R. Agrawal, T. Imieli´nskiimieli´nski, and E. A. Swami, Mining association rules between sets of items in large databases, SIGMOD Rec, vol.22, issue.2, 1993.

R. Agrawal, R. Et, and . Srikant, Mining sequential patterns, Proceedings of the Eleventh International Conference on Data Engineering, 1995.
DOI : 10.1109/ICDE.1995.380415

U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra et al., Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceedings of the National Academy of Sciences, vol.96, issue.12, p.6745, 1999.
DOI : 10.1073/pnas.96.12.6745

E. Dougherty, Small Sample Issues for Microarray-Based Classification, Comparative and Functional Genomics, vol.16, issue.1, pp.28-34, 2001.
DOI : 10.1002/cfg.62

URL : http://doi.org/10.1002/cfg.62

S. Jaillet, A. Laurent, and E. M. Teisseire, Sequential Patterns for Text Categorization, International Journal of Intelligent Data Analysis, vol.10, issue.3, 2006.
URL : https://hal.archives-ouvertes.fr/lirmm-00135010

J. Rabatel, S. Bringay, and E. P. Poncelet, Contextual Sequential Pattern Mining, 2010 IEEE International Conference on Data Mining Workshops, 2010.
DOI : 10.1109/ICDMW.2010.182

URL : https://hal.archives-ouvertes.fr/lirmm-00670950

A. Rosenwald, G. Wright, W. Chan, J. Connors, E. Campo et al., The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma, New England Journal of Medicine, vol.346, issue.25, 1937.
DOI : 10.1056/NEJMoa012914

P. Salle, S. Bringay, and E. M. Teisseire, Mining Discriminant Sequential Patterns for Aging Brain, Proceedings of the 12th Conference on Artificial Intelligence in Medicine : Artificial Intelligence in Medicine, pp.365-369, 2009.
DOI : 10.1073/pnas.091062498

URL : https://hal.archives-ouvertes.fr/lirmm-00395128

R. Simon, K. Et, and . Dobbin, Experimental design of DNA microarray experiments, Biotechniques, vol.34, pp.16-21, 2003.

C. Sotiriou, S. Neo, L. Mcshane, E. Korn, P. Long et al., Breast cancer classification and prognosis based on gene expression profiles from a population-based study, Proceedings of the National Academy of Sciences of the United States of America, p.10393, 2003.
DOI : 10.1073/pnas.1732912100

C. Sotiriou, P. Wirapati, S. Loi, A. Harris, S. Fox et al., Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis, JNCI Journal of the National Cancer Institute, vol.98, issue.4, p.262, 2006.
DOI : 10.1093/jnci/djj052

M. Van-de-vijver, Y. He, L. Van-'t-veer, H. Dai, A. Hart et al., A Gene-Expression Signature as a Predictor of Survival in Breast Cancer, New England Journal of Medicine, vol.347, issue.25, 1999.
DOI : 10.1056/NEJMoa021967

B. Zupan, J. Demsar, M. Kattan, J. Beck, and E. I. Bratko, Machine learning for survival analysis: a case study on recurrence of prostate cancer, Artificial Intelligence in Medicine, vol.20, issue.1, pp.59-75, 2000.
DOI : 10.1016/S0933-3657(00)00053-1