 (i.e. jobs
submitted to clusters do not require strictly more than half of the proces-
sors), and we provide for this problem a very fast 2-approximation, running in
O(log2(nhmax)n(N + log(n))). It turns out that this result is somehow optimal,
as this restriction of MCSP (and even simpler ones, where widht of rectangles
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is lower than 1
c
, c ∈ N, c ≥ 2) remain 2-innapproximable unless P = NP.

2 General principles

In this section, we generalize the framework used in the 5
2 -approximation of [BDJ+10].

This framework will be applied in Section 3 to get the 2-approximation.

2.1 Preliminaries

Recall that our objective is to (non contiguously) pack n rectangles rj into N
strips of width 1. Rectangle rj has a height hj and a width wj . We denote by
s(rj) = wjhj the surface of rj . These notations are extended to W (X), H(X)
and S(X) (where X is a set of rectangles), which denote the sum of the widths
(resp. heights, surfaces) of rectangles in X.

A layer is a set of rectangles packed one on top of the other in the same
strip (as depicted Figure 3). The height of a layer Lay is H(Lay), the sum of
the height of all the rectangles in Lay. A shelf is a set of rectangles that are
packed in the same strip, such as the bottom level of all the rectangles is the
same. Even if it is not relevant for the non-contiguous case, we consider for the
sake of simplicity that in a shelf, the right side of any rectangle (except the right
most one) is adjacent to the left side of the next rectangle in the shelf. Given a
shelf sh (sh denotes the set of rectangles in the shelf), the value W (sh) is called
the width of sh. Packing a shelf at level l means that all the rectangles of the
shelf have their bottom at level l. A bin is a rectangular area that can be seen
as reserved space in a particular strip for packing rectangles. As a bin always
has width 1, we define a bin by giving its height hb, its bottom level lb and the
index ib of the strip it belongs to. Packing a shelf sh in a bin b means that sh
is packed in strip Sib

at level lb. Moreover we always guarantee that the height
of any rectangle of sh is lower than hb.

The utilization uπ
i (l) of a packing π in strip Si at level l (sometimes simply

denoted by u(l) or ui(l)) is the sum of the width of all the rectangles packed
in Si that cut the horizontal line-level l (see Figure 3). Of course we have
0 ≤ uπ

i (l) ≤ 1 for any l and i.
Let us now describe three useful procedures. The CreateLayer(X,h) pro-

cedure creates a layer Lay (using rectangles of X) of height at most h, using
a Best Fit (according to the height) policy (BFH). Thus, CreateLayer(X,h)
adds at each step the highest rectangle that fits. Of course, the layer produced
by the procedure is such that H(Lay) ≤ h. Moreover, notice that we will al-
ways pack the layers in the strips with narrowest rectangles on the top.
The CreateShelf(X,w) creates a shelf sh (using rectangles of X) of width
at most w, using the Best Fit (according to the width) policy (BFW). Thus,
CreateShelf(X,w) adds at each step the widest rectangle that fits. Of course,
the shelf produced by the procedure is such that W (sh) ≤ w. Throughout the
paper, we consider that the sets of jobs used as parameters in the algorithms
are modified after the calls.

5
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hb

lb

W (sh)

b (bin)sh

lay

H(lay)

r2
r1 l

u(l) = w1 + w2

Figure 3: Example of a layer, a shelf, a bin and of the utilization function. sh
is packed in b.

Let us now state a standard lemma about the efficiency of the “best fit”
policies.

Lemma 3. Let Sh denote the shelf created by CreateShelf(X,w). If the k
widest rectangles of X are added to sh, then W (Sh) > k

k+1w.

Proof. Let x be the cardinality of X. Let us assume that wi ≥ wi+1 for 1 ≤
i < x. Let i0 ≥ k + 1 be the first index such that ri0 is not in Sh. Let
a = Σi0−1

i=1 wi. We have W (Sh) ≥ a ≥ (i0 − 1)wi0 > (i0 − 1)(w − a) leading to
a > i0−1

i0
w ≥ k

k+1w.

2.2 Discarding technique applied to MCSP

2.2.1 How to pack all rectangles in three steps

Discarding techniques are common for solving packing and scheduling problem.
As mentioned before, the idea is to define properly a set of “small” items (rect-
angles here), and to prove that adding these small items only at the end of the
algorithm will not degrade the approximation ratio. Thus, the effort can be
focused on the remaining “large” items. In this section we present an adapta-
tion of this general technique to the context of non-contiguous multiple strip
packing. As usual, the set of big rectangles I ′(α, β) ⊂ I depends on parameters
(α and β here) that we chose, and the larger the set I ′(α, β) we can handle,
the better the approximation ratio will be (as the remaining small rectangles
become really negligible).

In order to partition rectangles according to their height, we need to use
the well-known dual approximation technique [HS88], and we denote by v the
guess of the optimal value. Given an instance I, let LWD = {wj > α} be

6



the set of wide rectangles, LH = {rj > βv} be the set of high rectangles, and
I ′ = LWD ∪ LH be the set of big rectangles, with 0 < α < 1 and 0 < β < 1.
Let r(α, β) = ( 1

1−α
+ β) be the approximation ratio we target (the origin of

this formula will be explained in Section 2.2.2). We also need the following
definition.

Definition 4. A packing is x-compact (see Figure 4) if and only if for every
strip Si there exists a level li such that for all l ≤ li, ui(l) > x and ui restricted
to l > li is non-increasing.

Let us now describe the three main steps of our approach. Notice that what
we call a preallocation is a ”normal” packing (i.e. that define the bottom level
of each rectangle, which is sufficient) that is based on simple structures like
shelves and layers. We will prove that to get a r(α, β) = ( 1

1−α
+ β) ratio, it is

sufficient to:

a) construct a preallocation π0 of I ′ that fits in r(α, β)v, and such that
rectangles of LWD ⊂ I ′ are already packed in a (1 − α)-compact way

b) turn π0 into a (1 − α)-compact packing π1 by repacking rectangles of
I ′ \ LWD using the list algorithm LSπ0

of Lemma 5

c) add the small remaining rectangles (I \ I ′) using LS (see Lemma 6)

l3 = l4

l1

l2

α

≤ α

≤ βv
rj

S1 S2 S3 S4

Figure 4: Example showing a (1 − α) compact packing, and why step c) is
simple. Indeed, adding as soon as possible a small rectangle rj (having hj ≤ βv
and wj ≤ α) to a (1 − α) compact packing cannot exceed v( 1

1−α
+ β). The li

values are defined according to Definition 4.

Step a) is the most difficult one. Thus, Section 3 is entirely devoted to
the construction of π0 (for (α, β) equal to (1

3 , 1
2 )). Of course, building the

preallocation becomes harder when α and β are small, as the number of rectangle
of I ′ increases and r(α, β) decreases. Roughly speaking, the simple shapes of
rectangles of I ′ allows us to construct π0 with a simple structure. We will denote
by πi

0 the set of rectangles packed by π0 in Si.

7



2.2.2 Proving steps b) and c)

We now prove that applying steps b) and c) leads to a r(α, β) ratio. In this
section, we suppose that we are given a guess v, and a packing π0 (called the
preallocation) of I ′ = LWD ∪ LH that fits in r(α, β)v, and such that rectangles
of LWD ⊂ I ′ are already packed in a (1 − α)-compact way. We consider step
b): how to turn π0 into a (1 − α)-compact packing.

Lemma 5 (Step b)). Let π0 be the preallocation of I ′ constructed in Step a).
Let π̂1 = π0∩LWD denote π0 when keeping only rectangles of LWD. Recall that
π̂1 is already a (1 − α)-compact packing of rectangles of LWD.

Then, we can complete π̂1 into a (1−α)-compact packing π1 of I ′, such that
the height of π1 is lower or equal to the height of π0.

Proof. Let us define the LSπ0
algorithm that adds rectangles of I ′ \ LWD. Let

us consider a single strip Si. Let πi
0 denote π0 restricted to Si, and π̂i

1 denote
π̂1 restricted to Si. Let X = {r1, . . . , rp} be the set of preallocated rectangles of
I ′ \LWD that we have to add to Si. We assume that lvl(j) ≤ lvl(j + 1), where
lvl(j) is the bottom level of rj in π0.

For our considered strip Si, the LSπ0
algorithm executes AddAsap(rj , π̂i

1),

for 1 ≤ j ≤ p, where AddAsap(r, π̂i
1) adds rectangle r to π̂1 (in Si) at the

smallest possible level. Notice first that adding with AddAsap a rectangle rj

with wj ≤ α to a (1 − α)-compact packing creates another (1 − α)-compact
packing. Thus it is clear that π1 is (1 − α)-compact.

For any 1 ≤ j ≤ p, let (π̂i
1, j) denote the packing in Si just before adding rj

with AddAsap, and let (πi
0, j) denote the packing πi

0 ∩ (LWD ∪ {r1, . . . , rj−1}).

Let us prove by induction on j ∈ {1, . . . , p} that u(π̂i

1
,j)(l) ≤ u(πi

0
,j)(l), for any

l ≥ lvl(j). The definition of π̂1 gives the property for j = 1 (we even have an
equality). Let us suppose that the property is true for j, and prove it for j + 1.
Let l ≥ lvl(j +1). The induction property for rank j implies that rj is added by

AddAsap at a level lower or equal to lvl(j). Thus, if rj intersects l in (π̂i
1, j +1),

then it also occurs in (πi
0, j + 1). Thus in this case we have

u(π̂i

1
,j+1)(l) = u(π̂i

1
,j)(l) + wj

≤ u(πi

0
,j)(l) + wj

= u(πi

0
,j+1)(l)

If rj does not intersect l in (π̂i
1, j), then clearly u(π̂i

1
,j+1)(l) = u(π̂i

1
,j)(l) ≤

u(πi

0
,j)(l) ≤ u(πi

0
,j+1)(l)

Thus we proved that for any 1 ≤ j ≤ p we have u(π̂i

1
,j)(l) ≤ u(πi

0
,j)(l) for

any l ≥ lvl(j), implying that every rj is added by AddAsap at a level lower or
equal to lvl(j). Thus, the height of π1 is lower or equal to the height of π0

8



We now prove in Lemma 6 that after adding rectangles in step c), the height
of the packing do not exceed r(α, β)v = ( 1

1−α
+ β)v. This explains why the

height of the pre-allocation should also be bounded by r(α, β)v.

Lemma 6 (Step c)). Let π1 be a (1 − α)-compact packing of I ′. Adding to π1

rectangles of I \ I ′ with a List Scheduling algorithm (LS) leads to a packing π
having height lower than max(height(π1), v( 1

1−α
+ β)).

Proof. The LS algorithm scans all the strips from level 0, and at any level adds
any rectangle of I\I ′ that fits. Notice that the final packing π is (1−α)-compact,
since we add rectangles rj with wj ≤ α to an (1 − α)-compact packing.

Let us assume that the height of π is due to a rectangle rj ∈ I \ I ′ that
starts at level s. This implies that when packing rj we had li ≥ s for any
strip i (with li defined as in Definition 4). According to this definition we have

ui(l) > 1−α for any l ≤ li. Thus, we have S(I) >
∑N

i=1 li(1−α) ≥ N(1−α)s,
implying that s < v 1

1−α
, and thus that of height of π is lower or equal to

s + maxj∈I\I′hj ≤ v( 1
1−α

+ β).

Thus, we now apply this framework with α = 1
3 and β = 1

2 to get a 2-
approximation.

3 A 2-approximation for a special case of MCSP

3.1 Motivation

As explained in the related work, the 2+ǫ-approximation in [YHZ09] and the 2-
approximation we recently proposed in [BDJ+09] are rather complexity results
than practical algorithms. We aim at constructing a low cost algorithm that
could be used in a practical context. Thus, we are looking for a (reasonable)
restriction of the MCSP that would help to tight the bounds, and we consider
that all the rectangles have width lower or equal to 1/2.

Lemma 7. The MCSP where every rectangle has width lower (or equal) to 1
2

has no polynomial algorithm with a ratio strictly better than 2, unless P = NP .

Proof. As in [Zhu06] for the general version, we construct a gap reduction from
the 2-partition problem. Let {x1, . . . , xn} ⊂ Nn and a such that

∑n

i=1 = 2a.
Without loss of generality, let us assume that for any i, xi < a. In order
to only have items with size at least two, we define x′

i = 2xi for any i, and
a′ = 2a. We construct the following instance IMSP of ”restricted” MCSP .
We chose N = 2 strips, each strip having size 2a′ − 1. The set of rectangle is
{r1, . . . , rn, rn+1, rn+2}, with wi = x′

i for 1 ≤ i ≤ n, wn+1 = wn+2 = a′ − 1,

and hi = 1 for 1 ≤ i ≤ n + 2. We have wi ≤
2a′−1

2 for any i, as all the xi are
strictly lower than a. Notice than any solution to IMSP that packs rn+1 and
rn+2 is the same strip have a height of at least 2, as the available width of size
1 in that strip cannot be used by any rectangle.

Obviously, if there is a 2-partition, then Opt(IMSP ) = 1. Otherwise, as rn+1

and rn+2 cannot be packed together, we have Opt(IMSP ) = 2

9



The previous proof can easily be adapted for any fixed value c ∈ N, c ≥ 2.
Therefore, the fast 2-approximation presented in this section is the best result
we can hope, even for simpler versions of the MCSP.

3.2 Preliminaries

We follow the ideas presented in Section 2, and thus we re-use the notion of
layer, shelf, bin, and the procedures named CreateLayer and CreateShelf.

We use the dual approximation technique [HS88], and we denote by v the
guess of the optimal value. Conforming to the dual approximation technique,
we will prove that either we pack I with a resulting height lower than 2v, or
v < Opt. Notice that for the sake of simplicity we did not add the “reject”
instructions in the algorithm. Thus we consider in all the proof that v ≥ Opt,
and it is implicit that if one of the claimed properties is wrong during the
execution, the considered v should be rejected.

Recall that all rectangles have wj ≤ 1
2 . Let us define the following sets:

• let LWD = {rj |wj > 1/3} be the set of wide rectangles

• let LXH = {rj |hj > 2v/3} be the set of extra high rectangles

• let LH = {rj |2v/3 ≥ hj > v/2} be the set of high rectangles

• let LB = (LXH ∪ LH) ∩ LWD be the set of huge rectangles, and b =
Card(LB).

• let I ′ = LWD ∪ LXH ∪ LH

Notice than we only consider the values v such that

• W (LXH ∪ LH) ≤ N

• H(LWD) ≤ 2Nv

As we expected, the set I ′ corresponds in our framework to the set of big
rectangles for α = 1

3 and β = 1
2 . The construction of the preallocation π0 of I ′

is presented from Section 3.3 to 3.5. The final steps to turn π0 into a 2
3 -compact

packing π1 and to turn π1 into the final packing π are quickly described in
Section 3.6, as they follow the steps presented in Section 2.2.

We now provide a two phases algorithm that builds the preallocation π0 of
the rectangles of I ′. Let πi

0 denote the set of rectangles packed in Si. Phase 1
(see Section 3.3) preallocates rectangles of LWD, and phase 2 (see Section 3.5)
preallocates rectangles of LH ∪ LXH .

3.3 Phase 1

3.3.1 Description of phase 1

Phase 1 packs the rectangles of LWD by calling for each strip (until LWD is
empty) two times CreateLayer(LWD, 2v). Let us denote by Lay2i−1 and Lay2i

10



the layers created in strip Si. Let us say that Lay2i−1 is packed left justified,
and Lay2i is packed right justified. Moreover, each layer is repacked in non
increasing order of the widths, such that the narrowest rectangles are packed on
the top.

Let N1 denote the number of strips used in phase 1, and let i1 denote the
index of the last created layer (Layi1 is of course in SN1

). Let L1
H and L1

XH

denote the set of remaining rectangles after phase 1 of LH and LXH , respectively.
Thus, for the moment we have πi

0 = Lay2i ∪ Lay2i−1 for all i ≤ N1.

3.3.2 Analysis of phase 1

Lemma 8. If ∃i0 < i1 such that H(Layi0) ≤ 3v
2 then it is straightforward to

preallocate I ′.

Proof. Let i0 < i1 such that H(Layi0) ≤ 3v
2 . This implies that we ran out

of rectangles of LWd \ (LH ∪ LXH) while creating layer i0. Thus, because of
the BFH order there are at least two rectangles of LB in every layer Layi, for
1 ≤ i < i1, implying that the width of high and extra high rectangles packed
in each of these layers is strictly larger than 2/3. Thus, W (πi

0 ∩ (LH ∪LXH)) >
4/3 > 1 for 1 ≤ i < N1. Thus, the total width of remaining high and extra high
rectangles is lower than N − (N1 − 1).

Let us prove that we can pack all the remaining rectangles of I ′ (which are
included in (LH ∪ LXH)) in the remaining strips. For each i ∈ [|N1 + 1, N |] we
create two shelves in Si (one at level 0 and one at level v). If there are still some
unpacked rectangles, then all the shelves are ”full”, that is the width of each
shelf is larger than 2/3 (as all the width of any rectangle of LH ∪ LXH is lower
than 1/3). Thus, we have W (πi

0 ∩ (LH ∪LXH)) > 4/3 > 1 (for N1 +1 ≤ i ≤ N).
This implies that the total width of remaining rectangles of LH∪LXH (including
those in strip SN1

) is now lower than 1. Thus, we can pack all of them in one
shelf in SN1

.

From now we assume that H(Layi) > 3w
2 for all i < i1. This implies that

S(πi
0) > v for i < N1. Moreover, we have 2Nv ≥ H(LWd) ≥

∑N1−1
i=1 H(πi

0 ∩
LWd) > (N1 − 1)2(3v/2), implying N1 < 2

3N + 1.

Lemma 9. If there is a rectangle of LB in layi1−1, then it is straightforward
to preallocate I ′.

Proof. We first consider the case where there are two layers in strip N1 Let
us count the cumulative width of high and extra high rectangles that already
packed. In the first N1−1 strips, we packed at least two rectangles of B in each
layer, implying

∑
1≤i≤N1−1 W (πi

0 ∩ (LXH ∪ LH)) ≥ 4
3 (N1 − 1). In strip N1, we

have W (πN1

0 ∩(LXH∪LH)) > 1/3 by hypothesis. Let N2 = N−N1. As in Lemma
8, we create two shelves (using a widest first policy) of rectangles of LXH∪LH in
each strip SN1+i, for 1 ≤ i ≤ N2. If we don’t run out of rectangles, the remaining
width of high and extra high rectangles after packing the first 2N2−1 shelves is
strictly larger than 1. Given that each shelf has width at least 3

4 (see Lemma 3),
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we have N ≥ W (LXH ∪LH) > 4
3 (N1−1)+ 1

3 + 3
4 (2N2−1)+1 = −N1

6 + 3N
2 − 3

4 ,

leading to N1 ≥ 3N − 9
2 . As N1 < 2

3N + 1, we conclude that 3N − 9
2 < 2N

3 + 1,
which is a contradiction for N ≥ 3.

If N = 2, we have W (LXH∪LH) ≤ 2 and H(LWD) ≤ 4v. Given that H(π1
0∩

LWD) > 3v, we get H(lay3) ≤ v and H(Lay4) = 0 which is a contradiction
because we supposed that there were two layers in strip N1.

The case where there is only one layer in strip N1 can be treated using the
same arguments for N ≥ 3. If N = 2, then we have (as before) H(lay3) ≤ v.
Moreover, W (π1

0∩(LXH∪LH)) > 4
3 > 1 because there are at least two rectangles

of LB in Lay1 and one rectangle of LB in Lay2. Thus, there is enough space in
strip S2 to pack one shelf of LXH ∪ LH , which is sufficient.

Naturally we consider from now on that the area packed in the first N1 − 1
is strictly more than (N1 − 1)v, and that there is no huge rectangle in the last
two layers created by phase 1. It remains now to pack L1

H ∪ L1
XH . Notice that

(L1
H ∪ L1

XH) ∩ LWD = ∅ (we say that (L1
H ∪ L1

XH) contains purely high and
extra high rectangles).

3.4 Packing techniques for (purely) high and extra high
rectangles

3.4.1 Preliminaries

Let N2 = N − N1 denote the number of free strips after phase 1. Roughly
speaking, phase 2 packs shelves of high of extra high rectangles in each of the
N2 last strips and merges some high or extra high rectangles with the ones
packed in strip N1 (using the Merge procedure).

In this section we present a technique to fill α empty strips with high or extra
high rectangles. In the Section 3.5, we use this technique for α = N2 (using
strips SN1+1 . . .SN ) and an additional merging algorithm (that fills efficiently
strip SN1

) to pack L1
H ∪ L1

XH .
Let us now introduce the procedure GreedyPack(X, seq). Given an or-

dered sequence of bins seq, GreedyPack creates for each empty bin b ∈ seq a
shelf of rectangles of X using CreateShelf(X, 1) and packs it into b (an example
of a shelf packed in a bin is depicted Figure 3, Page 6). This procedure returns
the last bin in which a shelf has been created, or null if no shelf is created.
Notice that we will always use sequence of bins that have always width 1, and
the same height hb such that maxrx∈Xhx ≤ hb.

We now define the two sequences of bins seqXH and seqH that will be used
by GreedyPack. Every bin of seqXH (resp. seqH) will (possibly) contain one
shelf of rectangles of LXH (resp. LH). Notice that in a free strip it is possible
to pack two bins of height v (width of bins is always 1), three bins of height 2v/3,
or one bin of size v and one bin of size 2v/3. Thus, seqXH is composed of 2α bins
(b1, . . . , b2α) of height v, considering that we created two bins of height one in
each of the strips S1, . . . Sα. More precisely, for all i we locate b2i−1 and b2i in
Si, with b2i−x at level v(1 − x) for x ∈ {0, 1}. The sequence seqH is composed

12



of 3α bins (b′1, . . . , b
′
3α) of height 2v/3, considering that we created three bins in

each of the strips Sα, . . . S1. It means that for all i ≥ 1, bins b′3i−2, b′3i−1 and
b′3i are located in Sα−i+1, with b′3i−x at level 2xv

3 for x ∈ {0, 2}. This sequences
of bins will be used in Lemma 11, and later in phase 2.

Finally, let us define the Add(X,Silast
) procedure that packs the set of rect-

angles X ⊂ LH \ LWd in Silast
. As one can see in Lemma 11, Silast

is the
last strip where Greedypack created a shelf. Thus, we assume for the moment
that Silast

may only contain two different shapes of packing, and define the Add
procedure accordingly.

In the first case Silast
contains a first “full” shelf (full means that the surface

of the shelf is at least v/2) of rectangles of LXH at level 0, and a shelf sh of
rectangles of LXH packed at level v, right justified. In this case, Add creates a
shelf sh1 using CreateShelf(X, 1 − W (sh)) and preallocate sh1 at level v, left
justified.

v

2v

sh1

sh2

sh3

LH

LXH

Silast

shA

shB

Figure 5: Example the add2 procedure.

In the second case (see Figure 5), Silast
contains only a shelf of rectan-

gles of LXH packed at level 0, right justified. In this case, Add first moves

some rectangles from sh to a new shelf ŝh until W (sh) ≤ 2/3. Then, Add
packs (right justified) the widest of these two shelves (denoted by shA) at level
0, and the other one (denoted by shB) at level v. Finally, Add creates two
shelves sh1 and sh2 using CreateShelf(X, 1−W (shA)) and one shelf sh3 using

CreateShelf(X, 1−W (shB)). Then, shi is packed at level 2v(i−1)
3 , left justified.

Notice that stacking shelves sh1, sh2, sh3 does not exceed 2v.
We end preliminaries with the following Lemma about the efficiency of Add.

Lemma 10. Let X ⊂ LH \ LWD and Si be a strip packed as expected for
Add(X,Si). Let πi

0 denote the rectangles packed in Si before the call Add(X,Si).
If X 6= ∅ after calling the procedure, then S(πi

0 ∪ X) > v.

13



Proof. Remember that two cases are possible according to what is already
packed in Si before the call. Let us first suppose that there is one full shelf
(of area strictly larger than v/2) of extra high rectangles (at level 0) and another
shelf sh of extra high rectangles at level v. Then, X 6= ∅ after the call implies
that W (X) > 1−W (sh), and we have S(πi

0∪X) > v
2 +W (sh) 2v

3 +W (X)v
2 > v.

Let us now suppose that Si contains only one shelf sh of LXH at level 0.
Let shA, shB , sh1, sh2, sh3 be defined as described in the Add procedure. As
W (shA) ≤ 2

3 (W (shb) ≤
2
3 is also true), and X ∩LWD = ∅, sh1 and sh2 contain

at least one rectangle, implying that W (sh1) and W (sh2) are strictly larger

than 1−W (shA)
2 according to Lemma 3. Moreover, X 6= ∅ after the call implies

that after creating sh1 and sh2 the total width of remaining rectangles of X
was strictly larger than 1−W (shB). Putting this together, we get S(πi

0 ∪X) >
(1 − W (shA))v

2 + (1 − W (shB))v
2 + (W (shA) + W (shB))2v

3 > v.

3.4.2 Filling α empty strips with high and extra high rectangles

The next lemma shows how to fill α free strips.

Lemma 11. Let L̂XH ⊂ LXH \ LWD and L̂H ⊂ LH \ LWD be two sets of
rectangles that we have to pack. Suppose that we execute the following calls:

1. last = GreedyPack(L̂XH , seqXH)

2. GreedyPack(L̂H , seqH)

3. Add(L̂H , Silast
) where Silast

denotes the strip containing bin last.

Then, we get the following properties:

• If L̂XH 6= ∅ after 1, then S(L̂XH) > (α + 1
6 )v

• Otherwise, if L̂H 6= ∅ after 3, then S(L̂XH ∪ L̂H) > αv.

Remark 12. Notice that before the call to Add2, Silast
is the only strip that

maybe already contains high and extra high rectangles. Moreover, this can hap-
pen only if the last shelf of extra high rectangles is at level 0, (because otherwise
the places corresponding to b′3ilast−2 and b′3ilast−2 are not completely free, and
thus GreedyPack do not pack any high rectangles in these bins).

Remark 13. Let X such that X ∩LWd = ∅ and let sh denote a shelf created by
CreateShelf(X, 1), supposing that we didn’t run out of rectangle while creating
the shelf. Then, according to Lemma 3, as at least three rectangles fit we have
W (sh) > 3/4 . Moreover, if X ⊂ LXH then S(sh) > v/2, and if X ⊂ LH then
S(sh) > 3v/8.

Proof of lemma 11. Let us first suppose that L̂XH 6= ∅ after step 1. It implies
that after creating the first 2α − 1 shelves of width at least 3/4 (according to

14



Remark 13), the total remaining width of rectangles of L̂XH was strictly larger

than 1. Thus, S(L̂XH) > 3
4 (2α − 1) 2v

3 + 2v
3 = (α + 1

6 )v.

Let us now suppose that L̂XH = ∅ and L̂H 6= ∅ after step 3. Let sh denote the

shelf of rectangles of L̂XH contained in bin last. Remind that ilast is the index of

the strip containing last. For all i ∈ [|1, ilast−1|], S(πi
0∩(L̂XH∪L̂H)) > 2v

2 = v.

For all i ∈ [|ilast+1, α|], S(πi
0∩(L̂XH∪L̂H)) > 3 3v

8 > v. According to Lemma 10,

L̂H 6= ∅ implies S(πilast

0 ∩ L̂H) > v. Thus, we get that S(L̂XH ∪ L̂H) > αv.

3.5 Phase 2

In phase 1 we preallocated LWD in strips S1, . . . , SN1
. Recall that each layer

created in phase 1 is sorted with the narrowest rectangles on the top. It remains
now to preallocate L1

XH ∪ L1
H in SN1

, . . . , SN .

Lemma 14. It is possible to preallocate L1
XH ∪ L1

H in SN1
, . . . , SN with a re-

sulting height lower than 2v.

The general idea to pack L1
XH∪L1

H is to call GreedyPack on strips SN1+1, . . . , SN ,
and to finish the packing by carefully studying what was packed in SN1

by
phase 1. Thus, Lemma 14 is proved by case distinction according to the
shape of the preallocation in SN1

. Notice that the sequence of bins used by
GreedyPack is the one described in Section 3.4.1, replacing strips S1, . . . , Sα by
strips SN1+1, . . . , SN .

For the sake of clarity, we define for several cases an appropriate Merge
procedure that is responsible for adding rectangles in SN1

. Finally, let us in-
troduce the notation av(l) to denote the available width at level l (in a given
strip).

3.5.1 Cases where two layers are preallocated in SN1

Recall that i1 is the index of the last created layer in phase 1. As two lay-
ers are preallocated in SN1

, we have here i1 = 2N1. Let p1 = H(Layi1),
p2 = H(Layi1−1) and k = Card(Layi1). Without loss of generality, let us de-
note by {r1, . . . , rk} the rectangles of Layi1 , with rj , 1 ≤ j ≤ k sorted in non
increasing order of their heights. Remember that we assume that the last two
layers of phase 1 do not contain any rectangle of LB . We proceed by case anal-
ysis according to the value of p1.

If p1 > 4v
3 .

The algorithm makes the following calls:

1. last = GreedyPack(L1
XH , seqXH)

2. GreedyPack(L1
H , seqH)

3. Add(L1
H , Silast

)
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Let us prove that p1 + p2 > 3v. We have p2 > 2 − hk as rk was not included in
Layi1−1, and p1 ≥ max(khk, 4v

3 ). Thus p1+p2 ≥ max(2+(k−1)hk, 2−hk+ 4v
3 ).

This last term is minimized for hk = 4v
3k

, leading to p1 + p2 ≥ 2 + 4v
3 (1 − 1

k
)

which is greater than 3v for k ≥ 4.
Moreover, k > 2 as p > 4v

3 and no rectangles of LB are packed in strip SN1

according to Lemma 9. Thus, it remains to consider the case where k = 3.
Given that there is at least 4 rectangles in Layi1−1 (as no rectangles of LB

are packed in strip N1) we have p2 > 4h1, and as h1 > 4v
3k

, we get p1 + p2 >
16v
3k

+ 4v
3 > 28v

9 > 3v.
Thus in this case it is not necessary to preallocate anything else in SN1

as we
have p1 + p2 > 3v implying S(πN1

0 ) > v. Then, we conclude that no rectangle
of L1

XH ∪ L1
H remains after step 3 using Lemma 11.

If 4v
3 ≥ p > v.

Let us first define the Merge(X) procedure for this case. In this case (see
Figure 6 Page 16), merge(X) creates one shelf sh using CreateShelf(X,x),
where x = av( 4v

3 ), and packs it at level 4v
3 , right justified.

����������������������������������������������������������

����������������������������������������������������������

LH

LWD

LXH

2v

3

sh

x

Layi12 layers 1 layer (split by Merge)
4v
3
≥ p1 > v

Lay′′
i1

sh1

Lay′
i1

sh

sh2

x2

4v
3
≥ p1 > v

SN1
SN1

Figure 6: Example of Merge for two different cases.

The algorithm makes the following calls:

1. Merge(L1
H)

2. last = GreedyPack(L1
XH , seqXH)

3. GreedyPack(L1
H , seqH)

4. Add(L1
H , Silast

)

Let us consider a first case where L1
H is not empty after step 1. According

to Lemma 3, W (sh) > x
2 . After step 1, we have S(πN1

0 ) > 1
3 (p1)+S(Layi1−1)+
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S(sh). Moreover, S(Layi1−1)+S(sh) ≥ (1−x) 4v
3 +(p2−

4v
3 ) 1

3 + xv
4 , (see Figure 6

Page 16), which is decreasing in x. Thus, the lower bound is reached for x = 2
3 ,

and in this case S(πN1

0 ) > p1+p2

3 + W (sh)v
2 > 5v

6 + 1
3

v
2 = v. Then, according to

Lemma 11, no rectangle remains after step 4.
We now suppose that L1

H is empty after step 1. Before 1, S(πN1

0 ) > p1+p2

3 >
( 3
2 + 1)v

3 = 5v
6 . If L1

XH 6= ∅ after step 2, then according to Lemma 11

S(L1
XH) > (N2 + 1

6 )v implying S(πN1

0 ) + S(LXH) > (N2 + 1)v. Thus in this
case no rectangle remains after step 2.

If v ≥ p > 2v
3 .

We first analyze the case where N1 > 1. Let us consider the same algo-
rithm as in the previous case (with in particular the same definition of x).
Let us first suppose that L1

H 6= ∅ after step 1. We will bound the surface of
rectangle precallocated in πN1

0 after step 2 as before, except that we also take

into account the N1 − 1 first strips. Thus, after step 2 we have S(
⋃N1

i=1 πi
0) >

(N1−2)v +(H(Layi1−3)+H(Layi1−2)+p1)
1
3 +S(Layi1−1)+S(sh). As before,

S(Layi1−1) + S(sh) is decreasing in x, and we replace x by 2
3 . Moreover, notice

that H(Layi1−3) + H(Layi1−2) + p1 > 4v as there is at least two rectangles in
layi1 , and none of these rectangles has been included in Layi1−3 or Layi1−2.

Finally, we get S(
⋃N1

i=1 πi
0) > (N1 − 2)v + 4v

3 + p2

3 + 1
3

v
2 . Using p2 ≥ 3v

2 , we get

S(
⋃N1

i=1 πi
0) > N1v The case where L1

H is empty after step 1 can be adapted in
the same way.

Let us now consider the case with N1 = 1. In this case it is sufficient to
create two shelves of rectangles of L1

H ∪ L1
XH in each Si for 2 ≤ i ≤ N . If we

don’t run out of rectangles, the total width of high and extra high rectangles
packed in each of these strips is strictly larger than 3

2 . Thus, the total width λ
of remaining rectangles of L1

H ∪L1
XH is at most N − 3

2 (N −1) which is negative
for N ≥ 3. If N = 2, λ ≤ 1

2 , and we can finish packing L1
H ∪L1

XH using one bin
of width 1

2 and height v whose bottom is located at level v.

If 2v
3 ≥ p > 0.

Let us first define the Merge(X) procedure for this case. If X ⊂ LXH ,
merge(X) creates one shelf sh using CreateShelf(X,x), where x = av(v), and
packs it at level v, right justified.

If X ⊂ LH , two sub-cases are possible according to what is packed in strip
SN1

. If no shelf of LXH is preallocated in SN1
, merge(X) creates two shelves sh1

and sh2 using CreateShelf(X,x1) and CreateShelf(X,x2) respectively, where

xi = av( (6−2i)v
3 ). Notice that if sh2 is not empty then W (sh1) + W (sh2) > x1

as all the rectangles of sh2 were not included in sh1. Then, shi is packed at

level (6−2iv)
3 , right justified.

If there is a shelf sh of rectangles of LXH preallocated in SN1
(right justified,

at level v), merge(X) creates one shelf sh1 using CreateShelf(X,x) where
x = av(v) (x takes into account the wide rectangles added in phase 1 and the
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extra high ones in sh), and packs it at level v.
The algorithm makes the following calls:

1. last = GreedyPack(L1
XH , seqXH)

2. Merge(L1
XH)

3. Merge(L1
H)

4. GreedyPack(L1
H , seqH)

5. Add(L1
H , Silast

)

Let us prove that L1
XH is empty after step 2 by contradiction. If L1

XH is

not empty after step 2, then we claim that S(I ′) > Nv. Let ¯LXH
1

and π̄0
N1 be

respectively L1
XH and πN1

0 just before step 2. Just before step 2, the area packed
in each of the N2 last strips is strictly larger than v as GreedyPack(L1

XH , seq1
XH)

packs two shelves of area strictly larger than v
2 in each strip. If L1

XH is not empty

after step 2 then W ( ¯LXH
1
) > x (with x as defined just before for the Merge

procedure) and S(π̄0
N1)+S( ¯LXH

1
) > p1

1
3 +S(Layi1−1)+S( ¯LXH

1
). As before,

S(Layi1−1) + S( ¯LXH
1
) > v(1 − x) + (p2 − v) 1

3 + 2v
3 x is decreasing in x and

the minimum is reached for x = 2
3 . Replacing x by this value and using the

fact that p1 + p2 > 2v, we get S(π̄0
N1) + S( ¯LXH

1
) > 2v

3 + 4v
9 > v, implying

S(I ′) > Nv.
Thus L1

XH is empty after step 2. There is now two cases according to what
is packed in SN1

. Let us start with the first case where no extra high rectangle
packed in SN1

(i.e. LXH is empty after step 1). Remind that in this case two
shelves (sh1 and sh2) of rectangles of L1

H are created, and W (sh1) + W (sh2) >
x1. We will prove that LH is empty after step 5 by contradiction. We first show
that after step 3 we have S(πN1

0 ) > v, and then we will conclude using Lemma
11.

After phase 3 we get S(πN1

0 ) > p1
1
3 + S(Layi1−1) + S(sh1) + S(sh2). As

before, S(Layi1−1)+S(sh1)+S(sh2) > 4v
3 (1−x1)+(p2−

4v
3 ) 1

3 +x1
v
2 is decreasing

in x1 and the minimum is reached for x1 = 2
3 . Replacing x1 we get S(πN1

0 ) >
(p1+p2−

4v
3 ) 1

3 + 4v
9 + v

3 > v. Then, we prove that step 4 must pack the remaining
rectangles using Lemma 11. Thus in this case all the rectangles are packed.

In the second case some rectangles of L1
XH are packed in SN1

during step
2. Thus, the area packed (with rectangles of L1

XH) in each of the last N2 strips
using GreedyPack is strictly larger than v. We prove by contradiction that
L1

H must be packed at step 3. We use the same argument as before: the case
which minimizes the our lower bound on S(piN1

0 ) + S(L1
H) occurs when all the

rectangles of Layi1−1 have width 1
3 . Thus, if L1

H is not packed at step 3 we get

S(piN1

0 ) + S(L1
H) > v, leading as usual to S(I ′) > Nv.

3.5.2 Cases where one layer is preallocated in SN1

We consider now cases where i1 = 2N1−1. Let p1 = H(Layi1), p2 = H(Layi1−1),
p3 = H(Layi1−2) and k = Card(Layi1). Without loss of generality, let us de-
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note by {r1, . . . , rk} the set Layi1 (so p1 =
∑

1≤j≤k hj), with rj sorted in non
increasing order of their height. We proceed by case analysis according to the
value of p1. Remember that we assume that no rectangle of LB in the last two
layers of phase 1.

We start treating all these cases with one layer by stating some useful prop-
erties in Lemma 15.

Lemma 15. For the cases with one layer in SN1
, we have

1. if N1 = 1 then it is straightforward to preallocate L1
H ∪ L1

XH

2. for all the cases where p1 > 1, then N1 < N

3. if p1 > λ with λ > v
2 , then p1 + p2 + p3 > 3v + λ + max(v

5 , v − 2λ
k
).

Notice that property 3 states that we can improve the naive bound p1 +p2 +p3 >
3v + λ.

Proof. We start with property 1. If N1 = 1 we can pack two shelves of rectangles
of L1

H ∪L1
XH in each strip Si, i ≥ 2, implying a that the width packed rectangles

of L1
H ∪ L1

XH is at least 3
2 in each strip. Therefore, the remaining width of

rectangles of L1
H ∪ L1

XH will be at most 1
2 , and all these rectangles must fit in

one shelf in S1.
Property 2 is true as 2N ≥ H(LWD) > 3(N1 − 1) + p1, leading to N1 <

2N−1
3 + 1.
We now prove property 3. First notice that λ > v

2 implies k ≥ 2. Moreover,
p2 and p3 are strictly greater than 2v − hk as rk did not fit in Layi1−2 and
Layi1−1. On one side, we have p1 + p2 + p3 > b1 with b1 = λ + 2(2v − hk),
which is large for small values of hk. On the other side (for large values of hk),
we have p1 + p2 + p3 > b2 with b2 = λ + (2v − hk) + 4hk as there is at least
four rectangles in Layi1−1, and p1 + p2 + p3 > b3 with b3 = khk + 2(2v − hk) as
p1 ≥ khk. Thus, p1 + p2 + p3 is larger than max(b1, b2) and max(b1, b3). Then,
we just prove that max(b1, b2) ≥

v
5 and max(b1, b3) ≥ v − 2λ

k

We now study the different cases, assuming that N1 > 1.

If p1 > 5v
3 .

Let us first define the Merge(X) procedure for this case. If X ⊂ LXH , Merge
creates two shelves sh1 and sh2 using CreateShelf(X,x1) and CreateShelf(X,x2)
respectively, where xi = av((2 − i)v). Notice that if sh2 is not empty then
W (sh1)+W (sh2) > x1, as rectangles of sh2 were not included in sh1. Then shi

is packed at level (2− i)v, right justified. If X ⊂ LH , Merge creates two shelves
sh1 and sh2 using CreateShelf(X,x1) and CreateShelf(X,x2) respectively,
where xi = av((i − 1)v) (we take into account wide rectangles preallocated in
phase 1 and maybe extra high rectangles). Then shi is packed at level (i− 1)v,
right justified.

The algorithm makes the following calls:

1. Merge(L1
XH)
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2. last = GreedyPack(L1
XH , seqXH)

3. GreedyPack(L1
H , seqH)

4. Add(L1
H , Silast

)

5. Merge(L1
H)

Let first suppose that two shelves of extra high rectangles are created in step
1. Recall that in this case W (sh1) + W (sh2) > x1. Thus, after phase 1 we get
S(πN1

0 ) > (1 − x1)v + (p1 − v) 1
3 + 2v

3 x1, which is a decreasing function of x1.

With x1 = 2
3 we get S(πN1

0 ) > 5v
9 + 4v

9 = v. Therefore we conclude that step 2,
3 and 4 must pack the remaining rectangles using Lemma 11.

We now suppose that step 1 created only one shelf, implying that L1
XH is

empty after step 1. Let L̄H
1

denote the remaining rectangles of L1
H just before

step 5. If L̄H
1

is not empty after step 5 the end, we get S(πi
0) > v for any

i ∈ [|N1+1, N |]. Moreover, S(πN1

0 ∪L̄H
1
) > (1−x2)v+(p1−v) 1

3 +S(sh1)+x2
v
2

which is a decreasing function of x2. With x2 = 2
3 we get S(πN1

0 ∪ L̄H
1
) >

5v
9 + v

8 + v
3 > v, leading to S(I ′) > v.

If 5v
3 ≥ p1 > 4v

3 .
In this case, we first repack Layi1 by calling two times CreateLayer(Layi1 , v).

Let Lay′
i1

and Lay′′
i1

be respectively the first and the second new layers. We
repack these layers at level 0, with Lay′

i1
left justified and Lay′′

i1
right justified,

with the narrowest rectangles on the top. As there no huge rectangles remaining,
we have H(Lay′

i1
) > 2v

3 , implying H(Lay′′
i1

) ≤ v.
In this case, the Merge(X) procedure creates a shelf sh using CreateShelf(X,x)

where x = av(v), and packs it at level v, right justified. Notice that when
X ⊂ LH , x can be lower than 1 as there may be some extra high rectangles at
level v.

The algorithm makes the following calls:

1. Merge(L1
XH)

2. last = GreedyPack(L1
XH , seqXH)

3. GreedyPack(L1
H , seqH)

4. Add(L1
H , Silast

)

5. Merge(L1
H)

According to Lemma 15, we get p1+p2+p3 > 3v+ 4v
3 + v

6 . If L1
XH is not empty

after step 1, then S(πN1

0 ∪πN1−1
0 ) > (p1+p2+p3)

1
v
+S(sh) > v+ 4v

9 + v
18 + v

2 > 2v.
Then step 2, 3 and 4 must pack all the remaining rectangles according to Lemma
11.

If L1
XH is empty after step 1, then step 3 packs at least a surface v in each

of the last N2 strips. Then, if L1
H is not empty after step 4 we get S(πN1

0 ∪
πN1−1

0 ∪ L1
H ∪ L1

XH) > v + 4v
9 + v

18 + v
2 > 2v.

20



If 4v
3 ≥ p1 > v.

In this case we also repack the wide rectangles, but not in every sub-cases. Let
us describe the Merge(X) procedure in this case (see Figure 6 Page 16 for an
example of Merge(X)). If X ⊂ LXH (and X 6= ∅), Merge(X) repacks Layi1 by
calling two times CreateLayer(Layi1 , v). Let Lay′

i1
and Lay′′

i1
be respectively

the first and the second new layers. Merge repacks these layers at level 0, with
Lay′

i1
left justified and Lay′′

i1
right justified, with the narrowest rectangles on the

top. As there no huge rectangles remaining, we have H(Lay′
i1

) > 2v
3 , implying

H(Lay′′
i1

) ≤ 2v
3 . Then, Merge(X) creates a shelf sh using CreateShelf(X, 1)

and packs it at level v, left justified.
If X ⊂ LH , two cases are possible as Layi1 had maybe been already repacked

by a previous call to Merge. If Layi1 is already repacked, Merge(X) creates
two shelves sh1 and sh2 using CreateShelf(X,x1) and CreateShelf(X,x2)
respectively, where x1 = av( 4v

3 ) and x2 = Min(x1, av( 2v
3 )). Then shi is packed

right justified at level 6−2iv
3 . If Layi1 is not already repacked (then SN1

does
not contain any extra high rectangle), Merge(X) creates three shelves shi (for

1 ≤ i ≤ 3) using CreateShelf(X,xi), where xi = av( (6−2i)v
3 ). Then, shi is

packed at level (6−2i)v
3 , right justified. Notice that if sh3 is not empty then

W (sh2) + W (sh3) > x2 as rectangles of sh3 were not included in sh2.
The algorithm makes the following calls:

1. last = GreedyPack(L1
XH , seqXH)

2. Merge(L1
XH)

3. Merge(L1
H)

4. GreedyPack(L1
H , seqH)

5. Add(L1
H , Silast

)

According to Lemma 15, we have p1 +p2 +p3 > 3v +v +(v− 2
k
) > 4v + v

3 as
k > 3 in this case (remember that we assume that there is no huge rectangles
in the last two layers of phase 1).

Let us suppose first that L1
XH is not empty after step 2. Then after step 1

each of the last N2 strips is filled with an area strictly larger than v. Let ¯LXH
1

denote L1
XH after step 1 and π̄0

N1 denote the set packed in SN1
before step 2.

We have S(π̄0
N1 ∪ πN1−1

0 ∪ ¯LXH
1
) > 4v

3 + v
9 + 2v

3 > 2v, leading to S(I ′) > Nv.
If L1

XH is empty after step 2, two cases are possible according to what is
packed in SN1

. If no extra high rectangle is packed in SN1
, then Layi1 is not

repacked by Merge. After step 3, if L1
H is not empty we get S(πN1

0 ∪ πN1−1
0 ) >

S(sh1)+(W (sh2)+W (sh3))
v
2 +(p1 +p2 +p3)

1
3 > 3v

8 +x2
v
2 +(1−x2)

2v
3 +(p1−

2v
3 +p2+p3)

1
3 which is decreasing in x2. For x2 = 2

3 we get S(πN1

0 ∪πN1−1
0 ) > 2v,

and according to Lemma 11 step 4 and 5 must pack all the remaining rectangles.
If a shelf sh of extra high rectangles is packed in SN1

, then Layi1 is repacked
by Merge. Before step 3 the area packed in the last N2 strips is already strictly
larger than v. Let us analyze what happen if L1

H is not packed after step 3.
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Let π̄0
N1 denote the set of packed rectangles before step 1. We proceed by case

analysis according to W (sh). If W (sh) ≤ 1
3 then x2 is the available width at

level 2v
3 , and we get S(π̄0

N1∪πN1−1
0 ∪sh∪L1

H) > (1−x2)
2v
3 +(p1−

2v
3 +p2+p3)

1
3+

x2
v
2 + 1−W (sh)

2
v
2 +W (sh) 2v

3 which is a decreasing function of x2. For x2 = 2
3 we

get S(π̄0
N1 ∪ πN1−1

0 ∪ sh ∪ L1
H) > 13v

9 + v
3 + 1−W (sh)

2
v
2 + W (sh) 2v

3 , which is an

increasing function of W (sh). Replacing W (sh) by 0 we get S(π̄0
N1 ∪ πN1−1

0 ∪
sh∪L1

H) > 2v. If W (sh) > 1
3 then we only need to use that W (L1

H) > 1−W (sh).

Thus we have S(π̄0
N1 ∪ πN1−1

0 ∪ sh ∪ L1
H) > 13v

9 + W (sh) 2v
3 + (1 − W (sh))v

2 ,

leading for W (sh) = 1
3 to S(π̄0

N1 ∪ πN1−1
0 ∪ sh ∪ L1

H) > 2v.

If v ≥ p1 > 2v
3 .

Let us first describe the Merge(X) in this case. If X ⊂ L1
XH , Merge cre-

ates two shelves sh1 and sh2 using CreateShelf(X, 1) and CreateShelf(X,x2)
where x2 = av(0). Then, shi is packed right justified at level (2 − i)v. If
X ⊂ L1

H , Merge creates two shelves sh1 and sh2 using CreateShelf(X,x1)

and CreateShelf(X,x2) where xi = av(v(2i−1)
3 ). Then, shi is packed at level

v(2i−1)
3 , right justified.
The algorithm makes the following calls:

1. Merge(L1
XH)

2. last = GreedyPack(L1
XH , seqXH)

3. GreedyPack(L1
H , seqH)

4. Add(L1
H , Silast

)

5. Merge(L1
H)

According to Lemma 15, we have in this case p1 +p2 +p3 > 4v. If step 1 cre-
ates two shelves of extra high rectangles, then (after step 1) W (πN1

0 ∩L1
XH) > 1

and we get S(πN1

0 ∪ πN1−1
0 ) > 4v

3 + 2v
3 > 2v. Thus step 2, 3 and 4 must pack

the remaining rectangles according to Lemma 11. Otherwise, L1
XH is com-

pletely packed (in one shelf) in SN1
. Let us assume that L1

H is not packed
after step 5. The surface packed in the last N2 strips is strictly larger than

v. Let L̄H
1

be L1
H just before step 5. If L̄H

1
is not packed by step 5 we get

S(πN1

0 ∪πN1−1
0 ∪ L̄H

1
∪L1

XH) > (1−x1)
v
3 +(p1−

v
3 +p2 +p3)

1
3 + x1

2
v
2 + v

2 , which

is decreasing in x1. Thus, for x1 = 2
3 we get S(πN1

0 ∪ πN1−1
0 ∪ L̄H

1
∪ L1

XH) >
4v
3 + v

6 + v
2 = 2v.

If 2v
3 ≥ p1.

If k ≥ 2, then we get p1 + p2 + p3 ≥ 4v, as none of the rectangles of Layi1 fit
in the previous layers. Thus, the analysis is the same as in the previous case.
We now assume that k = 1, meaning that there is only one wide rectangle r1 of
height h1 and width w1.
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Let us describe the Merge(X) procedure in this case. If X ⊂ LXH , Merge(X)
creates two shelves sh1 and sh2, using CreateShelf(X,x1) and CreateShelf(X, 1)
respectively, where x1 = av(0). Then shi is packed at level (i− 1)v, right justi-
fied.

If X ⊂ LH , Merge(X) creates three shelves shi for 1 ≤ i ≤ 3 using

CreateShelf(X,xi), where xi = av(v(6−2i)
3 ). Then shi is packed at level v(6−2i)

3 ,
with sh1 and sh2 left justified, and sh3 right justified.

The algorithm makes the following calls:

1. last = GreedyPack(L1
XH , seqXH)

2. Merge(L1
XH)

3. Merge(L1
H)

4. GreedyPack(L1
H , seqH)

5. Add(L1
H , Silast

)

Let us first bound S(Layi1−2∪Layi1−1∪r1). As r1 did not fit in Layi1−2 and
Layi1−1, p2 and p3 are greater than 2v−h1. Moreover, as no rectangle of LB is

in Layi1−1 we get p2 > 4h1. Thus S(Layi1−2 ∪Layi1−1 ∪ r1) > max( 2(2v−h1)
3 +

w1h1,
2v−h1

3 + 4h1

3 + w1h1). Notice that the left part of the max is decreasing
in h1 as w1 ≤ 1

2 . Thus, replacing h1 by 2v
5 we get S(Layi1−2 ∪ Layi1−1 ∪ r1) >

16v
15 + 2w1v

5 .
Let us suppose first that L1

XH is not empty after step 2. Then after step
1 each of the last N2 strips is filled with an area strictly larger than v. Let

¯LXH
1

denote L1
XH after step 1 and π̄0

N1 denote the set packed in SN1
before

step 2. We have S(π̄0
N1 ∪ πN1−1

0 ∪ ¯LXH
1
) > 16v

15 + 2w1v
5 + 1−w1

2
2v
3 + 2v

3 which

is increasing in w1. For w1 = 1
3 we get S(π̄0

N1 ∪ πN1−1
0 ∪ ¯LXH

1
) > 2v, leading

to S(I ′) > Nv.
If L1

XH is empty after step 2, two cases are possible according to what is
packed in SN1

. Let us first assume that no extra high rectangle is packed in SN1
.

After step 3, if L1
H is not empty we get S(πN1

0 ∪πN1−1
0 ) > 16v

15 + 2w1v
5 + 6v

8 + 1−w1

2
v
2

which is greater than 2v for w1 = 1
3 . Then, step 4 and 5 must pack all the

remaining rectangles according to Lemma 11.
We now assume that some extra high rectangles are packed in SN1

. In this
case, the area packed before step 3 in the last N2 strips is already strictly larger
than v. Let π̄0

N1 denote the set of packed rectangles before step 1. We proceed
by contradiction by supposing that L1

H is not packed after step 3.
If only one shelf sh1 of extra high rectangles is packed in SN1

, we get

S(π̄0
N1 ∪ πN1−1

0 ∪ L1
H ∪ sh1) >

16v

15
+

2w1v

5
+

3v

8
+ (1 − W (sh1))

v

2

+W (sh1)
2v

3

>
16v

15
+

2w1v

5
+

7v

8
> 2v
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If two shelves sh1 and sh2 of extra high rectangles are packed in SN1
, two cases

are possible according to W (sh2). If W (sh2) > 2
3 , we get

S(π̄0
N1 ∪ πN1−1

0 ∪ L1
H ∪ sh2 ∪ sh1) >

16v

15
+

2w1v

5
+ (1 − W (sh2))

v

2

+W (sh2)
2v

3
+

1 − w1

2

2v

3

>
16v

15
+

2w1v

5
+

v

6
+

4v

9
+ (1 − w1)

v

3
> 2v

If W (sh2) ≤
2
3 , we get

S(π̄0
N1 ∪ πN1−1

0 ∪ L1
H ∪ sh2 ∪ sh1) >

16v

15
+

2w1v

5
+

3

2
(1 − W (sh2))

v

2

+W (sh2)
2v

3
+

1 − w1

2

2v

3

>
16v

15
+

2w1v

5
+

v

4
+

4v

9
+ (1 − w1)

v

3
> 2v

Thus, it is possible to pack the remaning rectangle for all possible cases that
may occur after phase 1, and thus Lemma 14 is proved.

3.6 Complexity

According to the main steps defined in Section 2.2, the algorithm that preallo-
cates I ′ is sufficient to get a 2-approximation. Indeed, we simply add rectangles
of I \ I ′ using list algorithms defined in Section 2.2.

Let us now sketch the analysis of the running time of the preallocation
algorithm. Roughly speaking, Phase 1 runs in O(nlog(n) + Nn) as for each
strip creating a layer can be done in O(n) (by initially sorting wide rectangles
according to their heights). Phase 2 also runs in O(nlog(n) + Nn) as for each
strip creating a constant number of shelves (generally two or three) can be done
in O(n) (by initially sorting high and extra high rectangles according to their
widths).

Let us now bound the running time of algorithms of Section 2.2.2 that turn
π0 into the final packing. Due to the simple structure of preallocation, the LSπ0

algorithm can be implemented in O(nlog(n)). Indeed, instead of scanning level
by level and strip by strip, this algorithm can be implemented by maintaining
a list that contains the set of “currently” packed rectangles. The list contains
3-tuples (j, l, i) indicating that the top of rectangle rj (packed on strip Si)
is at level l. Thus, instead of scanning every level from 0 it is sufficient to
maintain sorted this list according to the l values (in non decreasing order), and
to only consider at every step the first element of the list (i.e. the first job that
completes). Then, it takes O(log(n)) to find a rectangle rj0 in the appropriate
shelf that fits at level l, because a shelf can be created as a sorted array. It also
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takes O(log(n)) to insert the new event corresponding to the end of rj0 in the
list.

The last step, which turns π1 into the final packing can also be implemented
in O(nlog(n)) using a similar global list of events. Notice that for any strip
Si, there exists a li such that bellow li the utilization is an arbitrary function
strictly larger than 1/2, and a non increasing after. Packing a small rectangle
before li would require additional data structure to handle the complex shape.
Thus we do not pack any small rectangle before li as it is not necessary for
achieving the 2 ratio. Therefore, we only add those events that happen after
li when initializing the global list for this step. To summarize, for this step we
only need to sort the small rectangles in non increasing order of their required
number of processors, and then apply the same global list algorithm.

Thus, taking into account the repetitions due to the binary search on v, this
algorithm can be implemented in O(log2(nhmax)n(N + log(n))).
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