
HAL Id: lirmm-00670950
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00670950

Submitted on 16 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextual Sequential Pattern Mining
Julien Rabatel, Sandra Bringay, Pascal Poncelet

To cite this version:
Julien Rabatel, Sandra Bringay, Pascal Poncelet. Contextual Sequential Pattern Mining.
DDDM: Domain Driven Data Mining, Dec 2010, Sydney, NSW, Australia. pp.981-988,
�10.1109/ICDMW.2010.182�. �lirmm-00670950�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00670950
https://hal.archives-ouvertes.fr

Contextual Sequential Pattern Mining

Julien Rabatel∗†, Sandra Bringay†‡, Pascal Poncelet†
∗Tecnalia

Cap Omega, Rd-Pt B. Franklin, 34960 Montpellier Cedex 2, France
†LIRMM (CNRS UMR 5506), Univ. Montpellier 2
161 rue Ada, 34095 Montpellier Cedex 5, France

Email: name@lirmm.fr
‡Dpt MIAp, Univ. Montpellier 3

Route de Mende, 34199 Montpellier Cedex 5, France

Abstract—Traditional sequential patterns do not take into
account additional contextual information since patterns ex-
tracted from data are usually general. By considering the fact
that a pattern is associated with one specific context the decision
expert can then adapt his strategy considering the type of
customers. In this paper we propose to mine more precise
patterns of the form “young users buy products A and B then
product C, while old users do not follow this same behavior”. By
highlighting relevant properties of such contexts, we show how
contextual sequential patterns can be extracted by mining the
database in a concise manner. We conduct our experimental
evaluation on real-world data and demonstrate performance
issues.

Keywords-Sequential Patterns; Contextual Data;

I. INTRODUCTION

Sequential pattern mining is an important problem widely
addressed by the data mining community, with a very large
field of applications such as user behavior, sensor data, DNA
analysis, web log analysis, etc. Sequential pattern mining
aims to extract sets of items commonly associated over
time. For instance, when studying purchases of customers
in a supermarket, a sequential pattern could be “many
customers buy products A and B, then buy later on product
C”. However, data are very often provided with additional
information about purchases, such as for example customer’s
age or gender. Traditional sequential patterns do not take
into account this information since the patterns extracted
from data are usually general. Having a better knowledge
about the particularity of objects supporting a given behavior
can help decision making. By considering the fact that a
pattern is associated with one specific context the decision
expert can then adapt his strategy considering the type of
customers. For instance, it could be interesting for experts
to obtain much more informative knowledge by considering
contextual data, in order to answer questions such as “What
are behaviors specific to young customers?”, “Is there a
certain behavior specific to young women?” or “What is
the most general behavior, not depending on contextual
information?”. In this paper we propose to mine more
precise patterns of the form “young users buy products A

and B then product C, while old users do not follow this
same behavior”.

Mining such contextual sequential patterns is a difficult
task. Different contexts should be mined independently
and then tested if frequent patterns are shared with other
contexts. Some contexts can be more or less general. For
instance, the context corresponding to young customers is
more general than the context corresponding to young male
customers. Hence, all (more or less general) contexts have to
be considered (taking into consideration the generalization
/ specialization hierarchies), and the mining process can be
very time consuming.

The problem of finding more or less general contexts
where one sequential pattern is specific, while handling a
context hierarchy, has not been investigated yet. Indeed,
multidimensional sequential pattern mining [9] only partially
addresses this problem since patterns specific to a particular
context will not appear if this context is not in itself frequent.
Another related field, the mining of emergent patterns [6]
only considers sequences that are specific to one class
regardless of the level of generalization / specialization.

The contribution of the paper is twofold. We first formally
describe contexts. Then, by highlighting relevant properties
of such contexts, we show how contextual sequential pat-
terns can be extracted by only mining the whole database
once. We conduct experimental evaluation on real-world data
and demonstrate performance issues.

The rest of the paper is organized as follows. In Section II,
we define the “traditional” pattern mining problem and show
why it is not sufficient for handling contextual data. Section
III presents how contextual information can be considered in
order to extract relevant patterns. Algorithms are described
in Section IV. In Section V experiments are presented. We
conclude and discuss future work perspectives in Section
VII.

II. MOTIVATION

In this section, we describe the traditional sequential
pattern mining problem and highlight the need for a more
specific way to handle contextual information.

A. Traditional Sequential Pattern Mining Problem
Sequential patterns were introduced in [2] and can be

considered as an extension of the concept of frequent itemset
[1] by handling timestamps associated to items. Sequential
pattern mining aims to extract sets of items commonly
associated over time. In the “basket market” concern, a
sequential pattern can be for example: “40 % of the cus-
tomers buy a television, then buy later on a DVD player”.
The problem of mining all sequential patterns in a sequence
database is defined as follows.

Let X be a set of distinct items. An itemset is a subset of
items, denoted by I = (i1i2...in), i.e., for 1 ≤ j ≤ n, ij ∈
X . A sequence is an ordered list of itemsets. A sequence s
is denoted by 〈I1I2...Ik〉, where Ii ⊆ X for 1 ≤ i ≤ n.

Let s = 〈I1I2...Im〉 and s′ = 〈I ′1I ′2...I ′n〉 two sequences.
The sequence s is a subsequence of s′, denoted by s v s′,
if ∃i1, i2, ...im with 1 ≤ i1 < i2 < ... < im ≤ n such that
I1 ⊆ I ′i1 , I2 ⊆ I ′i2 , ..., Im ⊆ I ′im . If s v s′ we also say that
s′ supports s.

A sequence database B is a relation R(ID, S), where
an element id ∈ dom(ID) is a sequence identifier, and
dom(S) is a set of sequences. The size of B, denoted by
|B|, is the number of tuples in B. A tuple ≺ id, s � is
said to support a sequence α if α is a subsequence of s,
i.e., α v s. The support of a sequence α in the sequence
database B is the number of tuples in B supporting α, i.e.,
supB(α) = |{≺ id, s �| (≺ id, s �∈ B) ∧ (α v s)}|.
Given a real minSupp such that 0 < minSupp ≤ 1
as the minimum support threshold, a sequence α is a
frequent in the sequence database B if the proportion of
tuples in B supporting α in B is greater than minSupp, i.e.,
supB(α) ≥ minSupp · |B|. Sequence α is also said to be a
sequential pattern in B.

id Age Gender Sequence
s1 young male 〈(ad)(b)〉
s2 young male 〈(ab)(b)〉
s3 young male 〈(a)(a)(b)〉
s4 young male 〈(c)(a)(bc)〉
s5 young male 〈(d)(ab)(bcd)〉
s6 young female 〈(b)(a)〉
s7 young female 〈(a)(b)(a)〉
s8 young female 〈(d)(a)(bc)〉
s9 old male 〈(ab)(a)(bd)〉
s10 old male 〈(bcd)〉
s11 old male 〈(bd)(a)〉
s12 old female 〈(e)(bcd)(a)〉
s13 old female 〈(bde)〉
s14 old female 〈(b)(a)(e)〉

Table I
A CONTEXTUAL SEQUENCE DATABASE.

Example 1: Table I shows a sequence database describing
the purchases of customers in a shop. The first column stands
for the identifier of each sequence given in the last column.
a, b, c, d, e are products. Column Gender and Age are extra

information about sequences. They are not considered in
traditional sequential pattern mining. The size of B is |B| =
14.

The first sequence in Table I describes the sequence of
purchases made by a customer identified by s1: he has
purchased products a and d, then product b later on.

In the following, we set the minimum support minSup to
0.5. Let consider the sequence s = 〈(a)(b)〉. Its support in
B is supB(s) = 8. So, supB(s) ≥ minSupp · |B|, and s is
a sequential pattern in B.

B. Why Taking into Account Additional Information?
Considering the previous example, available contextual

information are the age and the gender of customers, and
a context could be young female or old customer (for any
gender).

Traditional sequential pattern mining (SPM) within such
data comes with the following drawbacks.

1. Some context-dependent behaviors are wrongly
considered as general, although they are fre-
quent in only one subcategory of customers.
For instance, s = 〈(a)(b)〉 is a sequential pattern
in B. However, by studying carefully the sequence
database, we can easily see that it is much more
specific to young persons. Indeed, 7 of 8 young
customers support this sequence, while only 1 of
6 old customers follow this pattern.

2. Some context-dependent behaviors are not con-
sidered, although they are frequent in a sub-
category of customers. For instance, s′ = 〈(bd)〉
which is not a sequential pattern in B (6 customers
of 14 support it) is however supported by 5 of 6
old customers.

Previous cases show that traditional SPM is very sensitive
to the repartition of data sequences according to contexts.
Sequences s and s′ are both highly related to the age of
customers. However, s is frequent and s′ is not, because
of the larger proportion of young customers in the whole
sequence database.

By studying the sequence database more carefully, we can
highlight several interesting cases:
• 〈(b)〉 is a sequential pattern in B and does not depend

on contextual information, as it occurs in all data
sequences.

• 〈(bd)〉 is not a sequential pattern in B but is specific to
old customers, without considering their gender. This
sequence depends only on the age of customers.

• 〈(e)〉 is not a sequential pattern in B but is specific
to old female customers, as it occurs in 3 of 3 such
customers, and never occurs in the rest of the sequence
database. It depends both on the age and the gender of
customers.

These examples show that traditional SPM is not relevant
when behaviors depend on contextual information associated

with data sequences. We describe in the following how
contextual information are formally handled to extract much
more informative knowledge through contextual sequential
pattern mining.

III. CONTEXTUAL SEQUENTIAL PATTERNS

Here we propose a formal description of contextual data,
and define the notion of contextual sequential pattern.

A. Contextual Sequence Database

We define a contextual sequence database CB as a
relation R(ID, S,D1, ...Dn), where dom(S) is a set of
sequences and dom(Di) for 1 ≤ i ≤ n is the set of
all possible values for Di. D1, D2, ... Dn are called the
contextual dimensions in CB. A tuple u ∈ CB is denoted by
≺ id, s, d1, ..., dn�.

Values on contextual dimensions can be organized as
hierarchies. For 1 ≤ i ≤ n, dom(Di) can be extended to
H(Di) where ⊆Di

is a partial order on H(Di) such that
dom(Di) is the set of minimal elements of H(Di).

H(Age) H(Gender)

Figure 1. Hierarchies on Age and Gender dimensions.

Example 2: We consider hierarchies on dimensions Age
and Gender given in Figure 1. In this example, H(Age) =
dom(Age) ∪ {∗}, where young ⊆Age ∗ and old ⊆Age

∗. Similarly, H(Gender) = dom(Gender) ∪ {∗}, where
male ⊆Age ∗ and female ⊆Age ∗.

A context c in CB is denoted by [d1, ...dn] where di ∈
H(Di). If for 1 ≤ i ≤ n, di ∈ dom(Di), then c is called a
minimal context.

Let c1 and c2 be two contexts in CB, such that c1 =
[d11, ..., d

1
n] and c2 = [d21, ...d

2
n]. Then c1 ≥ c2 iff ∀i with

1 ≤ i ≤ n, d1i ⊇i d
2
i . Moreover, if ∃i with 1 ≤ i ≤ n such

that d1i ⊃i d
2
i , then c1 > c2. In this case, c1 is said then to

be more general than c2, and c2 is more specific than c1.

Example 3: In data from Table I, there are four minimal
contexts: [y,m], [y, f], [o,m], and [o, f], where y and o re-
spectively stand for young and old, and m and f respectively
stand for male and female. In addition, context [∗, ∗] is more
general than [y, ∗]. On the other hand, [y, ∗] and [∗,m] are
incomparable.

The set of all contexts associated with the partial order
> is called the context hierarchy and denoted by H. Given
two contexts c1 and c2 such that c1 > c2, c1 is called an
ancestor of c2, and c2 is a descendant of c1.

For instance, Figure 2 shows a visual representation of H
for data provided in Table I and hierarchies previously given
for dimensions Age and Gender.

Figure 2. The context hierarchy.

We can now consider the tuples of CB according to
contexts defined above. Let u =≺ id, s, d1, ...dn� be a tuple
in CB. The context c such that c = [d1, ...dn] is called the
context of u. Note that the context of u is minimal, since ∀i
with 1 ≤ i ≤ n, di ∈ dom(Di).

Let u be a tuple in CB and c the context of u. For all
contexts c′ such that c′ ≥ c we say that c′ contains u (and
u is contained by c′).

Let c = [d1, ...dn] be a context (not necessarily minimal)
in CB, and U the set of tuples contained by c. The sequence
database of c, denoted by B(c), is the set of tuples ≺ id, s�,
such that ∃u ∈ U with u =≺ id, s, d1, ...dn�. We define the
size of a context c, denoted by |c|, as the size of its sequence
database, i.e., |c| = |B(c)|.

Example 4: In Table I, let consider contexts [o,m] and
[o, ∗]. Then B([o,m]) = {s9, s10, s11} and B([o, ∗]) =
{s9, s10, s11, s12, s13, s14}.

Let c be a context in CB. The decomposition of c in
CB, denoted by decomp(c), is the nonempty set of minimal
contexts c′ such that c ≥ c′.

Example 5: The decomposition of context [y, ∗] is
{[y,m], [y, f]}.

Lemma 1: Let c be a context, decomp(c) = {c1, c2, ..., cn}
its decomposition and s a sequence. Given the definition of
the sequence database of c, the decomposition of c has the
following properties:

1)
n⋂

i=1

B(ci) = ∅;

2)
n⋃

i=1

B(ci) = B(c);

3) |c| = |B(c)| =
n∑

i=1

|ci|.

B. Contextual Sequential Patterns

We saw in the previous section how a contextual sequence
database can be divided into several sequence databases
according to contexts. Now, let us consider the definition

of frequent sequences in such contexts. Let c be a context,
and s a sequence.

Definition 1: s is a frequent in c iff s is frequent in B(c),
i.e., if supB(c)(s) ≥ minSup · |c|. We also say that s is
a sequential pattern in c. In the following, we will denote
supB(c)(s) as supc(s).

As seen in Section II, we are interested in mining sequen-
tial patterns being specific to a particular context, according
to the following definition.

Definition 2: Sequence s is specific to c (c-specific) iff:
1) s is frequent in c.
2) s is general in c, i.e., s is frequent in all c’s descen-

dants in the context hierarchy. In this case, s is said
to be c-general.

3) there does not exist a context c′, such that c′ > c and
s is c′-general.

Definition 3: A contextual sequential pattern is a couple
(c, s), such that s is c-specific. Such a contextual sequential
pattern is said to be generated by s.

sequence [y,m] [y, f] [o,m] [o, f]
〈(a)〉 5/5 3/3 2/3 2/3
〈(b)〉 5/5 3/3 3/3 3/3
〈(d)〉 2/5 1/3 3/3 2/3
〈(e)〉 0/5 0/3 0/3 3/3
〈(a)(b)〉 5/5 2/3 1/3 0/3
〈(b)(a)〉 0/5 2/3 2/3 2/3
〈(bd)〉 1/5 0/3 3/3 2/3

Table II
SEQUENTIAL PATTERNS IN MINIMAL CONTEXTS OF CB.

Example 6: Table II shows, from the contextual sequence
database provided in Table I, the sequences being frequent
in at least one minimal context as well as their support for
each minimal context (of the form supc(s)/|B(c)|). When the
support is displayed in bold, then the sequence is frequent
in the corresponding minimal context.

For instance, s = 〈(a)(b)〉 is frequent in [y, ∗] (it is
supported by 7 young customers of 8) and in its descendants
[y,m] and [y, f], i.e., s is [y, ∗]-general. Moreover, s is
not [∗, ∗]-general, as there exist descendants of [∗, ∗] where
s is not frequent. In consequence, s is [y, ∗]-specific, and
([y, ∗], 〈(a)(b)〉) is a contextual sequential pattern.

C. Contextual Sequential Pattern Mining

The problem of mining contextual sequential patterns can
be defined as extracting all contextual sequential patterns
from a contextual sequence database. Relying on previous
definitions, a naive idea would be to mine independently
each context, in order to obtain corresponding sequential
patterns, and then filter those patterns being specific to this
context. However, this would imply the two following issues.

• Contexts can be very numerous. Indeed, the number

of contexts is
n∏

i=1

|H(Di)|, where D1, ...Dn are the

contextual dimensions. In comparison, the number of

minimal contexts is
n∏

i=1

|dom(Di)|.
• Filtering sequential patterns having the right prop-

erties is very costly as it requires to test for each mined
sequential pattern its presence in a large number of
contexts, in order to verify whether it is specific to one
context or not.

In order to overcome these drawbacks, we propose to mine
the whole sequence database in a single process to extract
contextual sequential patterns. To this end, we exploit the
properties of the context hierarchy in order to show that
contextual sequential patterns can be extracted by mining
only frequent sequences in minimal contexts, and generating
the corresponding contextual sequential patterns.

According to the properties of the decomposition of a
context, we can deduce the following lemma.

Lemma 2: Let c be a context, and decomp(c) =
{c1, c2, ..., cn}. If ∀i ∈ 1, ..., n, s is frequent in ci (resp. is
not frequent), then s is frequent in c (resp. is not frequent).

In addition, s is frequent (resp. is not frequent) in all the
descendants of c.

Proof: For each ci such that i ∈ {1, ..n}, supci(s) ≥

minSup · |ci|. This means
k∑

i=1

supci(s) ≥
n∑

i=1

minSup · |ci|.

However,
n∑

i=1

minSup · |ci| = minSup ·
n∑

i=1

|ci| = minSup ·

|c|. Since
k∑

i=1

supci(s) = supc(s) it follows supc(s) ≥

minSup · |c|.
Let c′ be a context such that c > c′. Then decomp(c′) ⊆

decomp(c), i.e., s is a frequent in all contexts in decomp(c′).
Applying the previous result we obtain s a frequent sequence
in c′.

A similar reasoning is applied if s is unfrequent in all
contexts of the decomposition of c. �

Lemma 2 is a key result as it allows us to redefine the
notion of c-specificity, using only the decomposition of c
and F the set of minimal contexts where s is frequent.

Lemma 3: The sequence s is c-specific iff:
• decomp(c) ⊆ F ,
• there does not exist a context c′ such that c′ > c and
decomp(c′) ⊆ F .

Proof: If decomp(c) ⊆ F , then s is frequent in each element
of decomp(c). According to lemma 2, it follows that s
is frequent in c and its descendants, i.e., s is c-general.
Moreover, there does not exist a context c′ such that c′ > c
and decomp(c′) ⊆ F . In consequence ∀c′ such that c′ > c,
s is not c′-general. In conclusion, s is c-specific. �

The set of contexts that meet the properties given in
lemma 3 is called the coverage of F in the context hierarchy,
and denoted by cov(F). We show in Section IV how the
coverage of F can be easily computed to generate the
contextual sequential patterns.

Example 7: Let s = 〈(b)(a)〉 be a sequence and
Fs = {[y, f], [o,m], [o, f]} the set of minimal contexts
where s is frequent. Then, cov(Fs) = {[∗, f], [o, ∗]}, i.e.,
([∗, f], 〈(b)(a)〉) and ([o, ∗], 〈(b)(a)〉) are the contextual
sequential patterns generated by 〈(b)(a)〉.

Theorem 1: Let S be the set of sequences that are frequent
in at least one minimal context. The set of contextual
sequential patterns in a contextual sequence database CB
is the set of all couples (c, s), where s ∈ S, and (c, s) is
generated by s.

Proof: This result is an immediate consequence of the
definition of a c-specific sequence. Indeed, if s is unfrequent
in each minimal context, i.e., F = ∅, then it is unfrequent
in each element of the context hierarchy (see Lemma 2 and
there does not exist a context c such that s is c-specific. In
conclusion, a contextual sequential pattern is necessarily
generated by a sequence being frequent in at least one
minimal context. �

Theorem 1 is essential in the contextual SPM problem.
Indeed, they ensure that contextual sequential patterns in a
contextual sequence database can be deduced from the set of
sequences that are frequent in at least one minimal context.
Hence, it is not required to mine sequential patterns in each
context of the hierarchy. In addition, we show in Section IV
that extracting sequences that are sequential patterns in at
least one minimal context can be performed in one single
process, instead of mining each minimal context separately.

IV. ALGORITHM

In this section, we describe the Contextual Sequential
Pattern Mining algorithm. This algorithm is based on Pre-
fixSpan [8], an efficient method to solve the traditional
sequential pattern mining problem.

A. PrefixSpan

The principle of PrefixSpan is explained in the following
example, by describing the process of mining sequential
patterns in the sequence database B from Table I, with a
minimum support threshold set to 0.5.

Example 8: A scan of the sequence database extracts all
the sequential patterns of the form 〈(i)〉, where i is an item.
Hence, PrefixSpan finds 〈(a)〉, 〈(b)〉, 〈(d)〉, since 〈(c)〉 and
〈(e)〉 are not frequent.

In consequence, the whole set of sequential patterns in B
can be partitioned into subsets, each subset being the set of
sequential patterns having 〈(i)〉 as a prefix. These subsets

can be extracted by mining the projected databases for each
prefix, i.e., for each 〈(i)〉. A projected database contains, for
each data sequence, its subsequence containing all frequent
items following the first occurrence of the given prefix. Such
a subsequence is called a postfix. If the first item x of the
postfix is in the same itemset as the last item of the prefix,
the posfix is denoted by 〈(x...)...〉.

Then, 〈(a)〉 is outputted, and the 〈(a)〉-projected database
is built, containing 11 postfixes: 〈(d)(b)〉, 〈(b)(b)〉,
〈(a)(b)〉, 〈(bc)〉, etc. Then items i, such that either 〈(bi)〉 or
〈(b)(i)〉 is frequent, are extracted from the 〈(a)〉-projected
database. b is such an item, as 〈(a)(b)〉 is a sequential
pattern. So, the process continues by outputting 〈(a)(b)〉,
and using it as a new prefix.

B. Contextual Sequential Pattern Mining

In this section, we present the algorithm for extracting
contextual sequential patterns. Our approach can be decom-
posed into two main steps.

1) From a contextual sequence database, we extract all
sequences that are frequent in at least one minimal
context. As explained in Section III, all contextual
sequential patterns can be generated from this set of
sequences;

2) From the set of sequences obtained in Step 1, we
generate the set of contextual sequential patterns.

The above steps are explained in Algorithm 1, which
makes use of Algorithm 2. From a contextual sequence
database CB, a minimum support threshold minSup and a
context hierarchy H, the algorithm outputs the contextual
sequential patterns from CB.

1) Extracting sequential patterns in minimal contexts:
The first objective of the algorithm is to extract frequent
sequences in minimal contexts, and for each of them, the cor-
responding set of minimal contexts where it is frequent. This
part is performed using the principle of PrefixSpan: from
a prefix sequence s, the algorithm builds the s-projected
database (method BuildProjectedDatabase), and scans
the projected database (method ScanDB) to find items i that
can be assembled to form a new sequential pattern s′. Then,
the s′-projected database is built and the process continues.
Since the general idea is close to PrefixSpan, we do not detail
the ScanDB and BuildProjectedDatabase methods, but only
focus on the differences with the original ones.
• ScanDB(B): the main difference consists of the fact

that the support of i is computed in each minimal
context of the s-projected database. Hence, this method
returns the set of couples (i,Fi), where i is an item and
Fi is the nonempty set of minimal contexts where i is
frequent.

• BuildProjectedDatabase(s,Fi, CB): the construc-
tion of the s-projected database differs from PrefixSpan
since only sequences contained in contexts of Fi are
considered for constructing the new sequence database.

In other words, if s is not frequent in a context c, then
sequences contained in c will not be considered for
generating new sequential patterns.

Algorithm 1 Contextual SPM
Require: CB a contextual sequence database, minSup a minimum

support threshold, H a context hierarchy.
Call subContextualSPM(〈〉, CB,H);

Subroutine subContextualSPM(s, CB,H)
Require: s a sequence; CB the s-projected database, H a context

hierarchy.
I = ScanDB(CB);
for all couple (i,Fi) in I do

s′ is the sequence such that i is appended to s;

/* Contextual sequential pattern generation*/
C = Coverage(Fi,H)
for all c in C do

output (c, s′);
end for

CB′ = BuildProjectedDatabase(s′,Fi, CB);
call subContextualSPM(s′, CB′,H);

end for

2) Generating contextual sequential patterns: A sequen-
tial pattern s is extracted with the set of minimal contexts
where it is frequent. From this set, we generate the con-
textual sequential patterns generated by s, i.e., the set of
(c, s) where c is a context such that s is c-specific. This is
performed by Coverage(F ,H) described in Algorithm 2.
This algorithm is based on a bottom-up scan of the context
hierarchy (i.e., from the leaves to the root), in order to collect
the most general contexts being subsets of F , i.e., where a
sequence is specific (see Section III).

Algorithm 2 Coverage(F , H)
Require: F a set of minimal contexts, H a context hierarchy.

Let C = ∅
Let L be the set of leaves in H
for all l ∈ L do

C = C ∪ subCoverage(l,F ,H);
end for
return C the coverage of F in H

Subroutine subCoverage(c, F , H)
Require: c a context, F a set of minimal contexts, H a context

hierarchy.
Let C = ∅
if decomp(c) ⊆ F then

for all p parent of c in H do
C = C ∪ subCoverage(p,F ,H)

end for
if C = ∅ then

C = {c}
end if

end if
return C

V. EXPERIMENTS

A. Data Description

The experiments were conducted on about 100000 product
reviews from amazon.com, in order to study the vocabulary
used according to reviews. This dataset is a subset of the one
used in [7]. Reviews have been lemmatized1 and grammati-
cally filtered in order to remove uninteresting terms, by using
the tree tagger tool [11]. Preserved terms are verbs (apart
from modal verbs and the verb “be”), nouns, adjectives and
adverbs. Then the sequence database is constructed using
the following principles:
• each review is a data sequence,
• each sentence is an itemset (i.e., the order of the words

in a sentence is not considered),
• each word is an item.
In such sequence database, a sequential pattern could

be p = 〈(eat mushroom)(hospital)〉, which means that
frequently a sentence containing eat and mushroom and one
of the following sentences containing hospital co-occur.

Contextual dimensions: Each review is associated with
contextual dimensions:
• the product type (Books, DVD, Music or Video)
• the rating (originally a numeric value r between 0 and

5). For these experiments, r has been translated into
qualitative values: bad (if 0 ≤ r < 2), neutral (if 2 ≤
r ≤ 3), and good (if 3 < r ≤ 5)

• the proportion of helpful feedbacks2, i.e., 0-25%, 25-
50%, 50-75% or 75-100%.

We define hierarchies on contextual dimensions as de-
scribed in Figure 3. The number of contexts in the context hi-
erarchy is |H(product)|×|H(rating)|×|H(feedbacks)| =
6 × 5 × 7 = 210, the number of minimal contexts is
dom(product) × dom(rating) × dom(feedbacks) = 4 ×
3× 4 = 48.

Note that the domain of values of contextual dimensions
has been enriched with new values. For instance, hierarchy
H(rating) contains an element Extreme, that will allow
us to extract patterns being specific to extreme opinions
(positive or negative).

B. Results and Discussion

All experiments have been performed on a system
equipped with a 3GHz CPU and 16GB of main memory.
The methods are implemented by extending a Java imple-
mentation of PrefixSpan-based algorithm described in [5].

Figure 4-A shows the scalability of our approach as
the runtime increases almost linearly with the database
size evolving from 12400 tuples to 99834 (i.e., the whole

1i.e., the different forms of a word have been grouped together as a single
item. For instance, the different forms of the verb to be (is, are, was, being,
etc.) are all returned as be.

2On amazon.com each reader can post a feedback on a review.

H(product) H(rating) H(feedbacks)
Figure 3. Hierarchies on contextual dimensions.

A B

Figure 4. A - Execution time according to the size of CB (with minSupp = 0.3). B - Number of contextual sequential patterns according to minSupp.

A B

Figure 5. A - Global execution time according to minSupp (in seconds). B - Execution time for generating contextual sequential patterns according to
minSupp (in milliseconds).

dataset). To construct the sampled databases, a certain num-
ber of tuples have been selected within each minimal context
from the original contextual sequence database, in order to
keep the same repartition of tuples over the contexts.

Figure 5-A shows the runtime in seconds for the whole
process (i.e., mine the sequential patterns in 48 minimal
contexts and generate the contextual sequential patterns in
the whole hierarchy) while Figure 5-B shows the runtime in
milliseconds for only generating the contextual sequential
patterns. Once sequential patterns in minimal contexts are
extracted, the time for the generation of contextual sequential
patterns is negligible. For instance, it stands for only 0.026%
of the global runtime when minSup = 0.15. This shows the
efficiency of our approach since, by comparison, the naive
approach described in Section III would require to mine 210
contexts (instead of 48) to obtain the contextual sequential
patterns.

Let us consider again the values enriching the hierar-
chies on contextual dimensions (e.g., value Extreme in

H(rating)). Such values do not change the number of
minimal contexts in the hierarchy, and therefore only affect
the generation of contextual sequential patterns. However,
as shown in Figure 5-B, the generation time is negligible
in the global execution time. This means that adding such
elements in the context hierarchy has a negligible impact on
the execution time, despite the fact that it provides much
more informative patterns.

Amongst 2193 contextual sequential patterns extracted
with minSup = 0.15 (see Figure 4-B) only 13 are [∗, ∗, ∗]-
specific. This means that only 0.6% of extracted patterns do
not depend on the contextual dimensions hence highlighting
the need of taking into account contextual data for mining.

VI. RELATED WORK

Mining frequent sequences over contextual information
can be related to two important data mining problems. Let
us consider first the problem of mining multidimensional se-
quential patterns, i.e., extracting sequential patterns dealing

with several dimensions. The first proposition is described
in [9], where authors are handling data which are equivalent
to contextual data in our approach. Indeed, each sequence
is associated with some contextual dimensions. However,
while multidimensional sequential patterns take into ac-
count contextual dimensions, they have the same draw-
backs than traditional sequential pattern mining, described
in Section III. For instance, a sequential pattern would be
([y, ∗], 〈(ab)〉) standing for sequence 〈(ab)〉 associated with
context [y, ∗] is frequent in the whole sequence database.
Hence, sequential patterns can be extracted only if they
are frequent in the whole database, and patterns specific
to a particular context will not appear if this context is not
frequent. Newest approaches have considered more complex
multidimensional sequences databases, e.g., where items are
also described over several dimensions [10], and allowing to
take into consideration taxonomies for those dimensions, but
the previous about taking into account only frequent contexts
still hold.

Second, the problem of mining emergent patterns can also
be seen as related to contextual sequential pattern mining.
Introduced in [4], the mining of emerging patterns aims to
extract the itemsets that are discriminant to one class in a set
of itemset databases. An emerging pattern is then a pattern
whose support is significantly higher in a class than in others.
Such patterns can then for instance be exploited to build
classifiers. For instance, given two data classes A and B,
emergent patterns in B would be itemsets whose support is
significantly higher in B than in A. Few approaches are deal-
ing with sequential data to find emerging sequences. [3] in-
troduces the concept of emergent substrings, which is a very
specific type of sequences. [6] proposes to mine emergent
subsequences, but here sequences are sequences of items
(i.e., itemsets can not be considered). Globally, although
emergent sequences and contextual sequential patterns have
interests in mining sequences that are more frequent in
one sequence database than in others, there are important
differences. The search space for emerging sequences is
much smaller than contextual sequential patterns. Indeed,
contextual sequential pattern mining does not only aim to
mine sequences that are specific to one class, but to extract
all sequential patterns in a whole sequence database, and
describe if there exist some more or less general contexts
where one sequential pattern is specific by handling a context
hierarchy.

VII. CONCLUSION

In this paper we have motivated and introduced contextual
sequential pattern mining. We formally defined the problem
and unveiled set-theoretical properties that allow database
mining in a concise manner. Immediate future work include
testing other real world data sets and an efficiency com-
parison with a naive approach not benefiting from above
mentioned properties.

Our work can be extended in a number of ways. First
we want to explore how using our results can be applied
for classification. The context hierarchy can serve to pro-
vide a confidence score depending on the generalization /
specialization level of the context hierarchy. For instance, if
the confidence score to belong to a given context is below
a certain threshold, then a more general context could be
more appropriate. Second, we plan to use our results for
prediction purposes.

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining association
rules between sets of items in large databases. SIGMOD Rec.,
22(2), 1993.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In
P. S. Yu and A. S. P. Chen, editors, Eleventh International
Conference on Data Engineering. IEEE Computer Society
Press, 1995.

[3] S. Chan, B. Kao, C. Yip, and M. Tang. Mining emerging
substrings. In Database Systems for Advanced Applica-
tions, 2003.(DASFAA 2003). Proceedings. Eighth Interna-
tional Conference on, pages 119–126, 2003.

[4] G. Dong and J. Li. Efficient mining of emerging patterns:
discovering trends and differences. In KDD ’99: Proceed-
ings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 43–52, New
York, NY, USA, 1999. ACM.

[5] P. Fournier-Viger, R. Nkambou, and E. Nguifo. A knowledge
discovery framework for learning task models from user
interactions in intelligent tutoring systems. MICAI 2008:
Advances in Artificial Intelligence, pages 765–778, 2008.

[6] X. Ji, J. Bailey, and G. Dong. Mining minimal distinguishing
subsequence patterns with gap constraints. Knowledge and
Information Systems, 11(3):259–286, 2007.

[7] N. Jindal and B. Liu. Opinion spam and analysis. In
Proceedings of the international conference on Web search
and web data mining, pages 219–230. ACM, 2008.

[8] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Mining sequential patterns by pattern-
growth: the PrefixSpan approach. IEEE Transactions on
Knowledge and Data Engineering, 16(11):1424–1440, 2004.

[9] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal.
Multi-dimensional sequential pattern mining. In Proceedings
of the tenth international conference on Information and
knowledge management, page 88. ACM, 2001.

[10] M. Plantevit, Y. W. Choong, A. Laurent, D. Laurent, and
M. Teisseire. M2SP: Mining sequential patterns among
several dimensions. In A. Jorge, L. Torgo, P. Brazdil,
R. Camacho, and J. Gama, editors, PKDD, volume 3721 of
Lecture Notes in Computer Science, pages 205–216. Springer,
2005.

[11] H. Schmid. Probabilistic part-of-speech tagging using deci-
sion trees. In Proceedings of International Conference on
New Methods in Language Processing, volume 12. Citeseer,
1994.

