
HAL Id: lirmm-00659592
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00659592

Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Full Multiple-Inheritance Virtual Machine
Roland Ducournau, Floréal Morandat

To cite this version:
Roland Ducournau, Floréal Morandat. Towards a Full Multiple-Inheritance Virtual Machine. The
Journal of Object Technology, 2012, 11 (3), pp.1-29. �10.5381/jot.2012.11.3.a6�. �lirmm-00659592�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00659592
https://hal.archives-ouvertes.fr


Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Towards a full multiple-inheritance
virtual machine

Roland Ducournaua Floréal Morandatab

a. LIRMM, Université Montpellier 2 and CNRS, France
http://www.lirmm.fr

b. S3L, Purdue University, IN, USA
http://purdue.edu

Abstract Late binding and subtyping create runtime overhead for object-
oriented languages, especially in the context of both multiple inheritance
and dynamic loading. Recent experiments show that this overhead is
marked with static, non-adaptive compilers, which work under the open-
world assumption. Therefore, dynamic, ie adaptive, compilation might
present a solution to this efficiency issue. This paper presents the abstract
architecture of a virtual machine and a dynamic compiler for unrestricted
multiple-inheritance. This architecture involves an object representation
that allows for shortcuts in the default implementations, coupled with
compilation/recompilation protocols that maintain the most efficient im-
plementations compatible with the current state of the program. The
object representation proposed is based on perfect class hashing, which
shortcuts to static calls or the single-subtyping implementation.

Moreover, this article proposes a new methodology, based on random
simulation, for evaluating the runtime efficiency and recompilation cost of
the proposed protocols. The resulting experiments show that the archi-
tecture proposed should provide the same runtime efficiency as Java and
.Net, thus offsetting most of the multiple-inheritance overhead.

Keywords adaptive compiler, dynamic loading, late binding, method ta-
bles, multiple inheritance, open-world assumption, perfect hashing, ran-
dom simulation, subtype test, virtual machine

1 Introduction

Multiple inheritance is generally considered as a cause of multiple difficulties from the
standpoints of both semantics and runtime efficiency. Multiple subtyping, i.e. Java-
like interfaces, was mostly proposed in response to these difficulties. Java popularised
the idea [GJSB05], which has been widely adopted by recent languages, from the .Net
family (e.g. C# [Mic01]) to the last Ada revision [TDB+06]. Moreover, some lan-
guages like Scala [OSV08] adopt a form of multiple inheritance, namely mixins (aka

Roland Ducournau, Floréal Morandat. Towards a full multiple-inheritance virtual machine. In Journal
of Object Technology, vol. 11, no. 3, 2012, pages 6:1–29. doi:10.5381/jot.2012.11.3.a6

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.lirmm.fr
http://purdue.edu
http://dx.doi.org/10.5381/jot.2012.11.3.a6
http://dx.doi.org/10.5381/jot.2012.11.3.a6
http://dx.doi.org/10.5381/jot.2012.11.3.a6


2 · Roland Ducournau and Floréal Morandat

traits), which is midway between multiple-subtyping and full multiple inheritance. In
this article, we do not address the semantic aspect of multiple inheritance, which is
discussed in [DP11], and we focus on the efficiency aspect in a static-typing setting.

The main practical quality of the Scala approach regarding multiple inheritance
is that it makes the language compatible with multiple-subtyping platforms, which
thus provide an easy and portable implementation. Indeed, although the overhead
of multiple subtyping is not negligible—the so-called invokeinterface considered
harmful [ACFG01]— it is generally agreed that the efficiency of Java and .Net sys-
tems comes from the fact that, in these languages, classes are in single inheritance and
only interfaces present configurations similar to multiple inheritance. Their efficiency
follows, too, from their dynamic, ie adaptive, compilation which allows for aggressive
optimisations, at the expense of runtime recompilations.

In contrast, recent experiments show that the overhead of full multiple inheritance
is marked in the context of dynamic loading and static, ie non-adaptive, compilation
[DMP09]. Furthermore, we are not aware of a dynamic compilation framework ded-
icated to a language with static typing and full multiple inheritance. Therefore, the
possibility of making full multiple inheritance as efficient as multiple subtyping is
an open question, and positive answers likely involve dynamic compilation. This ar-
ticle is a first proposal towards an efficient runtime system dedicated to languages
with multiple inheritance, static typing and dynamic loading. As an example, the
proposed approach could be substituted to the current Java/.Net implementation
of the Scala language, and the specifications of this language could thus drop the
class/trait distinction which seems to be inessential.

Object-oriented programming and, especially, multiple inheritance impact on run-
time efficiency through three typical mechanisms, namely method invocation, at-
tribute (aka field, slot, instance variable, ..) access, and subtype testing. All three
mechanisms rely on the dynamic type of the receiver. Indeed, in a dynamic-loading
setting which entails the open world assumption (OWA), multiple inheritance yields
compile-time uncertainty about the position of accessed methods, attributes or su-
pertypes. Object representation consists of the data structures that underlie the
implementation of these mechanisms. Some of them are compatible with multiple
inheritance and dynamic loading, but systematic experiments show how costly they
are in a non-adaptive compiler, i.e. when the source code is compiled once for all
[DMP09].

Dynamic compilation provides a general solution to this efficiency issue. It consists
in an object representation that allows for shortcuts in the default implementations
of these typical mechanisms, coupled with compilation/recompilation protocols that
maintain the most efficient implementations compatible with the current state of the
program, while keeping the recompilation cost reasonable.

This article presents the abstract architecture of a virtual machine designed for
multiple inheritance which is expected to provide the same runtime efficiency and scal-
ability as Java and .Net platforms. This architecture relies on three elements: (i) an
object-representation based on perfect class hashing [Duc08, DM11], which precisely
describes in an algorithmic way the decisions taken for deciding the implementation
of a class; (ii) a compilation protocol that describes in the same manner, the way each
mechanism-invocation site is compiled according to the current situation; and (iii) a
recompilation protocol specifying the way methods or invocation sites are recompiled
when the situation evolves. The article illustrates this abstract architecture with a few
specific compilation/recompilation protocols. Besides the application to full multiple

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 3

inheritance, this articles aims at specifying simple compilation protocols that rely on
static analysis instead of runtime profiling. Finally, we propose a general method-
ology for evaluating these protocols with random simulation. Indeed, the protocol
behaviour is closely dependent on the specific class-loading and method-compilation
orders, and an execution of a program would only provide a single order. Therefore,
we propose instead a simulation that loads classes at random and provides a kind
of approximate envelope of all possible executions, thus giving a better idea of the
worst-case behaviour. The overall approach is tested on a benchmark that consists of
the Prm compiler already used in empirical experiments at runtime [DMP09].

The structure of the article is as follows. Section 2 presents the point of object-
oriented implementation, and describes the two techniques that underlie our proposal,
namely single-subtyping implementation and perfect class hashing. The next section
presents an abstract description of the proposed virtual-machine architecture. Sec-
tion 4 specifies a first protocol, simple but not very efficient, which is an adaptation to
dynamic loading of the double compilation proposed for attribute access in [Mye95].
This first protocol optimises only self-invocations, ie invocations whose receiver is
typed by the current class. The random simulation approach is described. It is ap-
plied on a very simple abstraction of the Prm compiler, and its results presented
and discussed. Section 5 presents a more accurate protocol family, which potentially
optimises each invocation site in the most efficient way. A random simulation, now
based on a more complete abstraction of the Prm code, is described. Its results prove
that the proposed approach is promising and deserves more in-depth assessment. Fi-
nally, the last section puts the proposed approach into perspective, and lists known
limitations and a few prospects.

2 Object-oriented implementation

With object-oriented programming, implementation is concerned with object repre-
sentation, that is the object layout and the associated data structures and algorithms
that support method invocation, attribute access and subtype testing.

2.1 Single-subtyping implementation

In separate compilation of statically typed languages, late binding is generally im-
plemented with method tables, which reduce method invocations to calls to pointers
to functions through a small fixed number (usually 2) of extra indirections. Figure
1 depicts the overall data structure and the code sequence for each mechanisms. An
object is laid out as an attribute table, with a table pointer at the method table,
usually at offset 0 (#tableOffset). Each attribute has a fixed offset (#attOffset) in
the object layout, while each method has a fixed offset (#methOffset) in the method
table. With single inheritance and single subtyping, when classes are the only types,
the class hierarchy is a tree and the tables implementing a class are straightforward
extensions of those of its single direct superclass. Therefore, the resulting implemen-
tation respects two essential invariants: (i) a reference to an object does not depend
on the static type of the reference; (ii) the position of attributes and methods (i.e.
#attOffset and #methOffset) in their respective tables does not depend on the dy-
namic type of the object. Therefore, all accesses to objects are straightforward. This
accounts for method invocation and attribute access under the OWA. The efficiency
of this implementation is due to both static typing and single inheritance. Otherwise,

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


4 · Roland Ducournau and Floréal Morandat

// attribute access
load [object + #attOffset], attVal

// method invocation
load [object + #tableOffset], table
load [table + #methOffset], methAddr
call methAddr

// subtype test
load [object + #tableOffset], table
load [table + #targetOffset], id
comp id, #targetId
bne #fail
// succeed

meth
Offset

att
Offset

methAddr

Offset

target

object

object

method table

attVal

table

id

Code sequences for the 3 basic mechanisms and the corresponding diagram of object layout and
method table. The pseudo-code is borrowed from [Dri01]. Pointers and pointed values are in Roman
type with solid lines, and offsets are italicised with dotted lines.

Figure 1 – Single-subtyping implementation.

the same kind of complication may occur when the same property name is at different
places in unrelated classes.

The technique proposed by [Coh91] for subtype testing works under the OWA, too.
It involves assigning a unique ID to each class, together with an invariant position in
the method table, in such a way that an object x is an instance of the target class
C if and only if the method table of x contains the class ID of C, at the position
uniquely determined by C. Then, the test consists in comparing the content of the
method table at the #targetOffset offset with the #targetId. Readers are referred
to [Duc08] for implementation details that avoid bound checks and indirections.

The SST implementation is certainly the most efficient one under static, sepa-
rate compilation. There are, however, almost no such SST languages. While this
implementation is that of Java and .Net for class representation and class-typed
invocations, it cannot take interfaces into account.

2.2 Perfect hashing

In [Duc08], we proposed a new technique based on perfect hashing for subtype testing
in a multiple inheritance and dynamic loading setting. The problem can be formalised
as follows. Let (X,�) be a partial order that represents a class hierarchy, namely X
is a set of classes and � the specialisation relationship that supports inheritance. The
subtype test amounts to checking at run-time that a class c is a superclass of a class
d, i.e. d � c. Usually d is the dynamic type of some object and the programmer
or compiler wants to check that this object is actually an instance of c. Classes are
loaded at run-time in some total order that must be a linear extension (aka topological
sorting) of (X,�)—that is, when d ≺ c, c must be loaded before d.

The perfect hashing principle is as follows. When a class c is loaded, a unique
identifier idc is associated with it. If needed, still unloaded superclasses are recursively
loaded. Then, the set Ic = {idd | c � d} of the identifiers of all its superclasses is
computed. Hence, c � d iff idd ∈ Ic. This set Ic is immutable, and it can be
hashed with a perfect hashing function hc, i.e. a hashing function that is injective on
Ic [CHM97]. The previous condition becomes c � d iff htc[hc(idd)] = idd, whereby
htc denotes the hashtable of c. All hashtables are immutable and the computation
of htc depends only on Ic. The technique is thus incremental, hence compatible

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 5

// preamble
load [object + #tableOffset], table
load [table + #hashingOffset], h
and #targetId, h, hv
sub table, hv, htable

// method invocation
load [htable +#htOffset], itable
load [itable +#methOffset], methAddr
call methAddr

// subtype testing
load [htable +#htOffset-fieldLen], id
comp #targetId, id
bne #fail
// succeed

h

method tablehashtable

offset
meth

hashing
offset

table

hv

htOffset

itableid

methAddr

The preamble is common to both mechanisms. The grey rectangle denotes the group of methods
introduced by the considered class.

Figure 2 – Perfect class hashing

with the OWA and dynamic loading. The perfect hashing functions hc are such that
hc(x) = hash(x,Hc), whereby the hashtable size Hc is defined as the least integer
such that hc is injective on Ic. Two hash functions were considered, namely modulus
and bit-wise and1. A recent study led us to consider that the latter must be preferred
[DM11].

In a static typing setting, the technique can also be applied to method invocation
and we did propose, in the aforementioned article, an application to Java interfaces.
For this, the hashtable associates, with each implemented interface, the offset of
the group of methods that are introduced2 by the interface. Of course, this easily
generalises to method invocation in full multiple inheritance. Figure 2 recalls the
precise implementation in this context. Like in SST, the object header points at its
method table with the table pointer. The method table is bidirectional. Positive
offsets involve the method table itself, organised as with single inheritance, whereby
methods are grouped by introduction classes and these groups are arbitrarily ordered.
Negative offsets consist of the hashtable, which contains, for each superclass d, a
couple (idd,md), where md is the address of the group of methods introduced by
d. #hashingOffset is the position of the hash parameter (h) and #htOffset is the
beginning of the hashtable. At a position hv in the hashtable, a two-fold entry is
depicted that contains both the superclass ID, which must be compared to the target
class ID (#targetId), and the address itable of the group of methods introduced
by the superclass that introduces the considered method. The table contains, at the

1 With and, the exact function maps x to and(x,Hc − 1).
2 The “introduction” term is crucial here. A class introduces a method when it defines a method

with a new name (or signature) that is not already defined in any of its superclasses.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


6 · Roland Ducournau and Floréal Morandat

position #methOffset determined by the considered method in the method group,
the address of the function that must be invoked.

The efficiency of PH is rather good. From the time standpoint, experiments in
Prm show that the PH overhead is real but low, when it is used for method invocation
and subtype testing [DMP09]. From the memory occupation standpoint, exhaustive
random simulations on large-scale hierarchies show that joint computation of class
IDs and PH parameters, called perfect class numbering, yields quasi-linear hashtables
[DM11]. To our knowledge, PH is the only incremental, constant-time technique that
allows for both multiple inheritance and dynamic loading at reasonable spatial cost
and applies to both method invocation and subtype testing.

2.3 Accessor simulation (AS)

Originally, perfect class hashing was not intended to deal with attribute access, thus
restricting its use to multiple subtyping. However, accessor simulation is a way of
overcoming this restriction.

An accessor is a method that either reads or writes an attribute. True acces-
sors require a method call for each access, which can be inefficient. However, a class
can simulate accessors by replacing the method address in the method table with the
attribute offset. This approach is called field dispatching in [ZG03]. Another improve-
ment is to group attributes together in the method table when they are introduced by
the same class. Then one can substitute, for their different offsets, the single relative
position of the attribute group, stored in the method table at an invariant position,
i.e. at the class offset used by Cohen’s test (Fig. 3) [Mye95]. With PH, the attribute-
group offset is associated with the class ID and method-group offset in the hashtable,
yielding 3-fold table entries.

Accessor simulation is a generic approach to attribute access which works with
any method invocation technique, and makes it work in a full multiple-inheritance
setting if it works with multiple-subtyping. Only static typing is required, because
of the merging of method addresses and attribute offsets in the same area, and since
attributes must be partitioned by the classes that introduce them, hence introduced
by a single class.

Among the various implementation techniques, some apply only to method invo-
cation and subtype testing, e.g. perfect hashing. These techniques can thus be used
for Java interface implementation. Accessor simulation is a way of applying them to
full multiple inheritance. Whereas accessor simulation is a functional solution, it is
not that efficient, and the Prm experiments [DMP09] showed that it yields marked
overhead. However, this overhead is similar to that of C++-like subobjects [MD10].

3 Virtual machine specifications

In our abstract view, a virtual machine is a runtime system which performs the
following tasks: (i) it loads code units that generally consist of classes that are not
loaded yet; (ii) it computes the object representation for the newly loaded classes;
(iii) it compiles or recompiles pieces of code (generally methods); and, finally, (iv)
it runs the compiled code which can, cyclically, trigger class loadings and method
recompilations. Of course, an actual virtual machine is markedly more complex, but
we apply, here, Dijkstra’s separation of concerns [Dij82].

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 7

// attribute access
load [object + #tableOffset], table
load [table + #classOffset+fieldLen],

attrGroupOffset
add object, attrGroupOffset, attgr,
load [attgr + #attrOffset], value

Offset
attr

attrGroup
Offsetid

class

Offset
class

Offset
attrGroup

method table

table

valueobject

object layout

The diagram depicts the precise object representation with accessor simulation coupled with Co-
hen’s test, to be compared with Fig. 1. The offset of the group of attributes introduced by a class
(attrGroupOffset) is associated with its class ID in the method table and the position of an attribute
is now determined by an offset (#attrOffset) that is now relative to this attribute group.

Figure 3 – Accessor simulation with Cohen’s test

Furthermore, compilation is both lazy and adaptive. Laziness and adaptiveness
are key features that distinguish modern runtime systems from the compilation set-
ting that underly the implementation techniques presented in Section 2. Indeed,
these techniques can be used with static compilation, ie without any need for re-
compilation. In contrast, the efficiency of Java and .Net systems rely on dynamic
compilation, which can yield further recompilation. The code is generally loaded and
compiled “just-in-time”, and the compilation depends on the current state of the world.
Therefore, each piece of code is compiled under a provisional closed-world assumption
(CWA) which allows for efficient code sequences for the invocation of object-oriented
mechanisms but can be invalidated by further class loadings. In contrast, we only
consider object representations that do not need any runtime recomputation, hence
which can be computed under the open world assumption (OWA). We thus attempt
to take the best from the two worlds, ie static structures and dynamic code sequences.

Overall, the virtual machine specifications consist of two parts:

• an object representation that supports two kinds of alternative implementations
for mechanism invocation: (i) a general background implementation is required
to work in any situation and to present very good worst-case efficiency; (ii) one
or more optimised implementations represent shortcuts with excellent efficiency,
but they do not work everywhere and every time;

• a protocol for selecting the appropriate implementation and propagating pos-
sible recompilations, when the compiler must switch from an optimised imple-
mentation to a less optimised one.

3.1 Object representation.

The general idea is to use perfect class hashing as the underlying object representation,
in such a way that all mechanisms could be invoked through PH, which is thus coupled
with accessor simulation for attribute access. This base implementation allows for
various shortcuts. The single-subtyping code can be used when the current situation
satisfies the position invariant, i.e. when the considered property has the same position
in all the subclasses of the receiver’s static type. Moreover, monomorphic call sites
could be implemented with static calls.

It is thus expected that PH will be used in very few cases, and that most invo-
cation sites would use SST implementation, or even static calls. Indeed, all previous

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


8 · Roland Ducournau and Floréal Morandat

experiments show that this goal should be reached to a large extent. Therefore, the
issue is twofold: (i) how could optimisation improve the resulting efficiency? (ii) will
the recompilation cost be acceptable?

Superclass ordering. Optimising the resulting efficiency is a matter of superclass
ordering. Indeed, with PH, attributes and methods are grouped together in object
layouts and method tables according to their introduction class. When a class is
loaded, its attribute and method groups are determined according to its superclasses,
and these groups must be ordered according to some algorithm. The resulting order is
immutable, i.e. it will not be changed by further recompilations. Perfect class hashing
is also computed and the complete method table can thus be allocated and filled (this
is necessary only for concrete classes). The method-table structure, too, is immutable
as only the entries corresponding to method addresses can be further changed.

In contrast with these immutable structures, the order associated with the newly
loaded class, say D, may assign to a superclass of D, say B, a position that differs
from the single previous position of B. This will trigger some recompilations in B and
other classes, when the SST code used for invocations involving B becomes unsound,
hence forcing theses invocation sites to be compiled with the less efficient PH code.
The efficiency of the approach thus depends on the superclass order.

It can be understood as a linearization, in the sense of multiple-inheritance lin-
earizations [DP11]. Whereas multiple-inheritance linearizations are bottom-up, the
superclass orders considered here are top-down; moreover, instead of being linear
extensions of the inheritance relationship, they are ruled by the prefix condition as
follows. Given a class c, with the set sup(c) of its direct superclasses, then there must
be some c′ ∈ sup(c) such that the superclass order of c′ is a prefix of the superclass
order of c, and c is said to satisfy the prefix condition w.r.t. c′. Therefore, loading
c does not move c′ and its superclasses, and they do not require any recompilation.
In contrast, the superclasses of c that are not superclasses of c′ will have multiple
positions, and it might trigger some recompilations. In practice, the prefix selection
follows some heuristics. For instance, it might be the class c′ in sup(c) that maximises
the number of invocations that are at a constant position and should be optimised.

Let sco(c) and lin(c) denote, respectively, the superclass order and the aforemen-
tioned bottom-up linear extension associated with c. Let also ⊕ be the concatenation
operation that removes duplicates and keeps the last occurrence of each. Then, the
reverse superclass order of c, denoted scor(c), is defined by scor(c) = lin(c)⊕scor(c′).
Because of this inversion, the prefix in the object representation is translated into a
suffix in scor. It is easy to verify that scor(c) = lin(c) in the single inheritance case,
thus yielding the SST implementation.

There is no need for the superclass order to be the same for methods and attributes,
since the hashtable is the only common point between the two kinds. These heuristics
can also be improved by taking classes that introduce no attributes or methods into
account.

Determining the position invariant. It might be too complex to accurately
check the invariant condition, i.e. that the considered position is invariant in all sub-
classes of the receiver’s static type, because it would require a data structure whose
size is quadratic in the class number. There is, however, a simple, linear way to effi-
ciently relax this condition. Each class keeps its single position in all of its subclasses,
or a distinguished value (eg negative) when the invariant position is no longer satis-
fied. Now, an invocation site satisfies the position invariant if the invoked method (or

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 9

A

A B

A C

A C B D

A

D

B C

foo

bar

foo

bar

The picture depicts the smallest multiple-inheritance example, with a 4-class diamond and their
associated tables which follow the corresponding superclass orders. Here, AC is a prefix of ACBD.

Figure 4 – Diamond example.

accessed attribute) is determined by a class with a single position.
When considering an invocation site like “x:A ; x.foo()”, two possibly different

classes can be considered for determining the position of foo, namely the receiver’s
static type (rst), i.e. A, and the property’s introduction class (pic)3, i.e. the rst or its
superclass that introduces foo. The position invariant can be true with any of them,
and false with the other4.

Example. Consider for instance the famous multiple inheritance diamond of Fig-
ure 4. Suppose that the linearizations of these classes are, respectively, A, BA, CA
and DCBA. Suppose also that C has been selected in sup(D) = {B,C}, so that D
satisfies the prefix condition w.r.t. C. Then, scor(D) = DCBA⊕CA = DBCA, and
B has at least two different positions in B and D, since their superclass orders are,
respectively, AB and ACBD. Finally suppose that A and D have a single position,
eg all their other subclasses are in single inheritance, and that A and B introduce,
respectively, foo and bar. Then, in the invocation site “x:B ; x.foo()”, A is the
pic with a single position, and B the rst with multiple positions. By contrast, in
“y:D ; y.bar()”, B is the pic, with multiple positions, and D the rst with a single
position. Anyway, both sites can use the SST code since both foo and bar have a
single position in these sites. In contrast, in the site “z:B ; z.bar()”, pic and rst
are B, which has multiple positions, hence bar has multiple positions, and the PH
code must be used.

3.2 Compiling an invocation site

Without loss of generality, a variety of invocation sites can be distinguished from
each other at load- or compile-time. The first two kinds are static, i.e. immutable and

3 In static typing and multiple subtyping or inheritance, the pic is essential, and its uniqueness
is the basis of the semantics proposed in [DP11]. However, not all languages conform with this
uniqueness requirement. When a language accepts that a method has multiple pic (Java for instance),
the method will have an entry in the method group of each pic, and these entries will be filled with
the same method address.

4 The proof of invariance is easy for the pic since a method/attribute has a fixed position in the
method/attribute group of its pic. It is not so trivial for the rst, since it supposes that the pic has
an invariant position in the implementation of the rst, but possibly not in other pic subclasses. The
invariant is actually due to the superclass order defined above. Roughly speaking, if the rst has a
fixed position, then it satisfies the prefix condition for all its subclasses, hence the pic will have a
constant position in all the rst subclasses.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


10 · Roland Ducournau and Floréal Morandat

independent from the program execution, and the other are dynamic and mutable.

• A self-invocation is a method invocation or an attribute access whose receiver
is the current receiver (called self in Smalltalk, this in Java, C# and C++,
or Current in Eiffel). It can be generalised to the case where the rst is the
including class (or a subtype of it, but the considered method or attribute must
have been introduced by it). We consider only, here, the latter case, but the
former could be considered for other optimisations like method customisation
[CU89] (which makes self-invocations monomorphic).

• A root-invocation is a method invocation whose pic is the hierarchy root (i.e.
Any in Eiffel or Prm, or Object in Java or C#; of course, it cannot apply to
C++). Indeed the root has always a single position, hence PH is never necessary
for root-invocations. Moreover, this does not concern attributes, since the root
has usually no attribute.

• Method invocation sites are often degenerate, in the sense that a single method
can be invoked; the site is said to be monomorphic and can be compiled as a
static call.5

• The site rst may be unknown, because it is not loaded yet; we call this case a
null-invocation, since the receiver itself must be null. Hence, executing such
a site must signal a null-exception. Of course, it cannot be a self-invocation,
but it might be a root-invocation. If this is not a root-invocation, the invoked
property is also unknown, and there is nothing to do at compile-time, although
compiling it as a static call is a way to prepare the future.

• However, in a null root-invocation, the invoked method is known6, since the
root is always loaded first, and the call site can be definitively compiled as
an SST invocation. It would reduce the recompilation number while, however,
reducing the number of sites compiled as static calls.

• Finally, invocation sites that are neither monomorphic, nor root, nor null, can
be compiled with SST or PH, according to the position invariance of the site.

A similar classification is done for attribute access, but it is simpler since, usually,
the root does not introduce any attribute and monomorphism does not concern at-
tributes. Thus, besides self-invocations, there remain only three cases—null, SST,
and PH—which form a partition.

For subtype tests, there are three cases, too: (i) an equivalent of a monomorphic
invocation is a test which succeeds (or fails) in all executions; the test always succeed
when the target class is a superclass of all concrete subclasses of the rst; it always
fails when the target class is not loaded yet (null case); (ii) SST implementation,
i.e. Cohen’s test, works when the position invariant holds for the target class; and
(iii) PH is used in all other cases. However, as subtyping tests are negligible in our
benchmark, we will no longer consider them.

5 Here, we consider only call sites that are currently monomorphic but could become polymorphic
in the future. Sites that are always monomorphic because the receiver’s dynamic type is known at
compile time, eg after intraprocedural control flow analysis, must be treated as a static call, statically,
i.e. at load time.

6 It might, however, be wrong with languages supporting static overloading, when the type of an
actual parameter is a strict subtype of the corresponding formal parameter in the root. Indeed, the
unknown rst might overload the root method with a more specific formal parameter type.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 11

The overall data structure must record the invocation sites that may be further
recompiled, i.e. all sites except those compiled with SST for root-invocations or PH
for other sites. For instance, each class with a single position must maintain the list
of already compiled methods that contain invocation sites whose rst or pic is this
class. A similar data structure is required for monomorphic and null sites. These
data structures are not that expensive, since the runtime system must maintain a
model of the whole hierarchy anyway.

3.3 Compilation schedule

So far, we specified what to do, not when it can or must be done. Without loss
of generality, a class must be loaded, and its representation computed, before it is
instantiated, either directly via a new, or indirectly, when a proper subclass is in-
stantiated. In a similar way, a method must be compiled or recompiled before it is
invoked. More precise specifications are a matter of protocols which can mix both
eagerness and laziness.

We do not specify, either, the way methods are compiled and recompiled. For
instance, a method can be compiled as a whole, or piecewise. An invocation site can
be inlined in the method code, or instead compiled as a stub function (aka a thunk
or trampoline). It is worth noting that the invoked method is called by the thunk
via a tail call, hence a thunk does not add an extra function call, but only an extra
direct branch. On the contrary, a thunk used for an attribute access involves an extra
function call, and is strictly equivalent to a monomorphic call to an accessor. Hence,
a thunk used for method invocation entails almost no overhead, apart from possible
cache misses, while a thunk used for attribute access or subtype testing involves the
overhead of an actual function call. Besides this use, thunk or trampoline are also
used for denoting the stub function that will trigger the compilation/recompilation
of a method just before its next invocation. With this technique, a newly allocated
method table is filled with a trampoline address, and the decision of recompiling a
method just involves filling some method table entries with the trampoline address.

Another issue is left aside, though it is essential in practice, namely the recompila-
tion of a method might be triggered while the method is active. It might occur even in
synchronous executions. Furthermore, this recompilation might be mandatory in the
sense that the current compiled version of the method would be erroneous. Consider
for instance the fragment x.foo().bar(). The foo invocation may trigger the load-
ing of a new class and return an instance of it, while the current compilation of the
bar invocation has been made erroneous by this class loading. A common approach
uses guarded implementations, like polymorphic inline caches [HCU91], which ensure
that a background general implementation is available in the case where the guard is
not satisfied. Our approach is different, since the protocols proposed hereafter always
use the most efficient implementation in the current state of knowledge of the com-
piler. Therefore, this point must be carefully addressed, and techniques like on-stack
replacement [FQ03, SKT07] might be considered, although we expect to avoid it, e.g.
by replacing the bar invocation with a static call to a stub function which implements
the right code sequence. This might also involve modifying the instruction cache.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


12 · Roland Ducournau and Floréal Morandat

4 Protocol for optimising self-invocations

A first protocol has been designed for optimising self-invocations, in order to make
most of them as efficient as with SST. It tries to mimic the multiple-subtyping im-
plementation in a static compilation setting, when class invocations are implemented
with SST and interface-invocations with PH. However, with dynamic compilation and
multiple inheritance, the invocations that are implemented with PH are determined
by the recompilation protocol instead of being decided by the interface declaration.

In this protocol, when a method definition is compiled, all mechanism invocations
are handled in the following ways:

1. subtype testing is implemented with PH;

2. all root-invocations use the SST implementation;

3. all self-invocations of methods or attributes are invoked through the SST im-
plementation when the considered method or attribute group has still a single
position;

4. PH is used for all other methods and attributes.

Monomorphic and null-invocations are not considered in a special way. Therefore,
they are compiled as SST invocations. A particular method definition can use both
SST for method invocation and PH for attribute access, or conversely.

Recompiling a class is required when the positions of its attribute or method
groups have been changed in some subclass. It requires to change case-3 invocation
sites into case-4. Only the methods that contain still optimised self-invocations are
concerned, and a method can be recompiled at most twice, since the recompilation
must be done only the first time the group is moved. However, the approach does not
distinguish between self-invocations of methods/attributes introduced by the current
class (which have actually been moved) and self-invocations of methods/attributes
introduced in superclasses (which may have not been moved).

4.1 Protocols and algorithms

Recompilation protocol. Once a class d has been loaded, it maintains the follow-
ing meta-information about its state:

• ad and md represent the numbers of self-invocations of attributes and methods
in the method definitions of d;

• apd and mpd represent, respectively, the single position of the attribute or
method group, or a distinguished value for multiple positions;

• Ad, Md and AM d represent sets of methods defined in d and candidates to
possible recompilations; methods in Ad (resp. Md) use the SST implementation
for at least one attribute access (resp. method invocation), and methods in AM d

use SST for both.

When loading a class c, a direct superclass c′ is first selected as a prefix. We take
the class maximising the number f(c′) =

∑
c′�d wd ∗ kd, whereby kd is the number

of considered invocations in the method definition of d, and wd = 1 if d still has
a single position, 0 otherwise. Each superclass d of c that is not superclass of c′

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 13

is then candidate to recompilation, and the methods in Ad (resp. Md) and AM d are
recompiled if the attribute (resp. method) group has been moved. After recompilation,
the Ad,Md or AM d sets of recompiled methods are removed. If recompilation concerns
only method invocation (resp. attribute access), the AM d set is then added to Ad

(resp. Md). The algorithm for deciding which methods must be recompiled is thus
straightforward. As in all adaptive compilers, the recompilation itself can be eager or
lazy.

Example. In the diamond example of Figure 4, class B has multiple positions after
the definition of D, and all self-invocations in the methods defined in B must be
recompiled.

4.2 Evaluation

The benchmark used in these tests is an abstract description of the class hierarchy of
the Prm compiler used in the testbed presented in [DMP09].

Benchmark. This description follows the same principle as benchmarks commonly
used in the object-oriented implementation community (eg [Dri01]), especially in our
previous experiments [Duc08, DM11, Duc11]. It is, however, more detailed as it in-
cludes invocation counts. Each class is described by the following elements: (i) class
name, (ii) superclass names, (iii) names of introduced attributes, (iv) names of de-
fined methods followed by the number of invocations in the method code. Invocation
numbers distinguish between method (M) and attribute (A) invocations. Method
invocations are distinguished according to whether the method is introduced by the
hierarchy root (R), the receiver is typed by the current class (S), or otherwise (O). The
same is applied to attribute invocations, except they distinguish only between S and
O cases, since there are generally no A-R example in any language. M-R represent
cases that are always optimised, while A-S, M-S represent self-invocations that can
be optimised and yield recompilations, and A-O and M-O are always unoptimised.
The cardinality of the sets A, M and AM is thus computed for each class.

Compile-time statistics. Table 1 presents various statistics about (i) the number
of attributes and methods, (ii) the number of invocation sites per invocation kind (A
or M; R, S or O), and (iii) the total sizes of the A, M and AM sets, i.e. the number
of method definitions according to the kinds of invocations they contain.

Random load-time statistics. Whereas these first statistics are static, i.e. they
could be done at compile-time on the whole hierarchy (under the CWA), the next
statistics are dynamic and they should be done at load-time. Therefore, class loading
has been simulated, and class-loading orders are generated at random as in [DM11].
For each class-loading order, the number of recompiled classes, recompiled methods,
variable-position methods and attributes, and variable-position invocation sites are
computed, and Table 2 depicts the statistics on these numbers (minimum, average
and maximum values).

Discussion. The most interesting numbers are the invocation numbers (Table 1(c)).
As a consequence of a strict encapsulation discipline, almost all attribute accesses are
self-invocations, hence concerned with the optimisation. In contrast, only 60% of
method invocations are concerned with the optimisation. The random simulation

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


14 · Roland Ducournau and Floréal Morandat

Table 1 – Self-invocation protocol — Compile-Time statistics

(a) Method numbers

introduced defined inherited
total avg max total avg max total avg max
2880 5.0 107 4725 8.3 109 46204 80.8 237

(b) Attribute numbers

introduced inherited
total avg max total avg max
629 1.1 29 2623 4.6 31

(c) Invocation numbers

A-S A-O A-* M-R M-S M-O M-*
5043 15 5058 19849 4182 15861 39892

(d) Number of methods according to their
self -invocations

A AM M none total
1644 647 944 1490 4725

(a) Method numbers present total, per-class average and maximum, and distinguish between whether
methods are introduced, defined or inherited in the class.
(b) The same applies to attributes, apart from the differences between introduction and definition.
(c) Invocation numbers retain the distinction between the different kinds made in the benchmark,
i.e. root/self-invocations.
(d) The A, M and AM sets represent methods that contain self-invocations on attributes, methods
or both.

Table 2 – Self-invocation protocol — Load-Time statistics

(a) Numbers of class and method recompilations

class rcp meth rcp rcp load
63 66.5 68 360 363.1 389 31 33.5 36

(b) Variable-position self-invocations

variable A-S total variable M-S total
121 121.1 140 5043 659 666.5 682 4182

Each random datum is depicted by its minimum, average and maximum values over all tested class-
loading orders.
(a) The three columns depicts the number, respectively, of classes that define a method that must
be recompiled, of methods that must be recompiled, and of classes whose loading triggers a recom-
pilation. (b) The first part displays the number of self-invocations on attributes that cannot be
optimised, and recalls the total number of self-invocations for attributes. The second part displays
the same data for methods.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 15

(Table 2(b)) shows that only a few percent of attribute and 16% of method self-
invocations must finally be implemented with PH. Therefore the resulting program
would be as efficient as Java or .Net systems for attribute access, as less than 3% of
attribute access sites would not be optimised. In contrast, only 41% of method call
sites would remain unoptimised, and this would looks like a Java program making an
heavy use of invokeinterface.

The load-time recompilation cost is also interesting. At most 36 class loadings
yield some recompilation on a total of 572 (‘rcp load’ column in Table 2(a)), and
these recompilations concern at most 68 classes (‘class rcp’ column) and 389 methods
(‘meth rcp’ column), on 3235 methods containing self-invocations, and a total of
4725 methods. Recompilation should thus concern less than 8% of the methods. This
is an upper bound, since compilation would be lazy, and recompilation of a method
might be triggered even before its first compilation.

5 More accurate recompilation-protocol family

In a more accurate compilation/recompilation protocol, each invocation site is com-
piled in the most efficient way according to the currently valid assumptions. Here,
this protocol mimics global, static compilation with the proviso that the object rep-
resentation depends on the class loading order, instead of being the result of global
optimisation.

5.1 Protocol

Site-level protocol. This protocol distinguishes between all of the invocation cases
listed in Section 3.2, apart from self-invocations. There remain five cases.

1. null-invocations are compiled in a special way discussed hereafter, and will
require further recompilation when the invoked method will be known;

2. all monomorphic invocations are compiled as static calls, and further method
overriding will need recompilations;

3. other root invocations, ie when they are polymorphic and non-null, are compiled
with SST, without any further recompilation;

4. polymorphic non-root invocations are compiled with SST when the receiver’s
static type has a single position, and a recompilation will be needed when the
condition is false; as mentioned above, the position invariant can be determined
by the rst (rst case), the pic (pic case), or both (r+p case);

5. finally, polymorphic non-root invocations are compiled with PH when the rst,
the pic, or both have multiple positions.

For attribute access, the partition between null, SST, and PH sites is done.

Null-invocations. The case of null-invocations deserves special consideration.
First of all, they are not intended to be actually invoked, since the receiver of a null-
invocation is always null and must be trapped by the implied null-check preceding
the invocation. However, most null-invocations are provisional and destined to be
transformed into an actual invocation. Therefore, instead of generating an empty

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


16 · Roland Ducournau and Floréal Morandat

code sequence, it is preferable to generate the most probable sequence, with empty
places that will be filled when a recompilation will be triggered. This should avoid
a lot of full recompilations of the enclosing method. Thus, null-invocations will be
compiled with an SST sequence for an attribute access, and a monomorphic call for a
method invocation. When the recompilation is only triggered by the null-invocation,
the empty place in the code sequence is filled, respectively, with the attribute position
or the method address.

The case of root null-invocations is even special, since the SST implementation
can avoid, here, any further recompilation, and might be preferred if the recompi-
lation cost is too high. Therefore, root null-invocations can be managed in three
different ways: (i) as ordinary null-invocations (null case); (ii) compiled with SST
and never recompiled (norcp case); or (iii) compiled with SST and recompiled when
a recompilation is triggered by another call site (rcp case).

Prefix selection. The selection of the direct superclass for the prefix condition
should be optimised in the same way as in the self-invocation protocol, by attempt-
ing to minimise the exact number of PH invocations and/or the recompilation num-
ber. However, an exact evaluation of these criteria would be costly, and we used, in
practice, the same selection as in the previous protocol.

Compilation schedule. Finally, the compilation protocol can be eager or lazy, and
laziness should of course be preferred, in practice. However, as our simulation does
not provide any control flow, our lazy protocol has a coarser grain, and a method
is compiled as soon as an invocation site has been already compiled, or is in the
compilation queue. Therefore, recompilation is always eager because the program
abstraction used for simulations does not provide any control flow.

5.2 Simulation

This new protocol has been simulated on an extended abstraction of the benchmark
used in the previous section, which is available on http://www.lirmm.fr/~ducour/
Benchmarks/benchmarks.html. A method description now contains explicit descrip-
tions of all invocation sites in the method body. The only difference between this
abstraction and an actual program, is the program control-flow, which has been
dropped, as a method body is just a set of invocation sites. As the program start-
point (ie the main procedure) is available, static type analyses like Rapid Type Analysis
(RTA) [BS96] are possible. In contrast, the lack of control flow makes interprocedural
Control-Flow Analysis (CFA) impossible [Shi91].

Eager-protocol simulation. In the eager case, RTA is first applied to the bench-
mark program, statically. The general algorithm is as follows.

1. RTA produces a concrete-class set (ccs), and a live-method set (lms);

2. a class is taken at random in ccs, and its still unloaded superclasses are collected,
hence leading to a set of unloaded classes to load (ctl), which is removed from
ccs;

3. for each class in ctl , the implementation is computed; it yields a set of methods
that must be recompiled because the rst of a null-invocation is now loaded, or
because the rst/pic position of some sites has changed;

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.lirmm.fr/~ducour/Benchmarks/benchmarks.html
http://www.lirmm.fr/~ducour/Benchmarks/benchmarks.html
http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 17

4. for each class c in ctl , the methods in lms and defined in c are collected, thus
yielding the set of methods that must be compiled for the first time; this also
yields another set of methods that must be recompiled because some monomor-
phic sites become polymorphic;

5. finally all the collected methods are compiled or recompiled, and the simulation
loops at step 2.

Lazy-protocol simulation. In the lazy case, the simulation is closer to an actual
execution. Now, the type analysis used is Class Hierarchy Analysis (CHA) [DGC95].
It proceeds as the simulation goes along, and yields the same final result as RTA in
the eager protocol.

1. A set of still unloaded concrete classes (ucs) is maintained throughout the sim-
ulation; it is initialised with the class defining the program entry-point;

2. same as step 2 in the eager case, with ucs substituted for ccs;

3. same as step 3 in the eager case;

4. a set of methods to compile (smc) is now collected; it consists of methods that
are defined in the classes in ctl , and are already invoked in previously compiled
methods or in the current smc method-set; it also consists of methods previously
defined but not compiled yet, that are invoked for the first time in the smc
method-set;

5. in each method in smc, the instantiation sites (i.e. new C) are collected, and for
each one, C is added to the ucs concrete-class set if it is not loaded yet;

6. finally all the collected methods are compiled or recompiled, and the simulation
loops at step 2.

5.3 Evaluation

For each simulation determined by a single class-loading order taken at random ac-
cording to one of these algorithms, the count of each invocation-site kind is computed.
This was done thousands of times (actually 16150 for the data presented hereafter),
for the complete protocol combinatorics, ie (i) lazy vs eager; (ii) rst, pic or r+p cases,
which apply independently to methods and attributes; and (iii) with the root null-
variants, ie rcp, norcp and null cases. From this large combinatorics, we present
only the r+p/r+p/null triplet variant because it provides the best runtime efficiency
and does not significantly increase the recompilation cost. The eager simulation is
also presented for the sake of comparison.

Final implementation. Table 3 presents the statistics of all invocation sites at
the end of each simulation, when all classes are loaded and all methods are compiled
for ever. While the benchmark program is the same in all tests, the total number
of invocation sites differ from the numbers in Table 1(c) because the optimisation
of self-invocations does not involve type analysis and dead code elimination. In
contrast, the protocols presented here involve type analyses, with algorithms which
slightly differ between lazy and eager protocols. It is worth noting that the total
numbers should be the same with lazy and eager simulations. The difference is an

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


18 · Roland Ducournau and Floréal Morandat

artifact of our simulation, as the RTA algorithm used in the eager simulation is slightly
more accurate than the lazy type analysis.

We first discuss the results of the lazy protocol. Table 3(a) concerns method
invocations, and its first part root-invocations. On average, on a total of 17562 sites,
16843 are monomorphic and compiled with a static call, and the rest, ie 719, is
compiled with SST. The next columns are dedicated to non-root invocations. On
a total of 18928 sites, 2 are null-invocations, 15428 are monomorphic, 2663 are
compiled with SST and 835 with PH. Regarding attribute access (Table 3(b)), the
analysis is simpler, and on a total of 4429 sites, about 86 require PH. Moreover, some
of these attribute invocations involve read/write accessors which could be optimised
by redefining them in the subclasses that imply a different position for the attribute.
The random effects are almost null, here. Indeed, the r+p/r+p/null variant is exact
for root-invocations and monomorphic calls, and it happens that the effects on the
SST/PH choice is negligible for method invocation, and very low for attribute access.

Overall, the resulting efficiency is very high, as there are less than 4321 sites, on a
total of 40919 (i.e. 11%) that are not implemented in the most efficient way, i.e. SST
for attributes and static calls for methods. Moreover, only the PH sites, which are
less than 939, represent an actual overhead with respect to the best code that could
be produced with SST under static compilation and global linking. This is negligible.

Recompilation costs. Table 4 presents the statistics of compilation and recom-
pilation costs and numbers. Table 4(a) presents a few statistics on the benchmark
program and the cost of a single compilation. These numbers are independent from
the random simulation, but they actually depend on whether the compilation is lazy
or eager, because of the slight aforementioned difference between the type analyses. In
the lazy case, there are 3863 methods that must be compiled, and 870 among them do
not require any recompilation because they do not include any invocation site (it can
be determined statically). There are, respectively, 36490 and 4429 invocation sites for
methods and attributes. Finally, we provided a rough estimation of the compilation
cost of a method, as an affine function of its site number x, of the ax+ b form, where
a and b are rather arbitrary coefficients. The absolute value is of course meaningless,
and it is only used for the sake of comparison of the tested recompilation protocols.

Table 4(b) presents the statistics of the number of methods that require at least one
full recompilation, along with the number of sites whose implementation is modified
during this full method recompilation. Hence, this site number does not include null-
invocation sites that are not recompiled but only filled. There are, on average, about
315 methods and 640 sites that are recompiled. Hence recompilation concerns less
than 12% of methods, and 3% of invocation sites. Not surprisingly, the eager protocol
involves many more recompilations.

Table 4(c) presents the statistics of the total number of recompilations, and the
overall recompilation cost. The number of method recompilations is slightly higher,
since different sites can trigger the recompilation of the same method, and it appears
that, on average, a recompiled method is recompiled less than twice. In contrast, re-
compiled sites are generally recompiled once, since the single two-step transition, from
monomorphic call to PH via SST, concerns very few sites. Finally, in the worst-case
of lazy protocols, the overall recompilation cost is about 63% of the initial compilation
cost. These numbers confirm that the numbers of recompiled methods and sites are
not representative of the actual recompilation cost, since long methods are more often
recompiled than short ones.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 19

Table 3 – Accurate protocol — Final implementation

(a) Method invocations, final implementation

protocol root other other SST PH total
total mono SST null mono min max min max

lazy 17562 16843 719 2 15428 2663 2664 834 835 36490
eager 16980 16262 718 3 14933 2591 2591 799 799 35306

(b) Attribute invocations, final implementation

protocol null SST PH PH in accessors total
min avg max min avg max min max

lazy 0 4325 4342.9 4343 86 86.1 104 8 10 4429
eager 0 4281 4283.0 4293 79 89.0 91 7 9 4372

Statistics on all invocation sites, when all classes are loaded and all live methods are compiled.
(a) Each line represents the statistics of the different kinds of call sites for a given protocol. These
statistics include both constant numbers, which do not depend on the class-load ordering, and random
numbers. The latter are depicted via minimum, average and maximum values. Average values are
omitted when variations are low, and minimum and maximum values can be equal by chance.
(b) Similar statistics for attribute accesses.

Table 4 – Accurate protocol — Compilation and recompilation costs

(a) Compilation numbers

protocol methods sites cost
all norcp meth attr all all norcp

lazy 3863 870 36490 4429 40919 145 2
eager 3801 865 35306 4372 39678 142 2

(b) Single-recompilation numbers

protocol methods sites cost
min avg max min avg max min avg max

lazy 215 315.0 478 427 639.7 1136 20 30.0 48
eager 326 476.6 645 493 886.0 1331 23 37.7 51

(c) Full-recompilation numbers

protocol methods sites cost
min avg max min avg max min avg max

lazy 277 409.9 741 427 643.5 1227 32 46.6 92
eager 422 633.3 874 507 908.5 1344 34 66.0 97

(a) The first column presents the numbers of methods that are compiled at least once, along with
the number of methods that do not require any recompilation (norcp), because they do not contain
any invocation site. The next column, depicts the number of invocation sites that are compiled at
least once. Finally, an estimation of the static-compilation cost is presented; it is almost negligible
for norcp methods.
(b) Statistics on the number of methods and sites that are recompiled at least once, and the corre-
sponding recompilation cost if recompiled methods were recompiled only once.
(c) Statistics on the number of recompilation of methods and sites, and the corresponding recompi-
lation cost.
(b) provides an estimate of the lower-bound of (c) in a lazier protocol.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


20 · Roland Ducournau and Floréal Morandat

First conclusions and comparisons. A general conclusion could be that these
lazy protocols produce very efficient code, but at the expense of non-negligible recom-
pilation cost when recompilation applies to each method as a whole.

In an actual compiler, recompilation would be lazy, and the comparison of lazy
and eager compilation in Table 4(c) shows that laziness represents marked improve-
ment. One might expect a similar gain with lazy recompilation. Table 4(b) displays
the recompilation cost if recompiled methods were recompiled only once. This lower
bound remains, however, about 33% of the initial compilation cost in the worst case.
In a real compiler, however, all lazy compilations and recompilations would also occur
later, just before the first invocation of the method considered. Hence, the recompi-
lation cost would be lower, but we cannot estimate to what extent, since we just have
an upper approximate of a lower bound.

Besides lazy/eager protocols, we must also compare the other parameters, namely
the rst, pic or r+p criterion for using SST implementation, and the case of root null-
invocations. In practice, r+p is slightly better than the rst variant, which is neatly
better than the pic variant, and there is no real difference in terms of recompilation
cost. Regarding root null-invocations, the code efficiency is clearly optimal with
the null variant, since all monomorphic root-invocations are compiled as static calls,
while the rcp and norcp variants do not recompile many of them. Moreover, the
resulting increase in recompilation cost is almost negligible. This explains why we
present only the r+p/r+p/null variant.

Partial recompilation and thunks. So far, the recompilation cost is marked be-
cause we consider only complete recompilation of methods. However, on average,
when a method is recompiled, less than two sites are modified. Therefore, partial re-
compilation is certainly a worthwhile alternative. Furthermore, it might be a solution
to the recompilation of a currently active method. A possible protocol could be as
follows:

1. the initial compilation of each method is as usual with the null variant; each
potentially recompilable site must record the address where its generated code
sequence begins, but this is also needed for null-invocations with full method
recompilation;

2. recompilation is managed at the site level and each kind of transition must be
examined (the first two were already used above);

• from null to monomorphic method invocation, the branch instruction is
modified;

• from null to SST attribute access, the SST sequence is completed with
the right attribute offset;

• from null or monomorphic method invocation to SST or PH, it involves
generating a thunk which consists of the SST or PH sequence, and modi-
fying the branch instruction;

• from SST to PH, a thunk is generated for PH, and a branch instruction
with a few nop instructions replaces the SST sequence;

• from a SST thunk to PH, a new thunk is generated and the branch in-
struction modified.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 21

Table 5 – Accurate protocol — Partial compilation and thunk number in the lazy protocol

(a) Thunk number

meth. thunk attr. thunk all thunk
min avg max min avg max min avg max
404 626.4 1106 0 13.3 68 427 639.7 1136

(b) Method invocations, first implementation

root mono root null root SST other null other mono other SST PH
min avg max min avg max min max min max min max min max min max
3593 15237.4 16703 207 1684.6 13357 489 678 1892 6537 9771 14391 1385 2421 409 821

(c) Attribute invocations, first implementation

null SST PH
min avg max min avg max min avg max

0 0.7 3 4325 4359.1 4417 12 69.2 104

(a) Statistics on thunk numbers.
(b-c) Statistics on all invocation sites after the initial compilation of each live method. The statistics
are similar to those in Table 3, except that some numbers now depend on the class-load ordering.

3. of course complete and partial recompilation can be merged; partial recompila-
tion is necessary when the recompiled method is active, and complete recompi-
lation might be preferred when several sites must be recompiled.

In order to estimate the cost of such a protocol, Table 5(a) presents the statistics
of invocation sites that call a thunk in the final implementation. Compared to the
number of sites that might require a thunk according to Table 3, the number of
thunks is very low. In the worst case, on 4303 invocation sites that are not optimised
in the final implementation (ie PH sites plus SST method invocations), only 1136
sites (i.e. 26%) require a thunk. This is a measure of the way thunks degrade the
runtime efficiency, and it can be considered as very low, since the unoptimised sites
represent only 11% of all sites. Moreover, thunks can be shared when they address
the same method/attribute; it might, however, degrade the efficiency of indirect-
branching prediction.

Tables 5(b) and 5(c) present the number of sites of each kind at the first com-
pilation of each live method. As they concern first compilation, these numbers do
not depend on other protocol parameters than lazy/eager. In contrast with the final-
implementation statistics (Table 3), they present marked deviation, especially for
null-invocations which are not taken into account in the recompilation cost when it
only involves filling the code sequence with the missing address/position. The recom-
pilation cost is measured by the number of thunks, whose deviation is rather low, and
null-invocations whose deviation is marked. However, thunks have a higher weight
than null-invocations. Furthermore, the high number of null-invocations is likely
an artifact of our random simulation, and they should be markedly lower in an actual
execution.

Overall, both the runtime overhead caused by thunks and the recompilation cost
would be quite negligible.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


22 · Roland Ducournau and Floréal Morandat

6 Related work, conclusions and prospects

In this article, we propose an abstract architecture of a virtual machine for full
multiple-inheritance languages with dynamic loading, in a static-typing setting.

6.1 Contribution

The contribution of this proposal covers several related topics: (i) an object repre-
sentation compatible with multiple inheritance and dynamic loading; (ii) the notion
of load-time compilation/recompilation protocol as a first-class object of study; (iii)
two specific recompilation protocols; (iv) a simulation methodology applied to these
protocols; finally, (v) a generic program abstraction mostly independent of specific
languages, which supports the simulation.

Object representation. The object representation proposed here is not new in
itself, but only in its use in dynamic-loading settings. It is based on perfect class
hashing [Duc08, DM11] and partially derived from the double compilation proposed
by [Mye95], which allows the compiler to use the SST code sequences when the con-
sidered class has a constant position. However, Myers’s double compilation was only
concerned with attribute access and the choice was done at link-time under the CWA,
whereas we extended his proposal to method invocation and applied it at load-time.
To our knowledge, the only constant-time alternative to perfect class hashing is the
subobject-based implementation of C++ (see for instance, [Lip96, Duc11]), but it is
quite intricate, and not really more efficient than perfect hashing [MD10]. While this
alternative represents a general background implementation compatible with dynamic
loading, we don’t see which shortcuts could optimise it. Another alternative involves
binary tree dispatch (BTD) [ZCC97], which gives excellent results in a global compila-
tion setting, especially when coupled with colouring for megamorphic sites [DMP09].
In a dynamic-loading setting, we expect with this technique a low improvement in
efficiency, with a marked increase in recompilation costs. However, in view of our low
simulation costs, an experiment would be worthwhile.

Finally, a common approach to method dispatch in a dynamic-loading setting is
polymorphic inline caches [HCU91]. While it is certainly a solution with dynamic
typing, we consider that static typing allows for more efficient techniques. Exper-
iments on cache-based techniques [DMP09] show that they improve only on very
inefficient underlying techniques. Moreover, inline caches are generally coupled with
dynamic profiling, and recompilation never ends since the cache depends on the run-
time behaviour. In contrast, our proposal does not require any dynamic profiling,
and recompilation ends when all live classes are loaded. In view of the simulation
presented here, we do not see any need for caches.

Compilation-protocol notion. All adaptive JIT compilers rely on some compi-
lation/recompilation protocols (see for instance, [AFG+05]), but these protocols gen-
erally remain hidden and are not evaluated as such. For instance, in [IKY+00], the
compilation techniques are described, but the protocol which decides which technique
must be applied is not explicit. Moreover, the evaluation addresses only the run-
time efficiency of the final code, not the recompilation cost. We consider that these
protocols must be made explicit and their costs compared.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 23

Specific compilation protocols. The protocols we propose concern only the three
basic object-oriented mechanisms, namely method invocation, attribute access and
subtype testing. Of course, adaptive compilers are not restricted to these features,
and they address many other specific hotspots which are, however, out of the current
focus of this work. The first protocol is close to Myers’s aforementioned proposal.
The only optimisation considered concerns self-invocations and the most optimised
invocation sites are compiled with SST. The optimisation is poor, but the protocol is
expected to be cheap.

The second protocol is markedly more ambitious, since it attempts to obtain the
most optimised implementation for each site, without any a priori consideration re-
garding recompilation costs. It is not clear to what extent the proposed protocols
are new in the details. For instance, the high frequency of monomorphic calls is
well known, as is the thunk/trampoline technique. However, this technique seems
to be used for lazy compilation, not for optimising method dispatch, and we did
not find any mention of it in the literature, e.g. in the survey of adaptive compiler
techniques [AFG+05]. In [IKY+00], a technique called code-patching is proposed for
optimising monomorphic calls, by inlining the callee. Then, when a recompilation
is needed, a precompiled code-patch replaces the inlined callee. Our thunk-based
proposal thus represents a limited form of code-patching, where the patch concerns,
in the worst-case, a predefined, short code sequence which is replaced with a jump
followed by a noop sequence. In most of the cases, the patch concerns a single in-
struction. Conversely, code-patching could be used instead of thunks, by generating
at the first compilation a noop sequence long enough for being fillable with the SST
or PH sequence. It would, however, markedly increase the code size.

A similar thunk-based technique was proposed in a static compilation and global-
linking setting [PD05], but real-size experiments were rather disappointing [DMP09].
Its use at load-time should not cause the same disappointment. Indeed, all invocations
that are not monomorphic (i.e. 4219) must be implemented via a thunk at link-time,
whereas only a very few (626) require a thunk at load-time. The overhead is even
higher for attribute access, since all require a PH implementation in this approach.

Using static type analysis at runtime is not new in itself, and CHA is generally
used for optimising monomorphic calls. We are, however, not aware of its use for op-
timising interface invocation, although a shortcut is possible when an interface-typed
invocation site is polymorphic but the considered interface is directly implemented
by a single class. More sophisticated type analyses are also possible, although their
runtime cost might be markedly higher than CHA. For instance, in [QH03], the dy-
namic use of XTA [TP00] is proposed. However, in contrast with our approach, this
proposal requires to extend method tables, so that method invocations require an
extra indirection.

Random simulation. The assessment of such recompilation protocols implies to
measure two kinds of parameters: (a) the runtime efficiency depends on the num-
ber of invocation sites for each kind of implementation; (b) the recompilation cost is
a function of the number of methods and invocation sites that must be recompiled.
These parameters must be computed during the execution of some benchmarks. How-
ever, developing a real runtime system for a language with multiple inheritance, in a
dynamic-loading setting, would be exceptionally difficult. We did similar experiments
in the context of static compilation [DMP09], and it involved a several-year work. In
contrast, the simulation presented here has been developed in a few weeks, although
on top of a simulation platform which is in progress for years.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


24 · Roland Ducournau and Floréal Morandat

Simulation is of course a common approach when physical experiments are im-
possible or too costly, and what is true for atomic bombs is also true for compilers,
mutatis mutandis. However, simulation is not only a way to save time and pains,
and randomness is an essential feature, too. First, it allows us to evaluate a family
of executions instead of a single one, as it provides a kind of envelope of all possible
executions of a given benchmark. Moreover, our previous study of perfect class hash-
ing shows that several efficiency parameters depend on the precise class-loading order
[DM11]. Our simulations confirm that both the efficiency and cost of these protocols
closely depend on the class-loading order, i.e. on the program execution. Therefore,
random simulation may well be the only way to evaluate their worst-case efficiency
and resulting scalability. In contrast, runtime tests often represent only best-case
assessments.

Generic program abstraction. Our benchmark consists of a real program, the
compiler of the Prm language, which was also used in previous studies [DMP09].
However, our simulation does not directly work on the Prm code, but instead, on a
language-independent abstraction which can be used for programs written in other
languages. We are currently working on languages like Java, Scala and C# (along
with Smalltalk in a different setting). The Prm benchmark and its syntax are
available on http://www.lirmm.fr/~ducour/Benchmarks/benchmarks.html.

6.2 Comparison with runtime assessment.

In [DMP09], we presented empirical assessment of various implementation techniques
and compilation schemes on the same Prm benchmark. In those experiments, the SST
implementation can be obtained with attribute and method colouring, under separate
compilation and global linking; it gives the MC-AC-S implementation (where MC, AC
and S stand, respectively, for method colouring, attribute colouring and separate com-
pilation) which serves as a reference in that article. Without recompilation, the object
representation proposed here corresponds to PHand-AS-D, where PHand stands for
perfect hashing with the bit-wise and hashing function, AS stands for accessor simula-
tion and D means static compilation in dynamic loading. Notwithstanding the careful
interpretation that those experiments require, especially regarding garbage collection
and processors, and under the assumption that invocation sites are uniformly exe-
cuted, one can extrapolate from those previous runtime experiments the expected
runtime behaviour of the final code produced by our recompilation protocols.

On a recent processor such as Intel Core2 T7200, the execution time of the non-
optimised PHand-AS-D version would be about 130% of the MC-AC-S reference time,
which is about 30s. This is roughly the price to pay for multiple inheritance in a static
compilation and dynamic loading setting.

The version resulting from the first recompilation protocol is midway between SST
and PH for method invocation, and very close to SST for attribute access. Therefore,
one can estimate its execution time as the mean of the MC-AC-S and PHand-AC-D
measures, and the latter is about 105% of the reference time. The optimising factor
of this protocol is thus about 0.8 (i.e. 102.5/130).

In contrast, the optimised version resulting from the second recompilation protocol
is close to the MC-AC-BTD0-G variant, where MC and AC stand respectively for
method and attribute colouring, BTD0 represents compilation of monomorphic calls
as static calls, and G means global static compilation. On the same processor, the

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.lirmm.fr/~ducour/Benchmarks/benchmarks.html
http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 25

optimised version would be about 90% of the reference time. Thus, the optimisation
factor of this recompilation protocol would be about 0.7 (i.e. 90/130).

6.3 The multiple-inheritance benchmark issue.

Of course a single benchmark is not enough, and this is the main limitation of this
work. This was already a criticism of our aforementioned study, but it was inherent
to the fact that we were developing a new language, and its compiler was the only sig-
nificant program written in this language [DMP09]. It is, however, arguable that this
benchmark is significant, fully object-oriented, and representative of object-oriented
programming. Indeed, the program statistics (see [DMP09]) present multiple similar-
ities with statistics reported in the literature for other programs and other languages,
regarding various parameters such as the proportion of monomorphic calls or the
average number of invocation sites per method.

However, the question of multiple-inheritance benchmarks is, in itself, an open
issue. Firstly, there is no object-oriented standard, especially in multiple inheritance.
Interested readers are referred to [DP11] for an in-depth discussion of this point.
Besides Prm, we could consider Scala, C++ and Eiffel programs. Each of them
has, however, a specific point of view regarding multiple inheritance. Moreover, while
Scala and Eiffel are pure object-oriented languages, as Prm or Java, this is not
the case with C++, because it provides the ability to program at the C level, and
because of the virtual keyword which allows programmers to shortcut late binding
by hands. To a lesser extent, this reserve applies to C#, too. Accordingly, the
statistics on monomorphic invocations presented in [SD12] markedly differ from those
presented here.

Using a language-independent program abstraction will allow us to overcome this
single benchmark issue, but extracting a complete abstraction from programs written
in different languages remains a heavy task. Contributors are welcome.

Again, a last argument is random simulation. It explores many more possibilities
than a single execution and it makes each benchmark far more representative than a
single execution.

6.4 Related work

As already mentioned, the optimisations that are commonly undertaken by adaptive
compilers are not restricted to object-representation shortcuts. Two of them deserve,
here, some discussion, namely code specialisation and method inlining. Code speciali-
sation involves duplicating a piece of code in order to optimise it in different contexts.
It can be done at the method level, e.g. customisation [CU89], or at a finer grain,
e.g. at the loop level as in [IKY+00]. When viewed as a source-to-source transfor-
mation, code specialisation is compatible with our approach, and it might improve
the shortcut frequency; for instance, systematic method customisation makes self
monomorphic.

Function inlining is one of the most common optimisation of programs, which
cannot be used without restriction with object-oriented programming because of late
binding. Therefore, it is generally used only for monomorphic calls. With dynamic
recompilations, inlining raises the same issues as object-representation shortcuts. Ac-
tually, shortcuts represent inlined code sequences, and the only difference is that
recompilation of an inlined method also affects the inlining methods. Anyway, the

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


26 · Roland Ducournau and Floréal Morandat

main issue involves recompiling a method which is currently active. The aforemen-
tioned code-patching approach has been proposed in this context. Besides, the notion
of preexistence has been proposed for deciding whether the current version can safely
continue, or not [DA99]. It could be used in our framework, as well.

Both code-specialisation and method-inlining optimisations may, however, result
in marked increase in code size, hence in compilation costs. Anyway, it would be easy
to evaluate their contribution in our framework, at least when the optimisation is
decided statically, i.e. without runtime profiling. Indeed, a distinctive feature of our
recompilation protocols is that they do not depend on dynamic considerations that
would require profiling. We use only static analyses, although they are performed
dynamically. This is partly due to our simulation framework which cannot assess
protocols based on runtime profiling, and partly due to our conviction that purely
static protocols will be more efficient. This conviction, however, requires a different
testbed to be verified.

6.5 Conclusions and prospects

Two protocol families have been specified and tested. The first one was a trial run,
and it optimises only self-invocations. It shows that the resulting efficiency should
be close to that of multiple-subtyping languages in a static compilation setting, from
both run-time and load-time standpoints, i.e. with SST for classes and PH for inter-
faces. However, while it gives good results on its target, it lets all other invocations be
implemented with PH, and they are too many. Therefore, it remains far less efficient
than separate static compilation coupled with link-time colouring [DMP09]. Further-
more it does not consider monomorphic calls. Overall, this first protocol does not
deserve to be further considered, at least for a pure object-oriented language where
all function invocations rely on late binding. In contrast, languages like C++ and C#
allow the programmer to specify (with the virtual keyword) whether a method must
be invoked statically, or via late binding. Therefore, in these languages, monomorphic
calls might be rare and this protocol interesting.

The results of the second protocol family are markedly more promising for pure
object-oriented languages. First, most invocation sites can be implemented in the
most efficient way, which specifically depends on each site. As a consequence, a ma-
jority of method invocations are treated as static calls. The recompilation cost is not
negligible with full-method recompilation, but partial recompilation and thunks pro-
vide high efficiency at a negligible cost. Overall, this protocol seems to be an excellent
tradeoff, since the resulting code and efficiency are very close to those of global com-
pilation, and the recompilation cost is negligible. Of course, these conclusions hold
for the tested benchmark and there remains to check that this protocol gives similar
results on a variety of benchmarks representative of different programming styles.

The prospects of this work are manifold. (i) The proposed protocols could be
extended to many other optimisations that are compatible with our simulation frame-
work and commonly carried out by adaptive compilers. For instance, method inlining
and method customisation are interesting candidates. Simulation would be a marked
improvement in the assessment of the benefits and costs of these optimisations. In
contrast, many other optimisations like loop optimisations could not be simulated in
our framework. (ii) We have to achieve the adaptation of our program abstraction
to other languages, starting with Scala, Java, Eiffel and C#. It will provide us
with a lot of significant benchmarks, and a stronger assessment of the proposed pro-
tocols. (iii) Our main goal is to design and develop a runtime system for a language

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 27

with multiple inheritance and dynamic loading, that would implement such recompi-
lation protocols. It should be an opportunity to complement our abstract assessment
with empirical time measurement of actual program executions. Like the Scala lan-
guage, these new language and runtime systems should provide some compatibility
with existing bytecodes, eg Jvm or .Net, in order to reuse existing libraries. (iv)
The recompilation protocols proposed here could be also of interest for existing Java
and .Net runtime systems. Indeed, the question of monomorphic calls is universal in
object-oriented programming, and interface-typed invocation site need shortcuts.

Finally, we are currently working on languages like Smalltalk, that are in single
inheritance and dynamic typing, for which we designed an object representation based
on a novel usage of perfect hashing, with a recompilation protocol similar to the
present one, apart from the lack of static types.

References

[ACFG01] B. Alpern, A. Cocchi, S. Fink, and D. Grove. Efficient implemen-
tation of Java interfaces: Invokeinterface considered harmless. In
Proc. OOPSLA’01, SIGPLAN Not. 36(10), pages 108–124. ACM, 2001.
doi:10.1145/504311.504291.

[AFG+05] M. Arnold, S.J. Fink, D. Grove, M. Hind, and P.F. Sweeney. A survey
of adaptive optimization in virtual machines. Proceedings of the IEEE,
93(2):449–466, Feb. 2005. doi:10.1109/JPROC.2004.840305.

[BS96] D.F. Bacon and P. Sweeney. Fast static analysis of C++ virtual func-
tion calls. In Proc. OOPSLA’96, SIGPLAN Not. 31(10), pages 324–341.
ACM, 1996. doi:10.1145/236338.236371.

[CHM97] Z. J. Czech, G. Havas, and B. S. Majewski. Perfect hashing. Theor.
Comput. Sci., 182(1-2):1–143, 1997. doi:10.1016/S0304-3975(96)
00146-6.

[Coh91] N. H. Cohen. Type-extension type tests can be performed in constant
time. ACM Trans. Program. Lang. Syst., 13(4):626–629, 1991. doi:
10.1145/59287.59293.

[CU89] C. Chambers and D. Ungar. Customization: Optimizing compiler tech-
nology for SELF, a dynamically-typed object-oriented language. In
Proc. OOPSLA’89, SIGPLAN Not. 24(10), pages 146–160. ACM, 1989.
doi:10.1145/74818.74831.

[DA99] D. Detlefs and O. Agesen. Inlining of virtual methods. In R. Guerraoui,
editor, Proc. ECOOP’99, LNCS 1628, pages 258–277. Springer, 1999.
doi:10.1007/3-540-48743-3_12.

[DGC95] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In W. Olthoff, editor,
Proc. ECOOP’95, LNCS 952, pages 77–101. Springer, 1995. doi:10.
1007/3-540-49538-X_5.

[Dij82] E. W. Dijkstra. On the role of scientific thought. In Selected Writings on
Computing: A Personal Perspective, page 60–66. Springer-Verlag, 1982.

[DM11] R. Ducournau and F. Morandat. Perfect class hashing and numbering
for object-oriented implementation. Softw. Pract. Exper., 41(6):661–694,
2011. doi:10.1002/spe.1024.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1145/504311.504291
http://dx.doi.org/10.1109/JPROC.2004.840305
http://dx.doi.org/10.1145/236338.236371
http://dx.doi.org/10.1016/S0304-3975(96)00146-6
http://dx.doi.org/10.1016/S0304-3975(96)00146-6
http://dx.doi.org/10.1145/59287.59293
http://dx.doi.org/10.1145/59287.59293
http://dx.doi.org/10.1145/74818.74831
http://dx.doi.org/10.1007/3-540-48743-3_12
http://dx.doi.org/10.1007/3-540-49538-X_5
http://dx.doi.org/10.1007/3-540-49538-X_5
http://dx.doi.org/10.1002/spe.1024
http://dx.doi.org/10.5381/jot.2012.11.3.a6


28 · Roland Ducournau and Floréal Morandat

[DMP09] R. Ducournau, F. Morandat, and J. Privat. Empirical assessment of
object-oriented implementations with multiple inheritance and static
typing. In Gary T. Leavens, editor, Proc. OOPSLA’09, SIGPLAN Not.
44(10), pages 41–60. ACM, 2009. doi:10.1145/1639949.1640093.

[DP11] R. Ducournau and J. Privat. Metamodeling semantics of multiple in-
heritance. Science of Computer Programming, 76(7):555–586, 2011.
doi:10.1016/j.scico.2010.10.006.

[Dri01] K. Driesen. Efficient Polymorphic Calls. Kluwer Academic Publisher,
2001.

[Duc08] R. Ducournau. Perfect hashing as an almost perfect subtype test. ACM
Trans. Program. Lang. Syst., 30(6):1–56, 2008. doi:10.1145/1391956.
1391960.

[Duc11] R. Ducournau. Implementing statically typed object-oriented pro-
gramming languages. ACM Comp. Surv., 43(4), 2011. doi:10.1145/
1922649.1922655.

[FQ03] S. J. Fink and F. Qian. Design, implementation and evaluation of adap-
tive recompilation with on-stack replacement. In Proc. CGO’03, pages
241–252. IEEE Computer Society, 2003. doi:10.1109/CGO.2003.
1191549.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JAVA Language Speci-
fication. Addison-Wesley, third edition, 2005.

[HCU91] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In P. America,
editor, Proc. ECOOP’91, LNCS 512, pages 21–38. Springer, 1991. doi:
10.1007/BFb0057013.

[IKY+00] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A
study of devirtualization techniques for a Java just-in-time compiler. In
Proc. ACM OOPSLA ’00, pages 294–310, 2000. doi:10.1145/353171.
353191.

[Lip96] S. B. Lippman. Inside the C++ Object Model. Addison-Wesley, New
York, 1996.

[MD10] F. Morandat and R. Ducournau. Empirical assessment of C++-like im-
plementations for multiple inheritance. In Proc. ICOOOLPS Workshop,
pages 7–11. ACM, 2010. doi:10.1145/1639949.1640093.

[Mic01] Microsoft. C# Language specifications, v0.28. Technical report, Mi-
crosoft Corporation, 2001.

[Mye95] A. Myers. Bidirectional object layout for separate compilation. In Proc.
OOPSLA’95, SIGPLAN Not. 30(10), pages 124–139. ACM, 1995. doi:
10.1145/217839.217849.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala, A
comprehensive step-by-step guide. Artima, 2008.

[PD05] J. Privat and R. Ducournau. Link-time static analysis for efficient
separate compilation of object-oriented languages. In ACM Work-
shop on Prog. Anal. Soft. Tools Engin. (PASTE’05), pages 20–27, 2005.
doi:10.1145/1108792.1108799.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1145/1639949.1640093
http://dx.doi.org/10.1016/j.scico.2010.10.006
http://dx.doi.org/10.1145/1391956.1391960
http://dx.doi.org/10.1145/1391956.1391960
http://dx.doi.org/10.1145/1922649.1922655
http://dx.doi.org/10.1145/1922649.1922655
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1145/353171.353191
http://dx.doi.org/10.1145/353171.353191
http://dx.doi.org/10.1145/1639949.1640093
http://dx.doi.org/10.1145/217839.217849
http://dx.doi.org/10.1145/217839.217849
http://dx.doi.org/10.1145/1108792.1108799
http://dx.doi.org/10.5381/jot.2012.11.3.a6


Full multiple-inheritance virtual machine · 29

[QH03] F. Qian and L. Hendren. Towards dynamic interprocedural analysis in
JVMs. Sable Technical Report 2003–5, McGill University, 2003.

[SD12] O. Sallenave and R. Ducournau. Efficient compilation of .NET programs
for embedded systems. Journal of Object Technology, 11:27, 2012. doi:
10.5381/jot.2012.11.1.a2.

[Shi91] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, 1991.

[SKT07] E. Steiner, A. Krall, and C. Thalinger. Adaptive inlining and on-stack
replacement in the Cacao virtual machine. In Proc. PPPJ ’07, pages
221–226. ACM, 2007. doi:10.1145/1294325.1294356.

[TDB+06] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder, and P. Leroy,
editors. Ada 2005 Reference Manual: Language and Standard Libraries.
LNCS 4348. Springer, 2006.

[TP00] F. Tip and J. Palsberg. Scalable propagation-based call graph construc-
tion algorithms. In Proc. OOPSLA ’00, pages 281–293. ACM, 2000.
doi:10.1145/353171.353190.

[ZCC97] O. Zendra, D. Colnet, and S. Collin. Efficient dynamic dispatch with-
out virtual function tables: The SmallEiffel compiler. In Proc. OOP-
SLA’97, SIGPLAN Not. 32(10), pages 125–141. ACM, 1997. doi:
10.1145/263700.263728.

[ZG03] Y. Zibin and J. Gil. Two-dimensional bi-directional object layout. In
L. Cardelli, editor, Proc. ECOOP’2003, LNCS 2743, pages 329–350.
Springer, 2003. doi:10.1007/978-3-540-45070-2_15.

About the authors

Roland Ducournau is Professor of Computer Science at the Uni-
versity of Montpellier. In the late 80s, while with Sema Group, he
designed and developed the YAFOOL language, based on frames
and prototypes and dedicated to knowledge based systems. His
research topic focuses on class specialization and inheritance, es-
pecially multiple inheritance. His recent work is dedicated to the
design and assessment of scalable constant-time techniques for im-

plementing object-oriented languages. Contact him at roland.ducournau@lirmm.fr,
or visit http://www.lirmm.fr/~ducour.

Floréal Morandat defended his PhD thesis in Montpellier in
2011. His thesis presents a systematic assesment of various imple-
mentation techniques and compilation schemes for object-oriented
programming, based on a testbed formed by the PRM compiler.
He is currently post-doctorant at Purdue University. Contact
him at fmoranda@purdue.edu, or visit http://www.lirmm.fr/
~morandat.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2
http://dx.doi.org/10.5381/jot.2012.11.1.a2
http://dx.doi.org/10.1145/1294325.1294356
http://dx.doi.org/10.1145/353171.353190
http://dx.doi.org/10.1145/263700.263728
http://dx.doi.org/10.1145/263700.263728
http://dx.doi.org/10.1007/978-3-540-45070-2_15
mailto:roland.ducournau@lirmm.fr
http://www.lirmm.fr/~ducour
mailto:fmoranda@purdue.edu
http://www.lirmm.fr/~morandat
http://www.lirmm.fr/~morandat
http://dx.doi.org/10.5381/jot.2012.11.3.a6

	Introduction
	Object-oriented implementation
	Single-subtyping implementation
	Perfect hashing
	Accessor simulation (AS)

	Virtual machine specifications
	Object representation.
	Compiling an invocation site
	Compilation schedule

	Protocol for optimising self-invocations
	Protocols and algorithms
	Evaluation

	More accurate recompilation-protocol family
	Protocol
	Simulation
	Evaluation

	Related work, conclusions and prospects
	Contribution
	Comparison with runtime assessment.
	The multiple-inheritance benchmark issue.
	Related work
	Conclusions and prospects

	Bibliography
	About the authors

