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Abstract

The classical setting of query answering either assumes the existence of just
one knowledge requester, or the knowledge requests from different parties are
treated independently from each other. This assumption does not always hold in
practical applications where requesters often are in direct competition for knowl-
edge. We provide a formal model for this type of scenario scenario by propos-
ing the Multi-Agent Knowledge Allocation (MAKA) setting which combines the
fields of query answering in information systems and multi-agent resource allo-
cation. We define a bidding language based on exclusivity-annotated conjunctive
queries and succinctly translate the allocation problem into a graph structure allow-
ing to employ a wide range of constraint solving techniques for optimal allocation.

1 Introduction
Conjunctive query answering (between knowledge requester and knowledge provider)
constitutes the de-facto standard of interacting with resources of structured informa-
tion. It has been widely addressed in the literature, starting from the databases area
(see (see [8, 1], but later being adopted for ontological information systems as well
[6, 5]. The classical setting in query answering is focused on the case where just one
knowledge requester is present. In case multiple requesters are present, the queries
posed by different parties are processed and answered as independent from each other,
thus making the multi-requester scenario a straightforward extension of the individual
case. If at some time, n knowledge requesters asked for (eventually overlapping) in-
formation, this information would (potentially duplicately) be distributed to everybody
according to their query.

While the above practice is natural in some cases, the assumption that queries
can be processed independently clearly does not always hold in practical applications
where the requesters are in direct competition for information. Let us consider for
instance a multi-agent setting, with requester agents concurrently demanding infor-
mation from a provider agent (example scenarios include military applications, news
agencies, intelligence services, etc.). Of course, in this context, requester agents will
not be willing to share “sensitive” information with other agents.

A structurally related problem is the multi-agent resource allocation (MARA) set-
ting [9]. However, in such a setting (i) the agents ask for resources (not knowledge)
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and (ii) agents a priori know the pool of available resources. Work in this field is ei-
ther aimed towards bidding language expressiveness (what preferences over subsets of
resources can be correctly represented by the language) or algorithmic aspects of the
allocation problem (see for instance [11, 2, 10] and others). The notion of multiplicity
of resources, or resources used exclusively or shared has also been recently investigated
in a logic-based language [13].

In the proposed multi-agent knowledge allocation (MAKA) setting, the n requester
agents, at some given time (in a single-step), ask for knowledge (and not resources).
They express their requests in the form of conjunctive queries that are endowed with
exclusivity constraints and valuations, which indicate the subjective value of potentially
allocated answers. Knowledge allocation poses interesting inherent problems not only
from a bidding and query answering viewpoint, but also in terms of mechanism design.

The contributions of this paper can be summarized as follows: On the conceptual
side, the aim of this paper is

• to motivate and formally define the novel problem of Multi-Agent Knowledge Allo-
cation,

• to define the notion of exclusivity-enabled queries to account for a setting where
knowledge requesters compete for information and

• to lay down future work directions opened by this novel setting: increased expressiv-
ity, dynamic allocations, fairness, multiple providers etc.

On the technical side, drawing from the fields of query answering in information sys-
tems and multi-agent resource allocation, we

• define syntax and semantics of a bidding language featuring exclusivity-annotated
conjunctive queries as well as valuation functions and

• show a way to succinctly translate the multi-agent knowledge allocation problem
into a network flow problem allowing to employ a wide range of constraint solving
techniques to find the optimal allocation of answers to agents.

The paper is structured as follows: In Section 2 we conceptually extend the classical
setting of query answering by ways of handling exclusivity demands. Section 3 intro-
duces and formally defines the Multi-Agent Knowledge Allocation problem. Section 4
informally argues for a flow-network-based representation of bids of knowledge re-
questers. Consequently, Section 5 defines Knowledge Allocation Networks and shows
that the knowledge allocation problem can be reduced to a maximum flow problem in
these networks. Section 7 concludes and discusses avenues for future work.

2 Querying with Exclusivity
Constraints

We first introduce our framework of exclusivity-aware querying as a basis for an ade-
quate MAKA bidding formalism. For illustration purposes, we accompany the notions
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introduced herein by an example about celebrity news. As a starting point, we define
the term of a knowledge base to formally describe a pool of information (or knowledge)
that a knowledge provider agent holds in stock and that is to be delivered to knowledge
requester agents according to their bids expressed via queries.

Definition 1 (Knowledge Base). Let C be a set of constants and P = P1∪P2 . . .∪Pn

a set of predicates of arity i = 1, . . . , n. Given some i ∈ {1, . . . , n}, p ∈ Pi and
c1, . . . , ci ∈ C we call p(c1, c2 . . . , ci) a ground fact. We denote by GF the set of all
ground facts. A knowledge base K is defined as a set of ground facts: K ⊆ GF .

Consider the following predicates: actor, director, singer (all unary), marriage
and act (binary) and five constants AJ (Angelina Jolie), BP (Brad Pitt), MMS (Mr. and
Ms. Smith), JB (Jessica Biel), JT (Justin Timberlake). The knowledge base we consider
consists of the following ground facts:

actor(AJ)
actor(BP)
actor(JB)

director(AJ)
singer(JT)

marriage(AJ, BP)
act(AJ, MMS)
act(BP, MMS)

Note that in this version, the notion of knowledge base is very much alike a classical
database. However, we will extend this notion in future work by allowing more general
logical statements.

To describe information needs, we must provide for a sort of templates where
(query) variables take the place of the pieces of information that a knowledge requester
is interested in. Following the standard terminology of logical querying, we call these
templates atoms.

Definition 2 (Terms, Atoms). Let V be a countably infinite set of (query) variables.
We define the set of terms by T = V ∪ C. As usual, given i ∈ {1 . . . n}, p ∈ Pi and
t1, . . . , ti ∈ T we call p(t1, . . . , ti) an atom. We denote by AT,P the set of all atoms
constructed from P and T . Note that ground facts are just special atoms.

For instance, if we consider the set of variables V = {x, y} and the set of constants
C = {AJ, BP, MMS, JB, JT}, then actor(x), act(y, MMS), marriage(AJ, BP) are all
atoms over the previously defined sets P and C.

Since in the MAKA scenario requesters might be competing for certain pieces of
knowledge, we have to provide them with the possibility of asking for an atom exclu-
sively (exclusive) or not (shared). This additional information is captured by the notion
of exclusivity-annotated atoms, ground facts and queries defined next.

Definition 3 (Exclusivity-Annotated Atoms). An exclusivity-annotated atom is an el-
ement from Ae

P,T := AP,T × {shared, exclusive}. Let {shared, exclusive} be ordered
as to shared ≼ exclusive. In particular, an exclusivity-annotated ground fact is an
element from GFe

P,C := GFP,T × {shared, exclusive}.

Considering our example, exclusivity-annotated atoms would for instance be:
⟨actor(x), shared⟩, ⟨marriage(AJ, BP), shared⟩, ⟨marriage(AJ, BP), exclusive⟩,
⟨act(y, MMS), shared⟩.

Note that the idea of exclusivity annotation is a novel concept going beyond the
classical query answering framework. The defined order defined between exclusive
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and shared is used, intuitively, for query answering. It allows to specify concisely that
an answer delivered exclusively is suitable for a knowledge requester who demanded
that information shared (but not vice-versa). The actual semantics of exclusive and
shared will only be made explicit when defining what an allocation is. For specify-
ing structurally complex information needs, (exclusivity-annotated) atoms need to be
logically combined, giving rise to the central notion of (exclusivity-annotated) queries.

Definition 4 (Exclusivity-Annotated Queries). An exclusivity-annotated conjunctive
query (EACQ) is an element of boolexp(Ae

P,T ), i.e., a positive boolean expression (an
expression with boolean operators ∧ and ∨) over exclusivity-annotated atoms.1

For example, a query asking for exclusivity marriages between actors and directors
(where only the “marriage” itself is required as exclusive information, but the “actor”
and “director” knowledge is sharable with other knowledge requester agents) would be
written as:

⟨marriage(x, y), exclusive⟩∧(
(⟨actor(x), shared⟩∧⟨director(y), shared⟩)∨
(⟨actor(y), shared⟩∧⟨director(x), shared⟩)

)
.

Apart from the exclusivity annotation, the presented query formalism obviously
captures the core of the functionality of common querying formalisms like SQL and
SPARQL [14]. Although we omit filtering for the sake of brevity, this could be easily
accommodated, as well as left or right joins.

As usual, when an EACQ q is posed to a knowledge base, answers are encoded as
bindings of the variables to elements from C that make q true in K. For the further
presentation, it is convenient to also identify parts W of K that allow to derive that µ is
an answer to q; such W are called witnesses.2

Definition 5 (Query Answers & Witnesses). Let vars(q) denote the set of variables
occurring in any atom of q and dup(K) := K× {shared, exclusive} a knowledge base
K’s full enrichment with possible annotations. An answer to q w.r.t. K is a mapping
µ : vars(q) ∪ C → C with µ(c) = c for all c ∈ C such that eval(q, µ, dup(K)) =
true. Thereby, eval : boolexp(Ae

P,T )×CT ×2GF
e → {true, false} is the evaluation

function defined as follows: For an exclusivity-annotated atom ⟨p(t1, . . . , ti), e⟩, we let
eval(⟨p(t1, . . . , ti), e⟩, µ, A) = true exactly if we have ⟨p(µ(t1), . . . , µ(ti), f⟩ ∈ A
for an e ≼ f ; further, the truth-value assignment is lifted to boolean expressions in
the usual way. Given an answer µ to a query q a witness for µ is a set W ⊆ dup(K)
of exclusivity-annotated ground atoms for which eval(q, µ,W ) = true. Moreover, W
is called minimal, if for all W ′ ⊂ W holds eval(q, µ,W ′) = false. We let Wmin

K,q,µ

denote the set of all the minimal witnesses for µ and Wmin
K,q the set of all minimal

witnesses for all answers to q.

In the above definition, the use of the order ≼ takes care of the fact that if some
piece of knowledge is requested as shared information (i.e. without demanding exclu-
sivity), it is acceptable to nevertheless get it assigned exclusively.

1Note that this actually generalizes the classical notion of conjunctive queries where only ∧ is allowed.
2Since our querying formalism is monotone, we can be sure that µ is an answer to q w.r.t. W whenever

it is an answer w.r.t. K.
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Let us consider the previous example query for marriages between actors, where
the marriage information was asked for exclusively. There is only one answer µ to
this query w.r.t. our previously introduced knowledge base: µ = {x 7→ AJ, y 7→
BP}. There are four minimal witnesses for µ arising from different combinations of
exclusivity annotations3:

atom W1 W2 W3 W4

marriage(AJ, BP) exc. exc. exc. exc.
director(AJ) sh. exc. sh. exc.
actor(BP) sh. sh. exc. exc.

This means that the marriage(AJ, BP) can only be exclusively allocated (as
⟨marriage(AJ, BP), exclusive⟩) but the director(AJ) and actor(BP) atoms can be
either “shareably” allocated with other requesters (⟨actor(BP), shared⟩) or exclusively
allocated only to one requester agent (⟨director(AJ), exclusive⟩) (cf. Definition 3).

Note that there could be an exponentially large number of witnesses introduced by
conjunctions of disjunctions. This aspect will be further addressed in Section 6.

3 The Knowledge Allocation
Problem Defined

Multi Agent Knowledge Allocation (MAKA) can be interpreted as an abstraction of
a market-based centralized distributed knowledge-based system for query answering.
In such a MAKA system, there is central node a, the auctioneer (or the knowledge
provider), and a set of n nodes, I = {1, . . . , n}, the bidders (or the knowledge re-
questers), which express their information need (including exclusivity requirements)
via queries, which are to be evaluated against a knowledge base K, held by the auction-
eer. Depending on the allocation made by the auctioneer, the bidders will be provided
with minimal witnesses for answers to their queries.

The auctioneer asks bidders to submit in a specified common language, the bidding
language, their knowledge request.

Definition 6 (Knowledge Request). The knowledge request of bidder i, denoted by Qi

is a set of pairs ⟨q, φ⟩ where q is a an EACQ and φ : N → R+ is a monotonic func-
tion. Thereby, φ(k) expresses the individual interest (value) of bidder i in obtaining k
distinct answers to q.

Following the ongoing example in the paper, a knowledge request for an exclu-
sively known marriage between a known actor and a known director, where each such
marriage information is paid 30 units for the would be singleton set {⟨q, φ⟩} with

q = ⟨⟨marriage(x, y), exclusive⟩∧(
(⟨actor(x), shared⟩∧⟨director(y), shared⟩)∨
(⟨actor(y), shared⟩∧⟨director(x), shared⟩)

)
,

φ = k 7→ 30 · k.
3For space reasons, exc. stands for exclusive and sh. stands for shared
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Assume a fixed knowledge base K. For an EACQ q we let R(q) denote its set of
answers µ. In the general case, only witnesses of an answer subset S of R(q) can be
allocated to the bidder who asked q. S could be empty: either there are no answers
to the query or responses were given to other bidders who asked them exclusively and
paid more. For the query above, there are six possible witnesses that can be allocated.
Once one of the witnesses is allocated, then marriage(AJ, BP) can no longer be given
to any other agent (as formally ensured in the definition of a knowledge allocation
below). However, if another bidder asked the same query as above, but is willing to
pay 70 units, the first bidder will get the empty set. Note that the same empty set will
also be returned if the bidder will ask for marriages between two directors (the case
where no answers were found in the knowledge base).

The valuation function φ : N → R+ can be defined in several ways. Assuming that
valiq ∈ R+ denotes a bidder i’s interest to obtain a single answer to a query q, standard
valuation options are

• naive valuation: φn(|S|) = |S| · valiq ,

• threshold valuation: φt(|S|) = |S| · valiq if | S |≤ threshold i
qi and |S| · (valiq −

discount iq) otherwise,

• budget valuation: φb(|S|) = min{φi(|S|), budget i} where φi can either be φn
i or

φt
i,

• exclusivity valuation: Defined as either of the valuations above except that the bidder
will pay a bonus that justifies the exclusivity interest.

The naive valuation simply assigns the same value valiq for each answer satis-
fying the query. The threshold valuation also assigns the same value for each re-
ceived answer but up to a limit of number of answers and then a discounted value
(for the first threshold i

qi answers the agent pays valiq and for the rest, he only pays
valiq − discount iq). The budget valuation foresees if there are too many answers and
imposes an upper limit for the price the bidder is willing to pay.

Consequently, given the knowledge request Qj of some bidder j, the individual
prize vj(S) the agent is willing to pay on receiving a portion S ⊆ dup(K) of facts from
the knowledge base endowed with exclusivity guarantees is calculated by summing up
the costs for the individual query matches arising from ⟨q, φ⟩ ∈ Qj , which, in turn,
are determined by counting the answers for q w.r.t. the partial knowledge base S and
applying the function φ to that number, i.e.:

vj(S) =
∑

⟨q,φ⟩∈Qj

φ(|{µ | eval(q, µ, S) = true}|).

Based on bidders’ valuations, the auctioneer will determine a knowledge allocation,
specifying for each bidder her obtained knowledge bundle and satisfying the exclusivity
constraints (expressing that exclusivity annotations associated to atoms in the respec-
tive bundle are indeed complied with).
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Definition 7 (Knowledge Allocation). Given a knowledge base K and a set {1, . . . , n}
of bidders, a knowledge allocation O is defined as an n-tuple (O1, . . . , On), with Oi ⊆
dup(K) for all i ∈ {1, . . . , n} such that

• {⟨a, shared⟩, ⟨a, exclusive⟩} ̸⊆ O1 ∪ . . . ∪On for all ground atoms a ∈ K, and

• Oi ∩Oj ∩ (K×{exclusive}) = ∅ for all i, j with 1 ≤ i < j ≤ n.

The first condition ensures that the same ground atom a has not been given both ex-
clusively and shared to the same, or two different agents. This means, for instance, if in
the previous example once we allocate ⟨director(AJ), exclusive⟩ to some requester,
then we cannot also allocate it as shared (⟨director(AJ), shared⟩).

The second condition ensures that two atoms have not been exclusively allocated
to two different agents. Following our example, if W4 is chosen for allocation then
⟨director(AJ), exclusive⟩ and ⟨actor(BP), exclusive⟩ will only be allocated to one
single agent and cannot be allocated exclusively to other agents. Also, please note that
according to the first condition we cannot allocate it shared either.

Given a knowledge allocation, one can compute its global value by summing up
the individual prizes paid by the bidders for the share they receive. Obviously, the
knowledge allocation problem aims at an optimal allocation, which maximizes this
value.

Definition 8. Given an allocation O, its global value v(O) is defined by v(O) =∑
j=1,n vj(Oj). An allocation O will be called optimal if for all allocations O′ holds

v(O′) ≤ v(O).

Let us again consider the knowledge base K introduced in Section 2 and three
agents 1, 2, 3 with knowledge requests Q1, Q2, Q3 asking for information. Assume
Q1 = {⟨q1, φ1⟩}, where q1 asks for marriages where there is at least one actor in-
volved4 and φ1(k) = 50 · k, i.e. Agent 1 is willing to pay 50 units for every answer.
Further assume Q2 = {⟨q2, φ2⟩} where q2 asks for marriages between an actor and a
director but requests the marriage information exclusively and φ2(k) = 120 ·k. Finally
let Q3 = {⟨q3, φ3⟩} with q3 asking for marriages between people acting in the same
movie and φ3(k) = 100·k. From the values above it is obvious that marriage(AJ, BP)
(the ground fact that poses shareability problems) will get allocated to the two agents
1 and 3 that did not ask for exclusivity and will bring a joint revenue of 150, while
allocating it exclusively to agent 2 would only bring 120. Of course, for any number
of possible answers and when different types of valuations come into play (threshold,
budget etc.) the problem remains the same: finding the best admissible split of answers
that maximizes revenue.

The task of the auctioneer finding a maximum value allocation for a given set of
bidders’ knowledge requests {Q1, . . . , Qn}, is called in the Combinatorial Auctions’
field the Winner Determination Problem (WDP). This is a NP-hard problem, being
equivalent to weighted set-packing. It tends to be solvable in many practical cases, but
care is often required in formulating the problem to capture structure that is present
in the domain [15]. Usually, the WDP is expressed as an integer linear programming
problem (ILP) there are standard methods for solving this type of problems [9].

4Unless the exclusivity is stated explicitly, the agents are willing to share the information.

7



We solve the multi-agent knowledge allocation problem by reducing using a flow
based representation of the TBBL language [7] for combinatorial auctions. In the next
section we give a quick overview of the TBBL language and then we show how the
flow representation of this language naturally captures the MAKA problem.

4 How to Represent Bids
A TBBL bid is represented as a tree, where the leaf nodes represent the goods and the
non-leaf nodes are defined by the means of an IC operator that is associated with a
lower bound x, and an upper bound y (written: ICy

x). Both x and y are non-negative
integers. An IC operator is defined to be satisfied depending on the satisfaction of its
children: ICy

x is satisfied if at least x and at most y of its children are satisfied.
Consequently, IC can be instantiated to become an element of the class of logical

operators, such as XOR, OR, AND:

• XOR(i1, i2, ..., ix) = IC1
1 (i1, i2, ..., ix).

• OR(i1, i2, ..., ix) = IC1
x(i1, i2, ..., ix).

• AND(i1, i2, ..., ix) = ICx
x (i1, i2, ..., ix);

We can also concisely represent more “verbose” logical formulae such as ((a∧ i1∧
i2)∨(a∧i2∧i3)∨(a∧i1∧i3)) (a and any two of i1, i2 or i3) by IC2

2 (a, IC
2
3 (i1, i2, i3)).

Please see [7] for an in-depth discussion on the TBBL language and a comparison with
other bidding languages in the literature such as OR∗ and LGB .

In the following, we will use TBBL and adapt it to our representational needs. Let
us illustrate the deployment of TBBL for representing MAKA bids by the means of an
example.

In the previous section, an agent a1 posed an EACQ q1 requesting marriages where
there is at least one actor involved:

⟨marriage(x, y), shared⟩∧
(⟨actor(x), shared⟩∨⟨actor(y), shared⟩)

)
Assuming the same knowledge base K as in the previous examples before, there

are two answers µ1 and µ2 to this query: µ1 = {x 7→ AJ, y 7→ BP}; µ2 = {x 7→
BP, y 7→ AJ}. Using the TBBL representation depicted in Figure 1, we can describe
which combinations of allocatable atoms answer q1.

TBBL representations can be equivalently expressed using flow networks. A flow
network is an acyclic digraph where the nodes are either internal nodes or two distin-
guished nodes (start and end). The edges in such a network are labeled with capacities
(upper and lower). Intuitively, the flow needs to be able to pass from the start node to
the end node in a way that the capacities of the edges are not violated. Thereby, the flow
has to be conserved (basically the incoming flow in a node needs to be equal with the
outgoing flow). The edge capacities can then “direct” the flow through certain nodes.
To encode TBBL representations into a flow network, the containment ICx

y nodes are
represented by virtue of edges with according upper and lower capacities.
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actor(AJ)marriage(AJ,BP) actor(BP)

IC2
1

IC2
2

Figure 1: The TBBL depiction of a MAKA bid

In Figure 2 the network flow representation of the network depicted in Figure 1 is
provided:

1,1

0,1

0,1

1,1

0,1

0.1

0,1

2,2

actor(AJ)

marriage(AJ,BP)

actor(BP)

n1

n2

(old IC2
1)

(old IC2
2)S

E

Figure 2: Flow representation of the TBBL MAKA bid

Now assume a second agent joins in, a2, uttering a very similar request q2: mar-
riages with one actor involved, yet the marriage information is requested exclusively:

⟨marriage(x, y), exclusive⟩∧
(⟨actor(x), shared⟩∨⟨actor(y), shared⟩)

)
As before, there are two answers µ1 and µ2 to this query: µ1 = {x 7→ AJ, y 7→ BP};

µ2 = {x 7→ BP, y 7→ AJ}, and, as before, the according TBBL representation of this
bid is the same as for a1 shown in Figure 1. The extra constraint of the agent want-
ing exclusively the marriage information (not sharable with others) cannot be directly
expressed in TBBL. As shown in [7] extra constraints are possible outside the TBBL
representation and fully compatible with the MIPS implementation described by the
authors. However, given that the exclusivity and sharable properties are key constraints
within Multi-Agent Knowledge Allocation, we need to express it within the same rep-
resentation as the bid. Therefore, we will privilege in this paper the flow representation
which allows the encoding of the exclusivity information directly in the network.

We will do this by explicitly encoding into the network that exclusively allocated
atoms cannot be given to other agents. This can be achieved by introducing another
node in the network that represents the exclusive marriage information. This node will
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be made allocatable only to one agent by setting the capacities of the participating edges
accordingly. This way, the flow (which will be ultimately used to determine admissible
allocations of the knowledge), can only be directed in its entirety to one single agent,
depriving the others agents of the possibility of receiving it. Flow associated to sharable
information, on the other hand, will be allowed to be split and hence provide more than
one agent with the requested information.

0,1

0,1

1,1

0,2

0.2

0,2

2,2

2,2

2,2

actor(AJ)

marriage(AJ,BP)

actor(BP)

n1

n2

S

E

marriage(AJ,BP), exc

Figure 3: Flow representation of an exclusivity MAKA bid

In Figure 3 the flow network corresponding to agent a2 is shown. The reason why
there is now an initial flow of up to 2 from the start node to the ground atoms is that
there are now two agents (a1 and a2) involved – the network of a1 would have to be
adapted accordingly.

One major advantage of the representation just introduced is that the individual bid-
ders’ networks can be integrated into a global network from which admissible alloca-
tions can be derived. The network in Figure 4 shows both agents, a1 and a2, bidding for
information. Each of the agents have submitted their bids which have been put together
in a complete network, by means of which also potential conflicts can be analyzed. One
can see that indeed the exclusivity constraint is enforced by requiring an in-flow of ex-
act 2 (and not less) to the node labeled ⟨marriage(AJ, BP), exclusive⟩, which would
leave no flow for a2 since the total maximal flow through the node ⟨marriage(AJ, BP)⟩
is just 2.

As we have seen, the flow network encoding of agent’s bids has several advantages.
It does not only allow for a rather intuitive representation of exclusivity constraints, it
also gives rise to a direct way of integrating the bids of all participating requesters.
Moreover, this integrated representation can be directly employed to solve the alloca-
tion problem as admissible allocations correspond to admissible flows.

While this section was aimed at providing the necessary intuitions by ad-hoc ex-
amples, the next section will be devoted to defining the employed type of network
formally, describing a generic method to create such a network out of a set of MAKA
knowledge requests, and establishing the correspondences between network flows and
optimal allocations.
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0,1

0,1

1,1

0,2

0.2

0,2

2,2

2,2 2,2

1,1

0,1

0,1

1,1

1,1

2,2

1,1

actor(AJ)

marriage(AJ,BP)

actor(BP)

n2
1

n2
2

S
E

marriage(AJ,BP), exc

marriage(AJ,BP),sh

n1
1

n1
2

Agent A2

Agent A1

Figure 4: Flow representation of two MAKA bids

5 Defining Knowledge Alloca-
tion Networks

As demonstrated in the previous section, we propose to solve the MAKA problem
using a network representation that captures the notion of containment of an atom in a
witness allocated to a given agent. The above containment relation is represented using
paths in the network flow (an atom belongs to a witness if and only if there is a certain
path from the atom vertex to a vertex representing the witness) and a mechanism to
express which path must be considered in order to instantiate a given witness. This
mechanism is based on a simple extension of network flows, which is described below.
We first define the generic terminology of allocation networks before we define how to
create a knowledge allocation network representing a specific MAKA problem.

Definition 9. An allocation network is a tuple
N = (Va, Vo, E, START, END, cap, lb, flow, val) where:

1. (Va ∪ Vo, E) is an acyclic digraph with two types of nodes, called allocatable (Va)
and other nodes (Vo) and two distinguished nodes START, END ∈ Vo; Every node
in N lies on a directed path from START to END. We use Vint = (Va ∪ Vo) \
{START, END} to denote internal nodes.

2. cap, lb : E → N ∪ {+∞} are functions defined on the set of directed edges; for a
directed edge ⟨i, j⟩ ∈ E we call cap(⟨i, j⟩), denoted cij , the capacity and we call
lb(⟨i, j⟩), denoted lij , the lower bound on ⟨i, j⟩ and additionally require lij ≤ cij .
All edges ⟨a, END⟩ have capacity +∞ and lower bound 0.

3. flow : Vint → {conservation,multiplier} is a labeling function which associates each
internal node v with a flow rule.

4. val : V − × N → R+, a monotonic flow valuation function, where V − = {v |
⟨v, END⟩ ∈ E}.

As discussed before, we now assume that flow is pushed through the network start-
ing from the arcs leaving the start node. The flow on each arc is a non-negative in-
teger value. If the flow fij on an arc ⟨i, j⟩ is positive, it must satisfy the restriction
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lij ≤ fij ≤ cij , where the lower bound l and the upper bound c (since sometimes
called capacity). Finally, the internal nodes of the network obey the flow rules associ-
ated to them.

Definition 10. An allocation flow in an allocation network
N = (Va, Vo, E, START, END, cap, lb, flow, val) is a function f : E → N satisfying the
following properties, where we let fij denote f(⟨i, j⟩):

1. For each ⟨i, j⟩ ∈ E we have fij = 0 or lij ≤ fij ≤ cij

2. If v ∈ Vint has flow(v) = conservation then
∑

⟨i,v⟩∈E fiv =
∑

⟨v,i⟩∈E fvi.

3. If v ∈ Vint has flow(v) = multiplier and fiv > 0 for some i, then lvj < fvj < cvj for
all j with ⟨v, j⟩ ∈ E.

4. If v ∈ Vint has flow(v) = multiplier and fiv = 0 for all i, then fvj = 0 for all j with
⟨v, j⟩ ∈ E.

The set of all allocation flows in N is denoted by FN .

After having defined the network and flows on it, we can define how the network
gives rise to a function associating values to subsets S of the network’s allocatable
nodes. This valuation function is derived from the maximal flow possible when only
nodes from S are allowed to receive nonzero in-flow.

Definition 11. Let f be an allocation flow in an allocation network:
N = (Va, Vo, E, START, END, cap, lb, flow, val). The value of f , val(f), is defined as
val(f) =

∑
v∈V − val(v, fvEND). The grant associated to f , denoted by Gf ⊆ Va is

defined by Gf = {a ∈ Va | fva > 0 for some ⟨v, a⟩ ∈ E}}. The valuation associated
to N is the function vN : 2Va → R+, where for each X ⊆ Va, vN (X) = max{val(f) |
f ∈ FN , Gf = X}.

In the following, we will describe how the framework of allocation networks can be
applied to our problem of multi-agent knowledge allocation. To that end, we define two
types of networks. Single bidder allocation networks capture the payments obtainable
from bidders for a given portion of the knowledge base K according to their knowledge
requests.

Definition 12. Given a knowledge base K and some bidder’s knowledge request Q,
the associated single bidder allocation network NK,Q is the allocation network
(Va, Vo, E, START, END, cap, lb, flow, val) where

1. Va =
∪
{W | W ∈ Wmin

K,q , ⟨q, φ⟩ ∈ Q}, i.e. the allocatable nodes contain every
exclusivity-annotated ground fact occurring in any minimal witness for any answer
to any query posed by the bidder. We let flow(a) = multiplier for every a ∈ Va

2. Vo = Q ∪Ans ∪Wit ∪ {START, END} where:

• For every ⟨q, φ⟩ ∈ Q we let flow(⟨q, φ⟩) = conservation as well as val(⟨q, φ⟩, n) =
φ(n).

• Ans contains all pairs ⟨q, µ⟩ for which µ is an answer to q and ⟨q, φ⟩ ∈ Q for
some φ. We let flow(⟨q, µ⟩) = multiplier
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• Wit contains all witnesses for Ans i.e.
Wit =

∪
⟨q,µ⟩∈Ans Wmin

K,q,µ, we let flow(W ) = conservation for every W ∈ Wit.

3. E contains the following edges:

• ⟨START, a⟩ for every a ∈ Va, whereby lSTART,a = 0 and cSTART,a = 1

• ⟨a,W ⟩ for a ∈ Va and W ∈ Wit whenever a ∈ W , moreover la,W = 1, ca,W =
1.

• ⟨W, ⟨q, µ⟩⟩ for W ∈ Wit and ⟨q, φ⟩ ∈ Q whenever W ∈ Wmin
K,q,µ. We let la,W =

k and ca,W = k where k = |{a | ⟨a,W ⟩ ∈ E}|.
• ⟨⟨q, µ⟩, ⟨q, φ⟩⟩ for ⟨q, µ⟩ ∈ Ans and ⟨q, φ⟩ ∈ Q.We let la,W = 1, ca,W = 1.

• ⟨⟨q, φ⟩, END⟩ for all ⟨q, φ⟩ ∈ Q; la,W = 0, ca,W = +∞

The following theorem guarantees, that the established network definition indeed
captures the bidder’s interest.

Theorem 1. Given a knowledge base K, some bidder’s knowledge request Qi, and the
respective single bidder allocation network NK,Qi , the valuation vNK,Qi

associated to
NK,Qi coincides with the bidder’s valuation vi.

Proof. (Sketch) Consider a set S of exclusivity-annotated ground facts. By definition,
vNK,Qi

(S) equals the maximal val(f) among all flows f for which exactly those al-
locatable nodes that correspond to S receive non-zero in-flow. For such a flow f , the
structure of the NK,Qi ensures that

• exactly those nodes from Wit receive full input flow which correspond to the wit-
nesses contained in S,

• consequently, exactly those nodes from Ans receive non-zero input flow which cor-
respond to answers for which S contains some witness,

• consequently, the flow that END receives from each ⟨q, φ⟩ ∈ Q equals the number of
answers to q that can be derived from S.

Given these correspondences, we can conclude:

vNK,Qi
(S)=

∑
⟨q,φ⟩∈Qi

φ(f⟨q,φ⟩END)

=
∑

⟨q,φ⟩∈Qi
φ(|{µ | eval(q, µ, S) = true}|)

= vi(S)

In a second step, we conjoin the individual bidders networks into one large net-
work which also takes care of the auctioneer’s actual allocation problem including the
enforcement of the exclusivity constraints. Figure 5 illustrates the overall structure of
the Knowledge Allocation Network formally defined next.
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Figure 5: Structure of a Knowledge Allocation Network. Doubly boxed nodes indicate
the conservation flow rule, all other internal nodes are multipliers. Edges ⟨i, j⟩ are
associated with lower bounds and capacities by labels (lij , cij).

Definition 13. Given a knowledge base K and bidders’ knowledge requests Q1, . . . , Qn,
the associated knowledge allocation network NK,Q1,...,Qn is the structure
(Va, Vo, E, START, END, cap, lb, flow, val) constructed from the respective single bidder
allocation networks
NK,Qi = (Va

i, V i
o , E

i, START
i, END

i, capi, lbi, flowi, vali) in the following way:

1. Va ∪ Vo = Atoms ∪ {START, END} ∪
∪

i{vi | v ∈ V i
int} i.e. except for the start

and end nodes, the knowledge allocation network contains one copy of every single
bidder network node, moreover we let flow(vi) = flowi(v) and Va =

∪
i{vi | v ∈

Va
i}, i.e., the allocatable nodes in the new network are exactly the allocatable nodes

from all the single bidder allocation networks. As new nodes we have Atoms =
{a | {⟨a, exclusive⟩, ⟨a, shared⟩} ∩

∪
i Va

i ̸= ∅}, i.e., annotation-free atoms whose
annotated versions are part of witnesses for answers to some of the bidder-posed
queries. We also let val(vi) = vali(v) where applicable.

2. E contains the following edges:

• ⟨vi1, vi2⟩ for all ⟨v1, v2⟩ ∈ Ei, i.e. all edges between internal nodes of the single
bidder networks remain unchanged, the same holds for their capacity and lower
bound values,

• ⟨START, a⟩ for all a ∈ Va, we let lSTARTa = 0 as well as cSTARTa = n,

• ⟨a, ⟨a, shared⟩i⟩ for all ⟨a, shared⟩ ∈ Va
i, we let la,⟨a,shared⟩i = 1 and ca,⟨a,shared⟩i =

1,

• ⟨a, ⟨a, exclusive⟩i⟩ for all ⟨a, exclusive⟩ ∈ Va
i, and we let

la,⟨a,exclusive⟩i = n and ca,⟨a,exclusive⟩i = n,

• ⟨⟨q, φ⟩i, END⟩ for every ⟨⟨q, φ⟩, END⟩ ∈ Ei, as required we let l⟨q,φ⟩i,END = 0
and c⟨q,φ⟩i,END = +∞.

We arrive at the following theorem, which ensures that the MAKA problem can
be reformulated as a maximal flow problem in our defined knowledge allocation net-
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work. Therefore, once the network has been constructed, any maximum value flow will
represent the maximal allocation.

Theorem 2. Given a knowledge base K, bidders’ knowledge requests Q1, . . . , Qn, and
the associated knowledge allocation network NK,Q1,...,Qn , the valuation vNK,Q1,...,Qn

associated to
NK,Q1,...,Qn is related with the global valuation v of the knowledge allocation problem
in the following way:

1. for every network flow f ∈ FNK,Q1,...,Qn , we have that Of := ({a | a1 ∈ Gf }, . . . , {a |
an ∈ Gf }) is a knowledge allocation (in particular, the exclusivity constraints are
satisfied),

2. conversely, for every knowledge allocation O = (O1, . . . , On), there is a network
flow f ∈ FNK,Q1,...,Qn with
Gf =

∪
1≤i≤n{ai | a ∈ Oi},

3. for any allocation O = (O1, . . . , On), we have

vNK,Q1,...,Qn
(

∪
1≤i≤n

{ai | a ∈ Oi}) = v(O).

Proof. (Sketch) To show the first claim, one has to show that ({a | a1 ∈ Gf }, . . . , {a |
an ∈ Gf }) satisfies the two conditions from Definition 7. That this is indeed the case
by construction can be argued along the same lines as the explanations in Section 4. To
show the second claim, one assumes a knowledge allocation (O1, . . . , On) and con-
structs a valid flow for NK,Q1,...,Qn along the correspondences shown in the proof of
Theorem 1. Finally given the one-to-one correspondence between flows and alloca-
tions established by the two preceding claims, one can use Theorem 1 to show that the
two functions indeed coincide.

6 Succinct Representation via
Witness Structures

As mentioned in Section 2, conjunctions of disjunctions could potentially introduce an
exponentially large number of witnesses. In this section we address this aspect and
present a succinct representation via witness structures defined as follows.

Given an EACQ q and an answer µ w.r.t. a set S of exclusivity annotated axioms,
the corresponding witness structure is obtained as follows:

• Let µ(q) denote the boolean expression on exclusivity-annotated ground terms ob-
tained by substituting all terms in q according to µ.

• Obtain µ(q)|S by substituting every occurrence of any exclusivity-annotated ground
fact a ̸∈ S in µ(q) by ⊥.
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• Let bµ,q,S be the boolean expression obtained by applying the recursive simplifying
function s to µ(q)|S where

s :



⊥ 7→ ⊥
a 7→ a for a ∈ GFe

a1∧a2 7→
{

⊥ if ⊥ ∈ {s(a1), s(a2)}
s(a1)∧s(a2) otherwise,

a1∨a2 7→

 ⊥ if ⊥ = s(a1) = s(a2)
s(a) if {s(a1), s(a2)} = {⊥, a}

s(a1)∨s(a2) otherwise.

• Exploiting commutativity and associativity of ∧ and ∨ rewrite the binary application
of these operators into set-based ones

∧
and

∨
, obtaining b′µ,q,S .

• Now, the term structure b′µ,q,S gives rise to a directed acyclic graph Gµ,q,S , called
witness structure whose nodes are (i) exclusivity-annotated ground atoms (ii)

∧
-

nodes or (iii)
∨

-nodes.

Noting that
∨

- and
∧

-nodes can be implemented by the multiplier and the conservation
flow rules together with adequate capacities and lower bounds, it is straightforward to
see that Gµ,q,dup(K) can be used as a part of the bidding graph of an agent posing q as a
part of his bid. Thereby, the witness structures substitute the witness layer and interlink
allocation layer and answer layer. This representation can then be lifted to knowledge
allocation networks and is more succinct than the naïve strategy of introducing nodes
for all (minimal) witnesses for µ, as only one witness structure (the size of which is
linearly bounded by the query) per answer is needed.

7 Conclusion and Future Work
We have introduced and formally defined the problem of Multi-Agent Knowledge Al-
location by drawing from the fields of query answering in information systems and
combinatory auctions. To this end, we have defined a bidding language based on
exclusivity-annotated conjunctive queries. Moreover we have shown a way to suc-
cinctly translate the allocation problem into flow networks allowing to employ a wide
range of constraint solving techniques to find the optimal allocation.

While an implementation of the existing framework – combining existing query-
answering with constraint solving methods – is one of the immediate next steps, con-
ceptual future work on the subject will include the following topics:

• Extending the bidding language: One straightforward extension would be to allow
for so-called non-distinguished variables, i.e. variables which need to be bound in or-
der to make the query match, but the concrete binding itself is not of interest (compa-
rable to variables in SQL statements which do not occur in the SELECT part). While
it is straightforward to extend the language accordingly, an appropriate extension of
the framework would be to allow not just for ground facts (like marriage(AJ, BP)) to
be delivered to the requester but also for “anonymized” facts (like marriage(AJ, ∗)
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or, more formally ∃x.marriage(AJ, x)), which would in turn require an adaption of
exclusivity handling.

• Extending knowledge base expressivity: On one hand, the knowledge base for-
malism could be extended to cover not just ground facts but more advanced logical
statements such as Datalog rules (used in deductive databases) or ontology languages
(such as RDFS [4] or OWL [12]). In that case, a distinction has to be made between
propositions which are explicitly present in the knowledge base and those that are
just logically entailed by it, which in turn requires to revisit our definitions: if the
latter kind of propositions can be delivered to the requester, exclusivity constraints
must be propagated to them. On the other hand, exclusivity annotations might be
extended to allow for a more fine-grained specification: a requester might be willing
to share some information with certain other requesters but not with all of them.

• Covering Dynamic Aspects of Knowledge Allocation: In particular in the area of
news, dynamic aspects are of paramount importance: news items are annotated by
time stamps and their value usually greatly depends on their timeliness. Moreover we
can assume the information provider’s knowledge pool to be continuously updated by
incoming streams of new information. Under this aspect, the provider may not only
have to choose whom to provide with a certain piece of information but also assess
the likeliness that there will be a matching piece of information incoming such that
the bundled information can be sold at a greater revenue. That is, it might make sense
to withhold pieces of knowledge from immediate allocation.

• Fairness: As mentioned before, there could be that an agent receives the empty set
(“0 answers to your query”) given the fact that all the answers have been given to
competitors who asked for the same information but paid more. This immediately
raises fairness [3] problems that should be investigated under this setting.

• Multiple Providers: Finally, it might be useful to extend the setting to the case
where multiple agents offer knowledge; in that case different auctioning and allo-
cation mechanisms would have to be considered. This would also widen the focus
towards distributed querying as well as knowledge-providing web-services and the
corresponding matchmaking and orchestration problems.
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