N
N

N

HAL

open science

A Generic Querying Algorithm for Greedy Sets of
Existential Rules

Michaél Thomazo, Jean-Francois Baget, Marie-Laure Mugnier, Sebastian
Rudolph

» To cite this version:

Michaél Thomazo, Jean-Francois Baget, Marie-Laure Mugnier, Sebastian Rudolph. A Generic Query-
ing Algorithm for Greedy Sets of Existential Rules. RR-12006, 2012. lirmm-00675560

HAL Id: lirmm-00675560
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00675560

Submitted on 1 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00675560
https://hal.archives-ouvertes.fr

A Generic Querying Algorithm for Greedy Sets of Existential Rules

Michaél Thomazo
Univ. Montpellier 2
France
thomazo@lirmm. fr

Jean-Francois Baget
INRIA
France
baget@lirmm. fr

Abstract

Answering queries in information systems that allow for ex-
pressive inferencing is currently a field of intense research.
This problem is often referred to as ontology-based data ac-
cess (OBDA). We focus on conjunctive query entailment un-
der logical rules known as tuple-generating dependencies,
existential rules or Datalog+/-. One of the most expressive
decidable classes of existential rules known today is that of
greedy bounded treewidth sets (gbts). We propose an algo-
rithm for this class, which is worst-case optimal for data and
combined complexities, with or without bound on the pred-
icate arity. A beneficial feature of this algorithm is that it
allows for separation between offline and online processing
steps: the knowledge base can be compiled independently
from queries, which are evaluated against the compiled form.
Moreover, very simple adaptations of the algorithm lead to
worst-case-optimal complexities for specific subclasses of
gbts which have lower complexities, such as guarded rules.

Introduction

Answering conjunctive queries (CQs) in information sys-
tems that allow for expressive inferencing is currently a field
of intense research, receiving input from several other do-
mains. Instances of this problem have been addressed in dif-
ferent research domains, most notably the field of Seman-
tic Web technologies where the problem is referred to as
ontology-based data access (OBDA), and the database area,
where the interest focusses on CQ entailment under rule-
based deduction formalisms such as tuple-generating depen-
dencies (TGDs) (Beeri and Vardi 1984) or Datalog+/- (Cali,
Gottlob, and Kifer 2008; Cali, Gottlob, and Lukasiewicz
2009), also referred to as existential rules (Baget et al. 2009;
2011). The body and the head of these rules are arbi-
trary conjunctions of atoms (without function symbols) and
variables occurring in the head but not in the body are
existentially quantified. While entailment with existential
rules is undecidable in general, lately, a plethora of log-
ical fragments has been identified for which CQ answer-
ing is decidable, alongside with tight complexity bounds
for most of them. One of the most expressive decidable
class of existential rules known today is that of greedy

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Marie-Laure Mugnier Sebastian Rudolph
Univ. Montpellier 2 KIT
France Germany

mugnier@lirmm. fr rudolph@kit.edu

bounded treewidth sets (gbts) (Baget et al. 2011), which sub-
sumes well-known formalisms such as (plain) Datalog and
guarded rules, as well as generalizations of these (Cali, Got-
tlob, and Kifer 2008; Baget, Leclere, and Mugnier 2010;
Krotzsch and Rudolph 2011). These fragments cover the
core of lightweight description logics dedicated to query
answering, namely DL-Lite (Calvanese et al. 2007), £L
(Baader, Brandt, and Lutz 2005; Lutz, Toman, and Wolter
2009) — which are the basis of the tractable fragments of
the OWL Web Ontology Language — and more broadly the
family of Horn description logics (Krétzsch, Rudolph, and
Hitzler 2007; Ortiz, Rudolph, and Simkus 201 1.

While the decidability and complexity landscape of these
formalisms is clearing up, few attempts have been made
to find algorithms for CQ answering that are of more than
just theoretical interest — notable exceptions being OWL
tractable fragments and very simple Datalog+/- classes. Be-
yond these lightweight formalisms, CQ answering is usually
considered a problem too hard to be practically solvable.

We undertake a step in this direction by devising an
algorithm that sharply improves over an earlier proposal
(Baget et al. 2011) by (i) allowing a more direct computa-
tion without the use of oracles thus being conceptually sim-
pler and much easier to understand, (ii) allowing beneficial
separation between offline and online processing steps, as
the knowledge base can be compiled independently from
queries, which are evaluated against the compiled form, and
(iii) exhibiting worst-case-optimal complexity for gbts, as
well as for specific subclasses of gbts which have lower
complexities, by very simple adaptations of the algorithm.

Moreover, our endeavor is not without theoretical merit.
First, our algorithm improves over the earlier one in terms
of combined complexity from 3EXPTIME to 2EXPTIME,
thereby establishing a novel upper bound and yielding
that deciding CQ entailment under gbts rules is in fact
2EXPTIME-complete. Second, we establish a novel tight
bound for query complexity since we prove that CQ entail-
ment under gbts rules is NP-complete for query complexity.

Outline

We give here an informal high-level description of the al-
gorithm. Due to the existential variables in rule heads, a
forward chaining mechanism (like for instance the so-called
chase in databases) does not halt in general. However, for

gbts rules, each sequence of rule applications gives rise to a
so-called derivation tree, which is a decomposition tree of
the derived set of facts; moreover, this tree can be built in a
greedy way: each rule application produces a new tree node
(called a bag), which contains the atoms created by the rule
application, such that the derived set of facts is the union of
all bag atoms from this tree.

The algorithm proceeds in two steps: first, it computes
a finite tree, called a (full) blocked tree, which finitely rep-
resents all possible derivation trees; second, it evaluates a
query against this blocked tree. Building a blocked tree re-
lies on two notions:

e bag patterns: each bag is associated with a pattern, which
encodes all ways of mapping a (subset of a) rule body to
the current facts, while using some terms from this bag.
It follows that a rule is applicable to the current facts iff
one of the bag patterns contains its rule body. Then, the
forward chaining can be performed “on the bag-level” by
forgetting about the current facts and considering solely
the derivation tree decorated with patterns. At each step,
patterns are maintained and kept up-to-date by a propa-
gation procedure based on a join operation between the
patterns of adjacent bags.

e an equivalence relation on bags: thanks to patterns, an
equivalence relation can be defined on bags, so that two
bags are equivalent if and only if the “same” derivation
subtrees can be built under them. The algorithm devel-
ops only one node per equivalence class, the other be-
ing blocked (note however that equivalence classes evolve
during the computation, thus a blocked node can later be-
come unblocked, and vice-versa). This tree grows until
no new rule application can be performed to unblocked
bags: the full blocked tree is then obtained.

The evaluation of a conjunctive query against a blocked
tree cannot be performed by a simple homomorphism test.
Instead, we define the notion of a x-homomorphism, which
can be seen as a homomorphism to an “unfolding” or “devel-
opment” of this blocked tree. As the length of the developed
paths is bounded with an exponent that depends only on the
rule set (more precisely, the exponent is the maximal num-
ber of variables shared by the body and the head of a rule),
checking if there is a *-homomorphism from a conjunctive
query to a blocked tree is time polynomial in data complex-
ity and nondeterministically time polynomial in query com-
plexity.

Preliminaries

An atom is of the form p(t1,...,t;) where p is a predicate
with arity k, and the ¢; are terms, i.e. variables or constants.
A conjunct Cx] is a finite conjunction of atoms, where x is
the set of variables occurring in C. A fact is the existential
closure of a conjunct.! A Boolean conjunctive query (CQ)
has the same form as a fact, thus we identify both notions.
We also represent conjuncts, facts and CQs as sets of atoms.
Given an atom or a set of atoms A, vars(A) and terms(A)

'Note that hereby we generalize the classical notion of a fact in
order to take existential variables into account.

denote its set of variables and of terms, respectively. Given
conjuncts F' and), a homomorphism 7w from @ to F' is a
substitution of vars(Q) by terms of F' s.t. w(Q) C F (we
say that 7 maps @) to F). First-order semantic entailment is
denoted by |=. It is well-known that, given two facts F' and
Q, F | Q iff there is a homomorphism from @ to F.

Definition 1 (Existential Rule) An existential rule (or sim-
ply rule when not ambiguous) is a formula R =
VxVy(B[x,y| — (3zH]y,z])) where B = body(R) and
H = head(R) are conjuncts, called the body and the head
of R, respectively. The frontier of R, denoted fr(R), is the
set of variables vars(B) N vars(H) =y.

We can now omit quantifiers since there is no ambiguity.

Definition 2 (Application of a Rule) A rule R is applica-
ble to a fact F if there is a homomorphism 7 from body(R)
to F'; the result of the application of R to F' w.r.t. 7 is a fact
a(F, R,7) = F U n%(head(R)) where 75 is a substi-
tution of head(R), that replaces each x € fr(R) with w(x),
and each other variable with a “fresh” variable, i.e., not
introduced before. As o only depends on |z (g) (the re-
striction of T to fr(R)), we also write a(F, R, 7| (R)-

Example 1 Let F' = {r(a,b),r(c,d),p(d)} and R, =
r(z,y) — r(y,z). There are two applications of Ry
to F, respectively by hy = {(z,a),(y,b)} and hy =
{(J?,C),(y,d)}. Let Fy = OZ(F, R17h1> = FU {T(b7 Zl)}
Let Fy = Ck(Fl,Rl,hg) =nu {T’(d7 22)}

Definition 3 (R-derivation) Let F' be a fact, and R be a
set of rules. An R-derivation (from F to F}) is a finite se-
quence (Fy = F),(Ro, 7o, F1),...,(Ri—1, 7)1, F}) s.t.
forall0 < i <k, R; € R and 7; is a homomorphism from
body(R;) to F; s.t. Fii1 = a(F;, R;,m;). When only the
successive facts are needed, we note (Fy = F), Fi, ..., Fy.

Theorem 1 (Soundness and Completeness) Let F' and Q)
be two facts, and R be a set of rules. Then F,R = Q iff
there exists an R-derivation from F to Fy, s.t. Fy, = Q.

A knowledge base (KB) K = (F,R) is composed of a
finite set of facts (seen as a single fact) F' and a finite set
of rules R. W.l.o.g. we assume that the rules have pairwise
disjoint sets of variables. We denote by C the set of constants
occurring in (F, R) and by T (called the “initial terms”) the
set vars(F) UC, i.e., Ty includes not only the terms from
F' but also the constants occurring in rules. The Boolean
CQ entailment problem is the following: given a KB K =
(F,R) and a Boolean CQ @, does F, R = @ hold ?

A fact can naturally be seen as a hypergraph whose nodes
are the terms in the fact and whose hyperedges encode
atoms. The primal graph (also called Gaifman graph) of
this hypergraph has the same set of nodes and there is an
edge between two nodes if they belong to the same hyper-
edge. The treewidth of a fact is defined as the treewidth?
of its associated primal graph. Given a fact F;, a deriva-
tion S to F; or a tree decomposition 7 of F;, we note
atoms(S) = atoms(T) = F;.

2We assume that the reader is familiar with this notion, see e. g.
(Robertson and Seymour 1984).

A set of rules R is called a bounded treewidth set (bts) if
for any fact F’ there exists an integer b such that, for any fact
F’ that can be R-derived from F, treewidth(F') < b.

The proof of decidability of CQ entailment with bts re-
lies on a result by Courcelle (Courcelle 1990), that states
that classes of first-order logic having the bounded treewidth
model property are decidable. It does not (at least not di-
rectly) provide a halting algorithm. Very recently, a subclass
of bts has been defined, namely greedy bts (gbts), which is
equipped with a halting algorithm (Baget et al. 2011). A
derivation is said to be greedy if, for every rule application
in this derivation, all the frontier variables not being mapped
to the initial terms T} are jointly mapped to terms added by
a single previous rule application. This allows to build a tree
decomposition of a derived fact in a greedy way.

Definition 4 (Greedy Derivation) An ‘R-derivation
Fy, ..., Fy is said to be greedy if, for all i with 0 < i < k,
there is j < i s.t. m(fi(R;)) C vars(A;) U To, where
A= wjafe(head(Rj)) (any j < i can be chosen if fr(R;) is
mapped to Tp).

Definition 5 (Greedy bounded-treewidth set of rules (gbts))

R is said to be a greedy bounded-treewidth set (gbts) if (for
any fact F') any R-derivation (from F) is greedy.

From now on, we restrict our focus to gbts and we assume
that R denotes a gbts rule set.

Any greedy derivation gives rise to a derivation tree,
whose root corresponds to the initial fact, and each other
node corresponds to a rule application of the derivation. To
each node is assigned a set of terms and a set of atoms. Note
that the set of terms assigned to the root is 7y, i.e., it in-
cludes the constants that may be brought by rule applica-
tions. Moreover, Tj is included in the set of terms of all
nodes. This ensures that the derivation tree is a decomposi-
tion tree of the associated derived fact.

Definition 6 (Derivation Tree) Let S = (Fy = F),..., Fy
be a greedy derivation. The derivation tree as-
signed to S, notation DT(S), is a rooted tree T =
(B, terms, atoms, U, \), where B = {By,..., By} is a set
of nodes, also called bags, U is the set of edges, terms and
atoms are bag labeling mappings, and X is an edge labeling
mapping, such that:

1. the root of T is By with terms(By) = Ty and
atoms(By) = atoms(F).

2. For 0 < 1 < k, let R;_1 be the rule applied according
to homomorphism w;_1 to produce F;; then terms(B;) =
vars(A;_1) U Ty and atoms(B;) = atoms(A;_1), where
A1 = Wfiff (head(R;—_1)). There is an edge between B;
and the node B; s.t. j is the smallest integer for which
mi—1(fr(Ri—1)) C terms(By) (since the derivation is
greedy, such a Bj always exists); this edge is labeled by
(Ri—1, Tie1lpr(ri_1))-

The derivation tree is a decomposition tree of F}, whose
width is bounded by |Ty| + maxger (|vars(head(R))|).

Example 1 (contd.) See also Figure 1. We build DT(S) for
S = (Fo = F),(Rl,hl,Fﬁ,(Rl,hg,FQ). Let By be
the root of the DT(S). (Ry,h1) yields a bag By child

B0
rab) ried) p@) Cabed)
(RI, b) (R1,d)

B1 B2

r(b.zl) @ r(d,22)
(R1, z1) (R1, z2)

B3 B4

1z1,23) @ 1(22,24)

Figure 1: Derivation tree of Example 1. Only the image of
the single frontier variable from R; is mentioned in edge
labels.

of Bo, with atoms(B1) = {r(b,z1)} and terms(B;) =
{a,b,c,d, z1}. (R1,ho) yields a bag By with atoms(Bs) =
{r(d,z2)} and terms(B2) = {a,b,c,d,z2}. fr(R1) =
{y} and ha(y) = d, which is both in terms(By) and
terms(B1), Bs is thus added as a child of the highest bag,
i.e., Bo. Ry can be applied again, with homomorphisms
hs = {(.If,b), (yazl)} and hy = {(%‘,d), (vaQ)}’ which
leads to create two bags, Bs and By, under B, and Bs re-
spectively. Clearly, this can be repeated indefinitely.

Given a rooted tree 7 and a node B in T, the subtree
rooted in B contains all descendants of B in 7, including
B. A prefix subtree of arooted tree 7 is obtained from 7 by
deleting some of its subtrees (i.e., turning some nodes of 7~
into leafs). Given derivations S and S/, if S’ = S.S"” (i.e.,
the sequence S is a prefix of the sequence S’) then DT'(.S)
is a prefix subtree of DT'(S"), but the converse is false.

It is not known wether gbts is recognizable,3 however
large and easily recognizable subsets of gbts are known.
These subsets are based on the guardedness notion, inspired
from guarded logic (Andréka, Németi, and van Benthem
1998), and/or on properties of rule frontiers. A rule R is
said to be guarded if there is an atom a in its body, called
a guard, that contains all the variables from the body, i.e.,
vars(a) = vars(body(R)) (Cali, Gottlob, and Kifer 2008).
Since any rule application necessarily maps a guard to the
atom of a bag from the derivation tree, it follows that all
derivations with guarded rules are greedy. The guardedness
constraint can be relaxed in two ways: first, by noticing that
variables necessarily mapped to initial terms do not need
to be guarded, we obtain weakly guarded rules (Cali, Got-
tlob, and Kifer 2008); second, by noticing that only frontier
variables need to be guarded, we obtain frontier-guarded
rules (Baget, Lecleére, and Mugnier 2010); finally, both re-
laxations can be combined, which yields weakly frontier-
guarded rules (Baget, Leclere, and Mugnier 2010). More
precisely, a rule R is weakly guarded (wg) if there is an a €
body(R) that contains all gffected variables from body(R);
a variable is said to be affected if it occurs only in affected
predicate positions, which are positions that may contain a
new variable generated by forward chaining (this notion re-
quires to consider the whole set of rules). The reader is re-
ferred to (Fagin et al. 2005) for a syntactic characterization

3We conjecture that it is.

Class w unbounded | w bounded | Data Comp.
gbts 2EXPTIME * 2EXPTIME | EXPTIME
wfg, jfg | 2EXPTIME 2EXPTIME | EXPTIME
frl, fg 2EXPTIME 2EXPTIME | PTIME

wg 2EXPTIME EXPTIME EXPTIME
guarded | 2EXPTIME EXPTIME PTIME

*: 2EXPTIME membership proven in this paper

Table 1: Combined and Data complexity for gbts classes.
Upper and lower bounds coincide.

of affected variables. A rule R is frontier-guarded (fg) if
there is an a € body(R) with vars(fr(R)) C vars(a). Note
that frontier-guarded rules generalize another class based
on a simple property of the frontier: a rule R is frontier-
one (frl) if |fr(R)| = 1 (Baget et al. 2009). A rule R is
weakly-frontier guarded (wfg) if there is an a € body(R)
that contains all affected variables from fr(R). By refin-
ing the notion of an affected variable, w(f)g can be further
generalized into jointly-(frontier)-guarded (j-(f)g) (Krotzsch
and Rudolph 2011).

Table 1 summarizes the complexity results for the above
rule classes, in terms of combined complexity (i.e., w.r.t. the
joint size of F, R and (J), with unbounded or bounded pred-
icate arity (noted w), and of data complexity (i.e., w.r.t. the
size of F' only, while R and @ are assumed to be fixed).
Note that frontier-guarded rules are the largest known sub-
class of gbts that enjoys polynomial data complexity. That
the combined complexity for gbts with unbounded arity is in
2EXPTIME is a novel result.

Patterned Forward Chaining

This section focusses on bag patterns. We first show that
forward chaining can be performed by considering solely the
derivation tree endowed with bag patterns. Then we define
Jjoins on patterns in order to update them incrementally after
each rule application.

Definition 7 (Pattern) A pattern of a bag B is a set of pairs
(G,), where G is subset of a rule body and T is a partial
mapping from terms(G) to terms(B). G and 7 are possibly
empty.

For any derivation S, we obtain a patterned deriva-

tion tree, noted PDT(S), by enriching the derivation tree
DT'(S) assigning a pattern P(B) to each bag B of DT'(.S).

Definition 8 (Pattern soundness and completeness) Let
Fy, be a fact obtained via a derivation S and let B be a bag
in PDT(S). P(B) is said to be sound w.r.t. Fy, if for all
(G, m) € P(B), m is extendible to a homomorphism from G
to Fy,. P(B) is said to be complete w.r.t. Fy, (and R), if for
any R € R, any sbg C body(R) and any homomorphism
7 from sbg to Fy,, P(B) contains (sbr, "), where 7’ is the
restriction of m to the inverse image of terms(B). PDT(S)
is said to be sound and complete w.r.t. Fy, if for all its bags
B, P(B) is sound and complete w.r.t. Fy.

Provided that PDT(S) is sound and complete w.r.t. Fy,
a rule R is applicable to F}, iff there is a bag in PDT(S)

whose pattern contains a pair (body(R), —); then, the bag
created by a rule application (R, 7) on F}, has parent B; in
DT(S) iff B, is the bag in PDT(S) at the smallest depth
s.t. P(Bj) contains (body(R),7’), with the restrictions of
7’ and 7 to fr(R) being equal. Patterns are managed as
follows: (1) The pattern of By is the minimal sound and
complete pattern with respect to F'; (2) after each addition
of a bag B;, the patterns of all bags are updated to ensure the
soundness and completeness with respect to F;. It follows
that we can define a patterned derivation, where rule appli-
cability is checked on patterns, and the associated sound and
complete patterned derivation tree, which is isomorphic to
the derivation tree associated with the (regular) derivation.

Remember that our final goal is to avoid building the cur-
rent derived fact. We will now incrementally maintain sound
and complete patterns by a propagation mechanism on pat-
terns. This is where we need to consider patterns with sub-
sets of rule bodies and not just full rule bodies. We recall
that the rules have pairwise disjoint sets of variables.

Definition 9 (Elementary Join) Let By and By be two
bags, e; = (sbfl%,ﬂ'l) € P(B1) and es = (sbh,m) €
P(B3) where sby, and sb% are subsets of body(R) for some
rule R. Let V = vars(sbk) N vars(sb%). The (elementary)
join of ey with ey, noted J(ey, e2), is defined iff for all x €
V, m1(x) and 7o(x) are both defined and 1 (x) = mo(x).
Then J(e1,e2) = (sbr,), where sbr = sbk U sb% and
7 = m U wh, where 7l is the restriction of T to the inverse
image of terms(By) (i.e., the domain of 7}, is the set of terms
with image in terms(B1)).

Note that V' may be empty. The elementary join is not a
symmetrical operation since the range of the obtained map-
ping is included in terms(B).

Definition 10 (Join) Let By and By be two bags with re-
spective patterns Py and P,. The join of Py with P, de-
noted J(Py, Py), is the set of pairs J(e1,ez), where e; =
(sbh,m1) € P1, ea = (sbk,m2) € Pa, sby and sb% are
subsets of body(R) for some rule R.

Note that P, C J(P;, P») since each pair from P; can
be obtained by an elementary join with (@,0). Similarly,
J(Py, P2) contains all pairs (G, 7) obtained from (G, 72) €
P, by restricting 75 to the inverse image of terms(B).

If a pattern is sound w.r.t. F;_; then it is sound w.r.t. F;.
The following property follows from the definitions:

Property 2 If Py and P, are sound w.r.t. F; then J(Py, Py)
is sound w.r.t. F;.

We consider now the step from F;_; to F; in a (patterned)
derivation sequence: let B, be the created bag and B, be its
parent in PDT(S).

Definition 11 (Initial pattern) The initial pattern of B. is
the set of pairs (G,) s.t. G is a subset of a rule body and 7
is @ homomorphism from G to atoms(B.).

Property 3 (Soundness of initial pattern of B, w.r.t. F;)
The initial pattern of B is sound with respect to F;.

Property 4 (Completeness of J(P(B.), P(B,)) w.r.t. F;)
Let P(B,) be the initial pattern of B. and B,, be the parent

of B.. Assume that P(B,,) is complete w.rt. F;_1 and R.
Then J(P(B.), P(By)) is complete w.r.t. F.

Proof: Let 7 be a homomorphism from sbr C body(R)
to F;, for some rule R. We show that J(P(B.), P(B,))
contains (sbg, '), where 7’ is the restriction of 7 to the
inverse image of terms(B.). Let us partition sbg into b;_1,
the subset of atoms mapped by 7 to F;_1, and b; the other
atoms from sbr, which are necessarily mapped by 7 to
F;\ F;_1, ie., atoms(B,.). If b; is not empty, by definition
of the initial pattern, P(B.) contains (b;,7.), where 7.
is the restriction of 7 to terms(b;). If b;_; is not empty,
by hypothesis (completeness of P(B,) wrt. F;_1), P,
contains (b;_1,m,), where 7, is the restriction of 7, _,
to the inverse image of terms(B,). If b,_1 or b; is empty,
(sbr, ') belongs to J(P(B.), P(B,)) (Points 1 and 2 in
Def. 10). Otherwise, consider J((b;, 7¢), (bi—1,mp)): it is
equal to (sbg, ') (Point 3 in Def. 10). O

Property 5 (Completeness of join-based propagation)
Assume that PDT(S) is complete w.r.t. F;_y, and P(B.)
is computed by J(P;(B.), P(Bp)), where P;(B.) is the
initial pattern of B.. Let d(B) denote the distance of a
bag B to B. in PDT(S). Updating a bag B consists in
performing J(P(B), P(B’)), where B’ is the neighbor of
B s.t. d(B') < d(B). Let T' be obtained from PDT(S)
by updating all bags by increasing value of d. Then T is
complete w.r.t. F;.

Proof: Similar to the proof of Prop. 4. The crucial point is
that if 7 maps an atom a of sbg to an atom b of F; \ F;_1,
and b shares a term e with B, then e € terms(B..), hence,
thanks to the running intersection property of a decomposi-
tion tree, e € terms(B’), thus (e, 7(e)) will be propagated
to P(B). O

It follows that the following steps performed at each
bag creation (where B, is introduced as a child of B,)
allow to maintain the soundness and completeness of the
patterned DT: (1) initialize P(B,) with its initial pattern;
(2) update P(B.) with J(P(B.),P(B,)) (3) propagate:
first, propagate from P(B,) to P(B,), i.e., update P(B,)
by J(P(B,),P(B.)); then, for each bag B updated from
a bag B’, update its children B; (for B; # B’) by
J(P(B;), P(B)) and its parent B; by J(P(B;), P(B)).

Bag Equivalence

In this section, we define an adequate relation of equivalence
on patterns, which will allow us to develop only one bag per
equivalence class. We begin with the immediate notion of
structural equivalence, then show that it has to be refined.

Definition 12 (Structural Equivalence) Ler B and B’ be
two bags in the same (partial) DT, or in two (partial) DTs
respectively created by applications (R, ;) and (R, 7;) of
the same rule R. B and B’ are structurally equivalent if :

o Vf, [€ i(R), mi(f) = mi(f') & m;(f) = m;(f')
o Va € Tp,Vf € fr(R), mi(f) =a < mi(f)=a

Example 1 (contd.) Consider the DT in Example 1, de-
picted in Fig. 1. Although both B, and By result from R,
they are not structurally equivalent because fr(Ri) = y,
hi(y) € To, and hi(y) # ha(y). Bs and By are struc-
turally equivalent.

Structural equivalence is not sufficient to ensure that the
“same” derivations can be carried out under equivalent bags,
as shown by the next example.

Example 1 (contd.) Let us add the rule Ro = r(z,y) A
r(y, z) Ap(x) = f(2). Rz is applicable to By (i.e., with its
Sfrontier mapped to terms(By)) but not to Bs.

When B and B’ are structurally equivalent, a natural bi-
jection can be built between B and B’, which maps each
initial term to itself, and each term introduced in B to the
respective term introduced in B’. We will use this natural
bijection to compare patterns and refine bag equivalence.

Definition 13 (Natural bijection) Ler B and B’ be two
structurally equivalent bags in a (partial) DT. The natural
bijection from terms(B) to terms(B’) (in short from B to
B’), denoted 1yp_, g, is defined as follows:

o ifr €Ty, Ypp(r) =2

e otherwise, let orig(z) = {u € vars(head(R))|m$*e (u)
x}. Since B and B’ are structurally equivalent, Yu, v
orig(x), 75 (u) = w5 (). We define Yp_p:(x)

W;afe(u).

Definition 14 (Pattern inclusion / equivalence) Ler B and
B’ be two bags in a (partial) DT with respective patterns
P(B) and P(B'’). We say that P(B) includes P(B’), de-
noted P(B") C P(B), if :

e B and B’ are structurally equivalent,

m

e P(B) contains all elements from P(B’), up to a vari-
able renaming given by the natural bijection: (G,n') €
P(B/) = (G, Yp/ B O 7'('/) S P(B)

We say that P(B) and P(B’) are equivalent, denoted

P(B) ~ P(B'), if P(B') C P(B) and P(B) C P(B').

By extension, two bags are said to be equivalent if their
patterns are equivalent. Given a derivation S, if two bags B
and B’ in DT(S) are equivalent, then the “same” derivations
can be made under them (i.e., with rule applications that map
the rule frontier to the subtree rooted in B, resp. B’).

Full Blocked Tree

We now define the notion of a full blocked tree, which
finitely represents all the R-derivations that can be per-
formed in the KB. Informally, for every derivation .S,
DT(S) can be generated from this tree by copying the root,
then repeatedly copying children of unblocked nodes, while
respecting structural equivalence.

Definition 15 (Blocked Tree) A blocked tree is a structure
(T, ~), where Ty is a prefix of a patterned derivation tree
and ~ is the equivalence relation on the bags of Ty, s.t. for
each ~-class, all but one bag are said to be blocked; this
bag is called the representative of its class and is the only
one that may have children.

With a blocked tree 7, is associated a possibly infinite set
of decomposition trees obtained by copying its bags. More
precisely, this set is composed of pairs (7, f), where T is
a decomposition tree obtained from 7, and f is a mapping
from the bags of 7 to the bags of 73 such that forany B € T,
B and f(DB) are structurally equivalent. We first define the
bag copy operation:

Definition 16 (Bag Copy) Let By and By be structurally
equivalent bags with natural bijection g, ,p,. Let Bj
be a child of By. Copying B} under By (according to
VB, - B,) consists in adding a child B, to B, s.t. terms(BY)
is obtained by the following bijection b, and atoms(B}) =
b(atoms(By)): for all x € terms(BY), if © € terms(B)
then b(x) = Vg, B, (), otherwise b(x) is a fresh variable.

Property 6 Let B}, be obtained by copying B} under Bs as
in the previous definition. Let (R,) be the label of the edge
(B1,B}). Then Bl can be obtained by applying R to Bs
w.r.t. B, B, o™ (up to fresh variable renaming). Moreover,
B and By are structurally equivalent and 1p; g, = b.

Definition 17 (Set of Trees generated by a Blocked Tree)
With a blocked tree Ty, is associated a set G(Ty) inductively
defined as follows:

o The pair (Ty[root], identity), where Ty[root] is the re-
striction of Ty, to its root, belongs to G(Th).

e Given a pair (T,f) € G(Ty), let B be a bag in T,
and B' = f(B); let B.. be the representative of B’
~-class (Bl. # B’ if B’ is blocked) and B!, be a child
of Bl.. If B has no child structurally equivalent to B,
let Trew be obtained from T by copying B. under B
(according to 1 p: —, g), which yields a new bag B.. Then
(Tnews £ U (Bl B,) belongs io G(Ty)

For each pair (T, f) € G(Ty), T is said to be generated by
Ty via f.

Note that a generated decomposition tree is not necessar-
ily a derivation tree, but it is a prefix of a derivation tree.

Definition 18 A full blocked tree T* (of F' and R) is a
blocked tree satisfying the two following properties:

o (Soundness) If T' is generated by T*, then there is T"
generated by T* and an R-derivation S from F such that
atoms(T") = atoms(S) (up to fresh variable renaming)
and T is a prefix subtree of T".

o (Completeness) For all R-derivations from F, DT (S) is
generated by T*.

Building a Full Blocked Tree

To build a full blocked tree, the algorithm starts from a sin-
gle bag corresponding to F'. Rules are applied on the bag
level, i.e., by considering only bag patterns. Patterns are
updated by means of join propagation. For each bag equiv-
alence class, all bags but one are blocked, which means that
no existential rule can be applied to these bags. However, in
order to obtain a full blocked tree, we cannot simply block
bags, as shown by the next example.

2(z1, 22)) 1;4 22122
f(22) @ f(2'2)

Figure 2: The yoyo example (Example 2) — Partial drawing:
a, b omitted in some bags, 7 not drawn on edges.

Example 2 (yoyo rules) Ler ' = {p(a),p(b),r(a,b)}.
Consider the following rules:
R1: ’I"(.’I,',y) —>’I“1($,Z) R4: (I) (
Ry r(w,y) = ri(y,2) Rs: ra(z,y) A f(y) = f(z)
Rs: ri(z,y) = 12(y,2) Re: mi(w,y) A fly) = f(z)
Figure 2 shows the DT that should be obtained. In
particular, the atoms f(a) and f(b) are produced. As-
sume now that patterned forward chaini