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A dual model-free control of non-minimum phase systems for

generation of stable limit cycles

S. Andary and A. Chemori

Abstract—This paper presents a method allowing
recent model-free control technique to deal with non-
minimum phase systems for stable limit cycles gen-
eration. A first controller is designed in order to
track parametrized reference trajectories on a subset
of the coordinates. In order to stabilize the closed
loop system, a second controller is designed using
one parameter of reference trajectories as input. The
overall system is therefore able to track the desired
trajectories while stabilizing the internal dynamics
of the system. The proposed method is illustrated
through two examples of non-minimum phase sys-
tems. Numerical simulations are presented showing
the effectiveness of the proposed method as well as
its robustness toward external disturbances.

I. Introduction

Model-free control strategies has been recently pro-
posed in [7], [1] resulting in a breakthrough in nonlinear
control. This technique is based on recent results on fast
estimation and identification of nonlinear signals [8], [13].
The control scheme is based on local linear approxima-
tion of the controlled system dynamics which is valid for
a small time window. This approximation is updated in
an online fashion thanks to a fast estimator. The control
law proposed consists in a PID controller augmented with
compensating terms provided by the online estimation of
the system dynamics. The overall controller is also called
i -PID (intelligent PID) controller. Comparison of such a
controller with classical PID controller can be found in
[2]. The main advantage of this control strategy is that
it doesn’t require neither prior knowledge of the system
dynamics, nor complex parameters tuning. It is therefore
easy to build a controller for an unknown system.
Model-free control has been succesfully applied to

many academic control problems as well as various indus-
trial cases. Linear and nonlinear systems are studied in
[7], [4], [5] as well as the ball and beam mechanical system
for both stabilization and reference trajectories tracking
in [5]. Application to switched nonlinear systems, which
is a generalization of hybrid systems, is studied in [1].
In [11], a motor throttles are regulated using a model-
free controller. Shape Memory Alloys (SMA) are able to
modify thier shape when heated. They are used to design
compact actuators but their dynamics and therefore their
associated control problem remains complex. In [9], [10],
model-free control is successfully used to control a SMA

S. Andary and A. Chemori are with LIRMM, Univ. Montpellier
2 - CNRS, 161 rue Ada, 34392 Montpellier, France {andary,
chemori}@lirmm.fr

based actuator. Water level control in open channels is
often subject to unpredictible disturbances of significant
magnitudes. In [12], water level control for hydroelec-
tric power plants is achieved using model-free control
techniques, providing a single control law for a wide
range of flow. In [14], model-free control methodology is
applied to a power converter, where stable regulation is
achieved for large variation of curent intensity. Modern
financial engineering involves tracking control of ”risk-
free”management. For this application, in [6], [3], model-
free control is compared to other existing techniques,
showing the superiority of model-free control scheme.
Although this control method is smart, and has been

applied to resolve many control problems, it has however
some drawbacks. Aside it’s dependancy to quality of sen-
sors and sampling frequency on which relies the fast local
estimation, model-free control is not currently adapted to
control of non-minimum phase systems. Those systems
are characterized with unstable internal dynamics. In
this paper we focus on stable limit cycles generation for
non-minimum phase systems, more precisely for under-
actuated mechanical systems. A mechanical system with
less actuators than degrees of freedom is said to be un-
deractuated and unfortunately, a vast majority of these
systems are non-minimum phase. Therefore model-free
control techniques cannot be applied as it has initially
been proposed. Some efforts have been made for two
particular cases of non-minimum phase systems: the ball
and beam [5] (where the dynamics of the beam has not
been taken into account) and the Planar Vertical Take
Off and Landing (PVTOL) aircraft [15].
In order to achieve stable limit cycles on all coordinates

of a non-minimum phase underactuated system, we first
design a family of parametrized periodic trajectories for
a subset of coordinates. Thoses trajectories are then
tracked using control inputs thanks to a classical model-
free technique. Since the system is non-minimum phase,
the internal dynamics of the system is unstable. There-
fore stable limit cycles on those coordinates are gen-
erated through the control of trajectories’ parameters.
To achieve this control, we use an other model-free
controller using untracked coordinates as output and tra-
jectories parameters as input. The proposed methodology
is illustrated through two examples of underactuated
mechanical systems with numerical simulations, namely
the cart-pole pendulum and the pendubot. Numerical
simulations show the effectiveness and the robustness of
the proposed control approach towards external distur-
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bances and changes in system dynamics.
The rest of the paper is organised as follow. In Section

II the basic model-free control technique is introduced.
Section III presents the reference trajectories generation
and the dual model-free controller. Applications of the
proposed method are illustrated through simulations
in Section IV. Finally, conclusion and future work are
addressed in the Section V.

II. Model-free control: background

Model-free control design relies on a local linear ap-
proximation of the input-output behavior of the system,
valid for a short time window. For the sake of sim-
plicity, we present model-free control for a Single-Input
Single-Output (SISO) nonlinear systems. However, the
method is straightforwardly adaptable to Multiple-Input
Multiple-Output (MIMO) systems (cf. [7]).

A. Nonlinear system dynamics

Consider a nonlinear system whith unknown dynam-
ics. The input-output behavior of this system can be
expressed in the following general form:

E(y, ẏ, . . . , y(a)
, u, u̇, . . . , u

(b)) = 0 (1)

where y is the system’s output and x is its control input.
Given that this finite dimensionnal ordinary differential
equation is smooth enough, it can be approximated for
a short time window by the following simplified model:

y
(ν) = F + αu (2)

The derivation order ν and the constant parameter α ∈ R

can be arbitrarily choosen by the designer. In model-
free control litterature, ν is generally choosen to be 1
or 2. The non-physical constant α is a design parameter.
The term F ∈ R captures all the unknown nonlinearities
in the input-ouput behavior and can be compensated
in the control law. Since equation (2) is valid for a
short time window, it must be updated at each sample
time. Therefore, the value of F is updated from the
measurement of αu and y(ν) in the following manner:

[F (k)]e = [y(ν)(k)]e − αu(k − 1) (3)

where [F (k)]e is the estimated value of F at sample
instant k which will be used for the computation of the
control input u(k). [y(ν)(k)]e is the estimated value of
the ν-th derivative of the output y at discret time k and
u(k − 1) is the control input previously computed and
applied to the system at discret time k− 1 (the value of
F can be initialized to 0 at k = 0)

B. Control law

Given numerical knowledge (i.e. estimation) of F ex-
pressed by equation (3), the control input simply can-
cels the unknown nonlinearities and adds compensating
terms corresponding to a closed-loop tracking of a given

reference trajectory y∗(t) using a conventionnal PID
controller resulting in an inteligent-PID (i -PID):

u =
1

α

(

−F + y
∗(ν) +Kpe+Ki

∫

e+Kdė

)

(4)

where y∗(ν) is the ν-th derivative of the reference tra-
jectory y∗, Kp, Ki, Kd are the PID gains, e = y∗ − y

is the output tracking error and ė is its first derivative.
The tuning of the PID gains can be performed using
poles placement technique since all nonlinearities are
assumed to be canceled. It is no longer necessary to
perform complex system identification [4], [5]. If ν = 1
the PID controller reduces to a PI controller since the
first derivative of output ẏ is taken into account in the
estimation of F in (3).

III. Proposed solution: a dual model-free

controller

In our case, we are interrested in stable limit cycles
generation for under-actuated mechanical systems which
are generally nonlinear and non-minimum phase. Again,
in order to simplify our presentation, we focus on 1-input
2-degree of freedom mechanical systems which have the
minimum dimensions for a system to be underactuated.
Dynamics of such systems takes the following lagrangian
form [16], [18]:

M(q)q̈ +H(q, q̇) +G(q) = Ru (5)

where M is a 2 × 2 symetric positive definite inertia
matrix of the system, q is the vector of generalized
coordinates. q̇, q̈ are respectively their first and second
derivatives.H is a vector containing centrifugal and Cori-
olis forces terms andG is a vector of gravitationnal terms.
u is the control input and R is a matrix distributing
the effects of u on the generalized coordinates. Using a
suitable partition q = [qa, qna] of the vector of generalized
coordinates where qa is the actuated coordinate and qna
is the unactuated one, equation (5) rewrites as:

m11(q)q̈a +m12(q)q̈na + h1(q, q̇) + g1(q) = u (6)

m21(q)q̈a +m22(q)q̈na + h2(q, q̇) + g2(q) = 0 (7)

where [qa qna q̇a q̇na]
t is the state vector of the system

and:

M =

[

m11 m12

m21 m22

]

, H =
[

h1 h2

]T
, G =

[

g1 g2
]T

A. Basic principle

Our objective is to generate stable limit cycles on both
actuated and unactuated coordinates. We first define
a family of p-parametrized τ -periodic reference trajec-
tories q∗na(p, τ, t) for the unactuated coordinate. Those
trajectories have the same boundary conditions for all
p, allowing the controller to switch from one trajectory
to another while the overall trajectory remains smooth.
Thanks to the dynamic coupling existing between the
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Fig. 1: Schematic view of the dual model-free controller.

actuated and unactuated coordinates, it is possible to
control directly the unactuated coordinate using the
control input u (i.e. the torque on the actuated coor-
dinate) which allows thoses trajectories to be tracked on
the unactuated coordinate qna using the control input
u. Indeed, the dynamics (6)-(7) can be rewritten in a
form which explicits the relation between unactuated
coordinate and control input. First equation (6) is solved
for q̈a (for clarity reason the dependancy in q and q̇ of
the terms involved is omitted in the notation):

q̈a = m
−1
11 (−m12q̈na − h1 − g1 + u) (8)

Injecting this solution in equation (7) leads to:

m2q̈na + h2 + g2 = −m21m
−1
11 u (9)

where:

m2 = m22 −m21m
−1
11 m12

h2 = h2 −m21m
−1
11 h1

g2 = g2 −m21m
−1
11 g1

A model-free controller can then be designed to per-
form the tracking of these trajectories on unactuated
coordinate using the control input u. In order to sta-
bilize the internal dynamics of the closed-loop system
(i.e. the inertia wheel dynamics) and to generate stable
limit cycles on both coordinates, a second controller
is designed. This second controller therefore takes the
reference trajectory parameter p as control input, and
use the actuated coordinate as output. At the end of each
period (of the periodic reference trajectory), the second
controller chooses the right trajectory parameter p in
order to stabilize the actuated coordinate. The chosen
parameter p fixes the reference trajectories used by the
first controller for the duration of the whole next period.
The overall control scheme is illustrated in block-diagram
of Figure 1.

B. Parametrized reference trajectories generation

The first step of this framework is to generate
parametrized reference trajectories q∗na(p, τ, t) that will
be tracked on unactuated coordinate. Those trajectories
must fulfil some conditions. First of all, they have to be
continuous, derivable and periodic in order to generate
limit cycles. That leads us to design oscillatory shaped

−1.5
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 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  1

p < pmin

p > pmax

p = pmin

p = pmax

p = 0.5

Fig. 2: Normalized reference trajectories during a half-
period for unactuated coordinate q∗na(p, τ, t) for some
values of p. Period τ is 2 and amplitude 2A is 2.

trajectories which are splitted in half period, where
we will use symmetry to generate a whole cycle. The
parametrization of these trajectories must allow the con-
troller to update the parameter p (which corresponds to
the time at which the trajectory q∗na crosses zero) during
tracking while the overall trajectory remains smooth.
That leads to some boundary conditions of each half
period part. That is for a given period τ and amplitude
2A:

∀p ∈ P,

{

q∗na(p, τ, 0) = q∗na(p, τ, τ) = A
q∗na(p, τ,

τ
2
) = −A

q̇∗na(p, τ, 0) = q̇∗na(p, τ,
τ
2
) = q̇∗na(p, τ, τ) = 0

(10)

for some domain P ⊂ R (see below). A six-degree
polynomial function parametrized with p is chosen such
that:

∀p ∈ P, q
∗

na(p, τ, t = p) = 0 (11)

Figure 2 shows normalized reference trajectories (τ = 2,
A = 1) for different values of the parameter p during
half a period. The domain P is restricted to interval
[pmin, pmax] in order to keep an oscillatory shape. Note
that pmin = 1 − pmax due to the symmetry property of
half period trajectory parts.

C. Proposed dual model-free controller

The design of the reference trajectories tracking con-
troller is based on using of a model-free controller. The
unactuated coordinate nonlinear dynamics (9) is replaced
by the local model according to model-free control prin-
ciple:

q̈na = F1 + α1u (12)

where the constant parameter α1 is a design parameter.
F1 captures the nonlinearities in the unactuated coordi-
nate dynamics and is updated according to equation (3)
at each sample time. The reference trajectory tracking
controller is obtained based on numericaly computed
value of F1 using an i -PID:

u =
1

α1

(

−F1 + q̈∗na(p, τ, t) +Kp1e+Ki1

∫

e+Kd1ė

)

(13)

with PID gains Kp1, Ki1, Kd1. The unactuated co-
ordinate then follows the desired periodic trajectories
q∗na(p, τ, t).
The parameter p used in the tracking control law

(13) is constant over half a period ∀t ∈ [k τ
2 (k + 1) τ2 [

1389



(k ∈ N) and is updated at the end of each half period
at time (k + 1) τ2 by the second controller (16). The
unknown nonlinear dynamics of the actuated coordinate
is replaced by the local discrete model:

∆τva = F2 + α2p (14)

where ∆τva = q̇a(k
τ
2 ) − q̇a((k − 1) τ2 ) is the variation of

actuated articulation velocity va = q̇a measured between
half periods and the constant α2 is a design parameter.
The value of F2 is updated at time t = k τ

2 for k ∈ N at
the end of each half cycle using the principle of model-
free control, that is:

[F2(k
τ

2
)]e = [∆τ q̇a(k

τ

2
)]e − α2p((k − 1)

τ

2
) (15)

The notation [.]e is the estimated value as explained in
section II. Note that the actuated coordinate dynamics
whithin a half cycle t =]k τ

2 (k + 1) τ2 [ is not taken into
account in this local model since we only aim at limit
cycle generation and therefore it is only required that the
actuated coordinate trajectory to be periodic. In other
words, the aim of the second controller is to bring the
actuated coordinate to a fixed desired state (q d

a , q̇
d
a ) at

the end of each half period, ensuring periodicity of the
actuated coordinate trajectory and therefore limit cycle
generation. The second model-free controller updates
the trajectory parameter p according to the following
formula:

p =
1

α2

(

−F2 +Kp2ea +Ki2

∫

ea +Kd2ėa

)

(16)

whereKp2,Ki2,Kd2 are PID gains, ea = q d
a −qa and ėa =

q̇ d
a − q̇a. Notice that since the desired state for actuated
coordinate (q d

a , q̇
d
a ) is constant, the (∆τ q̇a)

d term is zero
and is then ommited.

IV. Application examples

To illustrate its effectiveness, the proposed control
method is applied to two different underactuated me-
chanical systems. All numerical simulations are per-
formed using Matlab/Simulink software. The dynamic
models of the controlled systems are only used in sim-
ulation of their behavior, however, they are not used
in the controller design. The sampling frequency is set
to 150 Hz which is a reasonable value for real-time
implementation. In all examples, white noise is added
to the measured signals of all coordinates’ positions with
0 mean value and 0.0181 standard deviation (in degrees).
Velocities are then obtained from numerical derivation of
those noisy measurements.

A. Application 1: The cart-pole pendulum

The cart-pole pendulum (cf. Figure 3) is a classical
underactuated mechanical system. It consists of a pen-
dulum beam attached to a cart through a passive joint.
The cart evolves on a rail and is actuated by a DC motor.
The control input u is the horizontal force applied on
the cart and the degrees of freedom are the pendulum

x

u

θ
g

l

mc

mp

Fig. 3: Schematic view of the cart-pole pendulum.

angular position θ with respect to the vertical and the
linear position x of the cart on the rail. Figure 3 shows
a schematic view of the cart-pole pendulum system. The
nonlinear dynamic model used is the following [17]:

(mp +mc)ẍ+mpl cos(θ)θ̈ −mcθ̇
2 sin(θ) = u (17)

mpl cos(θ)ẍ+mpθ̈ −mplg sin(θ) = 0 (18)

where mp = 0.01 and mc = 0.3 are the respective masses
of the pendulum and the cart, l = 1 is the beam length
and g is the gravity.
Reference trajectories are generated using the basic

principle of section III-B, and to be tracked on θ1. The
amplitude of these trajectories is 2A = 10◦ and their
period is τ = 2 s.
In simulations, the following control design parameters

were used: α1 = 10, α2 = −0.2, the first controller gains
are choosen as Kp1 = 10, Ki1 = 0 and Kd1 = 2, the
second controller gains Kp2 = 2, Ki2 = 0 and Kd2 = 6.
Since we don’t have prior knowledge on the amplitude
of the cart position trajectory oscillations, we cannot
set the desired value of the cart position x d for the
second model-free controller in equation (16). Instead
of measuring x(k τ

2 ), we average the last two measured
values of cart position and can then set the desired
average value x d

avg to 0 and the desired cart velocity
ẋ d to 0 in order to obtain oscillations around zero. An
external disturbance is introduced as a torque applied to
the pendulum beam at time t = 10 s with an intensity
of 0.2 Nm.
The obtained results of this simulation are depicted

in Figure 4. Noise can be seen on phase portraits and
velocities of the two coordinates. Despite this noise, the
convergence to stable limit cycles can clearly be observed
on both phase portraits of the pendulum and the cart.
The disturbance can be viewed on the pendulum trajec-
tories as a deviation from the reference trajectories which
is rapidly compensated. The effect of this disturbance is
clearly stronger on the cart trajectories, but the second
controller adapts the reference trajectories accordingly
and brings back the cart trajectories to the limit cycle.

B. Application 2: the pendubot

The pendubot [18] is an other underactuated mechan-
ical system often proposed in underactuated systems
control litterature. Depicted in Figure 5, it consists in
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Fig. 4: Simulation results for the cart-pole pendulum: A punctual external disturbance was introduced as a torque
applied at time t = 10 s on the pendulum beam.

g θ1 θ2

u

Fig. 5: Schematic view of the pendubot: the first joint θ1
is actuated, while the second θ2 is unactuated. Control
input u is the torque applied to the first joint.

a 2-degree of freedom planar manipulator where the first
joint is actuated, whereas the second one is not actuated.
The control input u of the system is the torque applied on
the first joint and the degrees of freedom are the angular
positions θ1 and θ2 as illustrated in Figure 5. In this
scenario we are interrested in controlling the absolute
angular positions of the two links with respect to the
vertical, namely θ1 and (θ1+θ2). The nonlinear dynamic
model used for simulation is the following [18]:

m11θ̈1 +m12θ̈2 + h1 + g1 = u (19)

m21θ̈1 +m22θ̈2 + h2 + g2 = 0 (20)

where

m11 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2 cos(θ2)) + I1 + I2

m12 = m2(l
2
c2 + l1lc2 cos(θ2)) + I2

m21 = m12

m22 = m2l
2
c2 + I2

h1 = −m2l1lc2 sin(θ2)θ̇
2
2 − 2m2l1lc2 sin(θ2)θ̇2θ̇1

g1 = m2l1lc2 sin(θ2)θ̇
2
1

h2 = (m1lc1 +m2l1)g sin(θ1) +m2lc2g sin(θ1 + θ2)

g2 = m2lc2g sin(θ1 + θ2)

with m1 = m2 = 1 are the masses of the two links,
l1 = 1 is the length of first link, lc1 = lc2 = 0.5 are
the distances from the joint to their respective centers of
mass. I1 = I2 = 0.0833 are the moments of inertia of the
two links and g the acceleration of gravity.
Our objective is to generate stable limit cycles on both

absolute angular positions θ1 and (θ1 + θ2). Reference
trajectories of section III-B are to be tracked on (θ1+θ2).
The amplitude of these trajectories is 2A = 6◦ and their
period is τ = 2 s.
In simulations, the control design parameters used in

the controllers are: α1 = −10, α2 = 0.1, the PID gains
are Kp1 = 30, Ki1 = 0 and Kd1 = 2, the second
controller gains are Kp2 = 3, Ki2 = 0 and Kd2 = 7.
For the same reasons as the previous example, we use
the average of two consecutives values of θ1(k

τ
2 ) in the

second controller. We can then set average desired value
θ1

d
avg = 0 and desired velocity θ̇d1 = 0. An external

disturbance is introduced through a torque applied to
the second link at time t = 10 s with an intensity of
8 Nm.
The obtained simulation results are displayed in Figure

6. Limit cycles are obtained on both coordinates (actu-
ated and unactuated) of the system, this can be observed
in their respective phase portraits despite the presence of
noise. The response of the first controller to the external
disturbance limits its effect on the trajectory tracking to
small deviation of the output position and velocity. The
second controller ajusts the trajectory parameter in order
to bring the actuated coordinate position and velocity
trajectories oscillations around zero in few periods.

V. Conclusions and future work

In this paper, a dual model-free controller is proposed
to deal with control of non-minimum phase systems for
stable limit cycles generation. This method inherits the
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Fig. 6: Simulation results for the pendubot: A punctual external disturbance was introduced as a torque applied at
time t = 10 s on the unactuated joint θ2.

advantages of model-free control: mathematical mod-
elling of the controlled system is not required and no
complex parameters identification is needed. To show
the effectiveness of the proposed control method, two
applications of underactuated mechanical systems are
proposed (the cart-pole pendulum and the pendubot)
and illustrated through numerical simulations.

Future work will be focused on the generalization of
the proposed method to the stabilization around equi-
librium points and regulation and to arbitrary reference
trajectories tracking. We are also planning real-time
implentation of this control method on real testbeds.
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naire d’une commande sans modèle pour papillon de moteur.
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