
HAL Id: lirmm-00679892
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00679892v1

Submitted on 16 Mar 2012 (v1), last revised 29 Mar 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Validation of a Deterministic MAC Protocol
Karen Godary-Dejean, David Andreu

To cite this version:
Karen Godary-Dejean, David Andreu. Formal Validation of a Deterministic MAC Protocol. ACM
Transactions on Embedded Computing Systems (TECS), 2012, to appear. �lirmm-00679892v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00679892v1
https://hal.archives-ouvertes.fr


Submitted to MVDES’10 Special Issue

Formal validation of a deterministic MAC protocol

KAREN GODARY-DEJEAN and DAVID ANDREU

LIRMM, University Montpellier 2

This article deals with the formal validation of a medium access protocol. This protocol has been
designed to meet the specific requirements of an implantable network-based neuroprosthese. This

article presents the modeling of STIMAP with Time Petri Nets (TPN), and the verification of

the deterministic medium access it provides, using timed model checking. Doing so, we show that
existent formal methods and tools are not perfectly suitable for the validation of real system, espe-

cially when some hardware parameters has to be considered. This article then presents how these

difficulties have been managed and gives the validation results for STIMAP, providing constraints
on the protocol parameters that must be respected to guaranty its determinism.

Categories and Subject Descriptors: C.2.2 [Computer-communication networks]: Network

Protocols—Protocol verification; C.2.5 [Computer-communication networks]: Local and
Wide-Area Networks—Access schemes, Buses; D.2.4 [Software engineering]: Software/Program

Verification—Validation

General Terms: Reliability, Verification

Additional Key Words and Phrases: Formal validation, MAC determinist protocol, Model check-

ing, Modeling, Timed Petri nets

1. INTRODUCTION

In order to improve the daily life living of para- and quadriplegic patients, Func-
tional Electrical Stimulation (FES) is a palliative solution. FES has been suc-
cessfully used to face functional deficiencies, in well-known applications such as:
pacemaker, deep brain stimulation, pain control or hearing restoration. Implanted
FES is also studied for movement rehabilitation such as foot droop for hemiplegic
patients or even more complex movements, as well as for restoration of bladder
function. Nevertheless, effective solutions for implanted FES are actually mainly
based on centralized architectures. Since it is not conceivable to address all pos-
sible functional deficiencies in only one surgical operation, the architecture must
be extensible. That means that once implanted the evolution of the neuropros-
these should be possible, i.e. it must be possible to add new sites of stimulation
and/or measurement of electrical activities on nerves and/or muscles. This is not
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2 · K. Godary-Dejean and D. Andreu

possible with existing implantable neuroprostheses. Moreover, centralized implants
lead to complex surgery, high risk of failure during and after surgery, and global
infection problems, which can be limited with a distributed architecture. So, we
designed and developed a new architecture for such implantable FES system based
on technological advances in networks and micro-electronics domains. This new
architecture relies on a network of small distributed units in charge of activating
and monitoring the peripheral nervous system [Andreu et al. 2009]. Thus, the net-
work constitutes the backbone of our neuroprosthese and it must be managed in a
reliable and deterministic way in such critical embedded system.

The medium access mechanism used in this architecture must be deeply stud-
ied since it plays a major role regarding the communication between artificial de-
vices that control natural organs. To fulfill the context specific requirements and
constraints, we designed a new MAC protocol, presented section 2. Taking early
into account validation preoccupations, the behavior of this MAC protocol, called
STIMAP (Sliding Time Interval based Medium Access Protocol), has been modeled
using Time Petri nets (TPN). Both TPN-based simulation and experimentations
contributed to the validation of STIMAP but they did not provide exhaustive guar-
antees of determinism.

Some particularities of STIMAP could not be validated without applying a vali-
dation methodology based on formal methods. As a consequence, we went further
in the validation process, applying a model checking based validation methodology,
briefly mentioned section 3. It allows verifying properties through an exhaustive
analysis of the whole states space (all possible states) of a formal model of the
system. Therefore, formal approach gives more confident validation results thanks
to the exhaustive verification of properties on the STIMAP protocol. We applied it
to the validation of the Time Petri net (TPN) based STIMAP model: that consti-
tutes the focus of this paper. Sections 4, 5 and 6 expose respectively the modeling
and the validation results of STIMAP. They show difficulties we encountered in the
identification of time parameters that guaranty the respect of communication time
constraints, and in the integration of such parameters in the validation process.
This article is concluded by our ongoing works on formal analysis methods and
tools.

2. THE STIMAP MAC PROTOCOL

In order to explain the expected characteristics of the MAC protocol to be formally
validated, we first briefly introduce our network-based FES architecture. Then the
STIMAP protocol which has been designed to manage the medium access within
this architecture is presented.

2.1 Communication in the FES architecture

The whole FES architecture relies on an implanted part and some external devices
like for instance the patient’s remote controller. The implanted architecture is con-
stituted by a global controller and several distributed stimulation units (DSU) and
measurement units (DMU) which are connected together via an intrabody asyn-
chronous communication network. The global controller is in charge of coordinating
the activities of distributed units. The link between the intrabody architecture and
extrabody device(s), for data and energy transmission, is ensured by means of an
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Formal validation of STIMAP, an embedded MAC protocol · 3

transcutaneous inductive link. In this architecture the global controller also ensures
the “gateway” between those two worlds.

Each implanted device embeds a 3-layer protocol stack corresponding to the
reduced OSI model:

—Physical layer: the network is based on an implantable bus we developed as there
is not yet available wireless technology for intra-body communication with deeply
implanted devices taking into account both data and energy transmission. Our
bus is based on a medical 2-wire cable (35N LT metal implantable 2-wire cable),
transmitting data and energy [Souquet et al. 2007]. Whatever is the medium,
the bus topology of the network is essential. Indeed, for the approach to remain
valid for both wired and wireless technologies (implanted and external devices),
we assume that the medium fundamentally corresponds to one shared domain of
not detectable collision.

—MAC layer: on the implanted network, two types of logical addresses are required,
allowing unicast, multicast and broadcast communications: individual addresses
(one for each DSU) and group addresses (for different groups of DSUs, and all
DSUs). These addressing modes are necessary since the controller can commu-
nicate for example with a single DSU to program it, or with a group of DSUs
to start a stimulation, or with all DSU to stop any stimulation. The notion of
group is significant in our context since at a given instant of time the movement
control only concerns a subset of muscles (simultaneous stimulation of agonistic
and antagonistic muscles for example) and thus a subset of DSUs (those asso-
ciated to these muscles). This implies that it is possible to dynamically impose
to a DSU to subscribe/unsubscribe to one or several groups. The possibility to
dynamically unsubscribe a DSU from a group is also important, particularly for
medium sharing efficiency purposes. Consequently, basic functionalities of the
MAC layer are to filter incoming packets, since at the physical layer we system-
atically broadcast frames, and to manage subcription/unsubscription to groups.
But the most important functionality is to ensure a reliable, deterministic and
efficient medium sharing. It must ensure that solely one node of the network uses
the medium at any instant of time, to avoid any collision. The risk of collision
must be avoided to be sure that no error notification neither any request can be
lost, even if for reliability purpose acknowledgements can be used. Two types
of acknowledgements are provided: frame reception (MAC layer) and request
execution (Application layer) acknowledgements.

—Application layer: payloads of the application protocol correspond to DSU con-
figuration, download/upload of micro-programs (stimulation profiles to be exe-
cuted on a DSU), remote control by means of start/stop requests and stimulation
parameter modifications (modulation of the stimulus magnitude, duration and
frequency), and also acknowledgements and errors notified by DSUs.

The context is thus characterized by:

—The topology is fixed: no mobility neither dynamic node insertion.

—The application needs two kinds of logical addresses: unicast and multicast
(broadcast being a particular multicast address). The set of nodes (group of
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4 · K. Godary-Dejean and D. Andreu

DSU for instance) that communicates at the different phases of the stimulation
is dynamically set. Moreover it must be possible to exclude or suspend members
of the communicating group, at any time.

—The application obviously requires a reliable and efficient communication medium.
For reactivity, and security purposes the global controller of the application (mas-
ter unit of the architecture) must have the possibility to quickly react, i.e. the
possibility to quickly emit its requests without waiting for a long time before
acceding to the medium.

—For reliability, as the used technology does not allow collision detection, the MAC
protocol must ensure that collisions can not occur.

—Finally, the context imposes the solution to be simple as it must be embedded
in small implantable electronic devices. Moreover this solution must be based on
independent communication devices, to facilitate the system evolutivity.

2.2 The STIMAP medium access

In the given context, contention-based solutions are not adequate. Schedule-based
solutions, considering that election and TDMA based methods belongs to this fam-
ily, are possible solutions as they favor collision-free and deterministic medium
access. However, TDMA solutions are often static and periodic ones, i.e. requir-
ing regular time synchronization and sometimes regular timing information send-
ing. This increases energy consumption and decreases efficiency in case of passives
nodes (nothing to emit). In our architecture, the topology is that of a centralized
controller and stimulation units distributed over a bus. The controller, being the
master, is the central point of the system, initiating all the communications with
the distributed units, i.e. the slaves. The method is simple, as one slave trans-
mits a frame only if the master has demanded or authorized it. The master/slave
approach is appropriated, nevertheless the limited efficiency due to the protocol
overhead must be improved, taking into account the multicast possibility. Indeed,
this model of cooperation is not really efficient when dealing with a group of slaves
as it requires to poll slaves, i.e. to individually communicate with each one. Time
sharing (TDMA) can be a good solution to avoid polling, if clock drift problem and
time-slots losses can be faced. However, a “static” TDMA is not adequate since
the controller needs to communicate with a subset of slaves only when stimulation
is performed, and moreover this subset of slaves can be dynamically defined.

So, the combination of time sharing and master/slave relation are the basis of
the STIMAP protocol we propose. In short, we defined a method, adequate to
our decentralized architecture, which is simple to implement, which allows TDMA
to be contextually used, providing dynamic time-slots assignement and limiting
time-slots losses.

STIMAP uses a method based on the master-slave model which has been modi-
fied for efficiency considerations. It obviously allows basic individual master-slave
and slave-master communications, but also offers a way to manage the communi-
cations with a group of slaves without polling all the members of the group. The
master manages the access of the slaves to the medium by means of a ”Speaking
Right”, similar to a token, it allocates to the members of the network. We distin-
guish Individual Speaking Right (ISR, individual token) and TDMA-based Group
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(a) First emitter BP = 0 (b) First emitter BP = 2

Fig. 1. GSR based communication scenarios

Speaking Right (GSR, group token). The ISR based mode is trivial: the DSU
which receives an ISR has the authorization to emit one packet (practically, there
is no payload requiring to send more than one packet). On the contrary, the GSR
based mode is more complex and will be explained in the following section.

2.3 Group medium access principles: the GSR based mode

In order to avoid polling of slaves, we define a TDMA-based group medium ac-
cess sharing. TDMA is only contextually used, i.e. only when the master has to
communicate with a group of slaves. This section outlines the principles of the
STIMAP medium access mechanism, assuming the existence of a global time. In-
deed, the TDMA sequence begins with the emission of a master frame on which
all the DSUs are synchronized. The influence of the clock drift is limited as the
TDMA sequence is not a long period. The GSR frame reception can be seen as a
logical synchronization; every slave time-slot is positioned relatively to this frame.

When dealing with a group of slaves (DSU), each group member (each DSU)
knows the size of the group and its position in that group as this position is defined
in term of priority: the lower is the position the higher is the priority. A DSU can be
member of different groups and can have different positions in these groups. When
the master allocates a GSR to a given group, it sends only one frame, which can be
compared to a beacon. This frame is physically broadcasted, but only dedicated to
the members of the indicated group. In this frame, it also indicates which member
must begin the communication. Indeed, it is not necessarily the member of highest
priority that begins to send its packet.

Example. Figure 1 represents two basic GSR communications for a group of 5
DSUs (group size GS = 5). In the first scenario of Figure 1(a), the DSUa with
priority 0 begins to emit after the reception of the GSR frame sent by the controller.
The others DSUs then emit one after the other on their turn, according to their
priority. In the second scenario of Figure 1(b), all the members of the group emit
one after the other but the first DSU to emit is the one with priority 2 (DSUc).
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2.4 Time-slot positioning mechanism

Knowing its position in the group, the group size and the member who must begin
the communication, each member determines when it will have the right to emit
its packet, i.e. the position of its time-slot. Each member can speak during the
time-slot duration, a given time interval D that has been automatically computed
by the master or explicitly specified in an initial phase. The positioning, in terms
of member’s position in the communication round, is given by the variable PosP ,
which corresponds to the position of the member of priority P:

PosP = P −BP + αP ×GS (1)

where:

—P is the priority number of the slave,

—BP is the priority number of the DSU which begins the communication,

—GS is the group size,

—and αp = 1 if P < BP else αp = 0.

And then, from a time point of view, the time-slot position of the DSU with priority
P is given by:

TimeSlotPositionP = RefT ime+ PosP ×D (2)

where:

—D is the time-slot duration,

—and RefT ime corresponds to the reference instant of time for every node. The
reference time mechanism is described section 2.6.

Example: scenario of Figure 1(a). This scenario could be used to illustrate
the time slot positioning mechanism. It represents a GSR communication of 5 DSUs
(GS = 5), beginning with the DSUa emission. DSUa’s priority is Pa = 0, then we
have BP = Pa = 0.

If we are interested in the calculation of the time slot position of DSUb (Pb = 1),
we have Pb > BP then αPb = 0. Then we can calculate the time slot position of
DSUb using equations 1 and 2:

PosPb = 1− 0 + 0× 5 = 1

TimeSlotPositionPb = RefT ime+ 1×D

In the same way, we can calculate the time slot position of DSUd (Pd = 3):

PosPd = 3− 0 + 0× 5 = 3

TimeSlotPositionPd = RefT ime+ 3×D

Then the DSUb must emits its frame one D interval after the RefT ime instant,
as we can shown in Figure 1(a). Similarly, DSUd must wait 3 D intervals before
emitting.
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Example: scenario of Figure 1(b). This scenario illustrates the time slot
positioning when the first emitter is not the one with the smallest priority. Indeed,
the communication in this case is begun by DSUc, then we have BP = Pc = 2.

As in the preceding example, we want to calculate the time slot position of DSUb
and DSUd, with priority Pb = 1 and Pd = 3. The calculation of their time slot
positions with equations 1 and 2 becomes:

αPb = 1 since Pb < BP

PosPb = 1− 2 + 1× 5

PosPb = 4

TimeSlotPositionPb = RefT ime+ 4×D

αPd = 0 since Pd > BP

PosPd = 3− 2 + 0× 5

PosPd = 1

TimeSlotPositionPd = RefT ime+D

Then the DSUb must wait 4 D interval after the reference time instant, whereas
DSUd emits its frame 1 D interval after RefT ime.

2.5 Sliding time interval mechanism

The time-slot attributed to a slave is in fact constituted by two half time-intervals:
the first half-interval is dedicated to the slave communication, and the second one
is reserved for a potential reaction of the master. For instance, if the slave notifies a
significant error the master could have to immediately react, to stop the stimulation
for example. So, to be sure that the master will have access to the medium without
any collision risk, this second half-interval is reserved. This contributes to the
reactivity of the distributed stimulation architecture and is very important in our
context.

However, if a slave has nothing to transmit, its half-interval is free and the half-
interval reserved for the master is then unused and wasted. To avoid that, i.e.
to reach better performances, the MAC method integrates a sliding time interval
mechanism. When waiting for its time-slot, every slave listens to the medium: if the
previous member of the group did not emit a packet then it brings backward its own
time-slot by a half time-interval. In other words, it recovers the half time-interval
that was reserved for the master but that will never be used.

In fact, the master can dynamically configure the sliding strategy. Three pos-
sibilities, named sliding rules, which must be exploited in a coherent way by the
master, are proposed:

—No sliding : the master wants to always be able to react. It inhibits the sliding
mechanism.

—Sliding in case of ”unused time interval”: it corresponds to the case previously
exposed. For example, this rule is selected when the master asks a DSU group
to notify their potential error detection. So, if a DSU does not have any error
to notify, it does not emit a frame and the next group member can recover the
second half time-interval because the extern master will not have to react. An
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(a) Unused time interval sliding rule (b) Used time interval sliding rule

Fig. 2. GSR communication with sliding

example is given on Figure 2(a) showing that DSUd begins to emit its frame
after 2.5 time-intervals (after the reference time) instead of 3 time-intervals in
the normal case (Figure 1(a)).

—Sliding in case of ”used time interval”: it corresponds to a situation in which
the master must not respond if the DSU emits a frame. For example, this rule is
selected when the master performs a test of presence on a DSU group. If a DSU
responds, the second half time-interval can be recovered since the master will
not has to react. An example is given on Figure 2(b) showing that DSUb and
DSUe begin to emit their frames after 1/2 time-interval instead of 1 time-interval
(Figure 1(a)).

With this sliding mechanism, the time-slot positioning becomes more complex.
It can be represented by the following equation:

TimeSlotPositionP = RefT ime+ PosP ×
D

2
+

PosP∑
k=1

δk ×
D

2
, ∀PosP > 0 (3)

where PosP is computed according to equation 1, and δk depends on the selected
sliding rule:

—in case of ”no sliding” rule, δk = 1 ∀i,
—in case of ”unused time interval” rule, δk = 1 if the previous member (ie. the

member at position i-1) sent a frame, else δk = 0,

—in case of ”used time interval” rule, δk = 0 if the previous member sent a frame,
else δk = 1.

This equation is of cause valid ∀PosP > 0, as for the first emitter (with PosP = 0)
there is no sliding possibility.

Example: scenario of Figure 2(a). We can illustrate the sliding mechanism
calculating the time slot position of the DSUb and DSUd. This scenario represents
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Formal validation of STIMAP, an embedded MAC protocol · 9

a GSR communication with the unused time interval sliding rule, when the DSUc
does not emit its frame.

Remember that in section 2.4 we have calculated PosPb = 1 and PosPd = 3,
which do not change regardless the sliding rule value if GS and BP are still the
same (GS = 5 and BP = 0). Then equation 3 gives:

TimeSlotPositionPb = RefT ime+ 1× D

2
+ δ1 ×

D

2

TimeSlotPositionPd = RefT ime+ 3× D

2
+ δ1 ×

D

2
+ δ2 ×

D

2
+ δ3 ×

D

2

With the ”unused time interval” rule we have in this scenario:

— δ1 = 1 because the DSUa at position 0 has emit a frame;

— δ2 = 1 because the DSUb at position 1 has emit a frame;

— δ3 = 0 because DSUc at position 2 does not emit.

Then:

TimeSlotPositionPb = RefT ime+D

TimeSlotPositionPd = RefT ime+ 5× D

2

As shown Figure 2(a), and confirmed by these calculations, the time slot position
value for DSUb does not change compared with the scenario of Figure 1. However,
DSUc does not emit its frame, thus the following DSUd has slided and its time slot
position is different than in the normal scenario: 2,5 D interval instead of 3.

Example: scenario of Figure 2(b). We finally illustrate the sliding mecha-
nism with the used time interval rule, calculating the DSUb and DSUd time slot
positions:

—we still have PosPb = 1 and PosPd = 3;

—with this new sliding rule, δ1 = δ2 = 0 because the preceding DSUa and DSUb
emit their frames, and δ3 = 1 because DSUc does not emit;

—then we have:

TimeSlotPositionPb = RefT ime+ PosPb ×
D

2
+ δ1 ×

D

2

= RefT ime+
D

2

TimeSlotPositionPd = RefT ime+ PosPd ×
D

2
+ δ1 ×

D

2
+ δ2 ×

D

2
+ δ3 ×

D

2

= RefT ime+ 4× D

2

DSUb slides and emits its frame 0,5 D interval after the reference time instant.
On the contrary, DSUd does not slide, it emits 2 D intervals after RefT ime.

2.6 Reference time positioning mechanism

The preceding mechanisms guaranty a deterministic access to the medium provided
that the DSUs are synchronized on the master frame. This is the case in an ideal
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world where we do not consider hardware effects of the physical architecture: all the
DSUs therefore receive the master frame at the same time and are synchronized.
However in our context, we can not consider the propagation time as negligible: if
implanted, a wireless network is indeed a small range one but with potentially im-
portant propagation time variations, due to absorption coefficient differences within
the body. Thus, we have implemented in STIMAP a synchronization mechanism:
the reference time mechanism, to synchronize the DSUs at the beginning of the
TDMA sequence.

2.6.1 Basic principles. The goal of the reference time mechanism is to provide
a common reference time for all the DSUs to begin the TDMA-based GSR commu-
nication. This communication begins with the emission of a master frame, similar
to a beacon, holding a GSR token. As soon as it receives this frame, each node
determines its reference time, imposing that it must start the TDMA sequence a
constant duration, chosen as a half-interval D

2 , after the GSR frame has been sent.
The idea of the reference time mechanism is based on subtracting the transmission
time from controller to slave, estimated to RTTDSUi

2 , to the previously mentioned
common constant. The difference between the instant of time at which the DSUs
receives the master frame will then be balanced by the subtraction of the different
propagation times.

Let RefT imeWaitDSUi be the duration the DSUi has to wait after the GSR re-
ception, RefT imeDSUi be the reference time instant for DSUi, and BeaconTTDSUi

the transmission time of the beacon frame between the controller and the DSUi.
The reference time mechanism is then defined by:

RefT imeWaitDSUi =
D

2
− RTTDSUi

2
(4)

RefT imeDSUi = BeaconTTDSUi +RefT imeWaitDSUi (5)

equation 5 et 5 XX PROBLEME
As the RefT imeWaitDSUi is a waiting duration, it of course can not has a nega-

tive value. The D parameter has to respect the following reference time constraint:

D ≥ maxRTTDSUi (6)

where maxRTTDSUi corresponds to the worst RTT of all slaves.

Example. Figure 3 shows how this mechanism works illustrating it with two
DSUs:

—DSU2 receives the master frame first, and begins to wait RefT imeWaitDSU2 =
D
2 −

RTTDSU2

2 ;

—then DSU1 receives the master frame, and waits D
2 −

RTTDSU1

2 .

Supposing that the transmission time of the beacon from controller to DSUi is equal
to RTTDSUi

2 , the reference time is then the same for both DSUs: RefT imeDSU1 =
RTTDSU1

2 + D
2 −

RTTDSU1

2 = D
2 = RTTDSU2

2 + D
2 −

RTTDSU2

2 = RefT imeDSU2.

This reference time mechanism theoretically guaranties a global reference time for
all DSUs even if the propagation times are not the same for all the network members.
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Fig. 3. Basic principle of the reference time mechanism

However this supposes that transmission times between the controller and slaves
are equal in both ways (controller to slave and slave to controller), which could be
an unrealistic hypothesis.

2.6.2 Transmission time estimation, for symmetric and asymmetric hardware
architecture. The problem of the reference time mechanism should be based on
the real transmission time of the GSR beacon from the controller to each slave.
Let us introduce its corresponding variable TR

DSUi. This variable (parameter of
the model) must be known to configure the protocol before the running phase.
In the previously given reference time definition, this parameter was estimated to
RTTDSUi

2 . Indeed, the RTT parameter can easily be measured on the architecture,
counting on the master side the time elapsed between the frame emission to the slave
and the reception of the associated answer. In STIMAP, the RTT measurement is
performed during the initialization phase, using a DPI mode: the duration of an
individual communication is measured for each DSUi and considered as its RTT
parameter value (RTTDSUi).

As previously noticed, the hypothesis TR
DSUi = RTTDSUi

2 implies a strong con-
straint on the hardware: it supposes that the network cards have the same perfor-
mances in reception than in emission. Supposing on the contrary that TR

DSUi 6=
RTTDSUi

2 , the reference time instant could differ depending on the DSUs and then
the theoretical equation becomes:

RefT imeDSUi = TR
DSUi +RefT imeWaitDSUi (7)

= TR
DSUi +

D

2
− RTTDSUi

2
(8)

Establishing that the RTT values can potentially be different for the all the DSUs,
we can consider two hardware architecture types: the symmetric and the asym-
metric ones. In a symmetric hardware architecture, the hardware couplers take
the same time to emit and to receive a frame. Then the RTT durations are not
necessarily the same for the different DSUs (RTTDSUi 6= RTTDSUj) but for each
DSUi the transmission time of a frame is the same whatever the direction of the
transmission: TR

DSUi = RTTDSUi

2 . In asymmetric architectures, TR
DSUi 6=

RTTDSUi

2
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and the reference time instants are not the same for each DSUi. Therefore the
asymmetric case has to be taken into account in the validation process since this
desynchronization impacts the protocol determinism.

However it is difficult to know the real duration of the one-way transmission of a
frame in an asynchronous network; this requires specific material and experimen-
tations, and it cannot be performed on our implanted network. Nevertheless, the
aim of this study is to take into account the asymmetric case in a formal validation
process to identify the limitations of the initial hypothesis.

3. VALIDATION METHODOLOGY

The validation of a system can be performed with different methods. Simulation
of a model of the system, as well as test of the system behavior on a prototype,
are well-known and effective methods. Simulation has the advantages to allow the
execution of big systems, whereas the design of a big system prototype is difficult in
a practical and an economical point of view. For communication protocols valida-
tion, the simulation tools (OPNET or NS2 [Garrido et al. 2008] for example) offer
the possibility to introduce dedicated problems to simulate the desired environment
behavior. The system can then be validate in this simulated environment. Simi-
larly, environment changes can be produced to validate the system prototype in a
specific context. Fault injection campaigns [Hsueh et al. 1997] are a very common
example of this method. Moreover, experimentation on prototype allows to test
the implementation process, whereas simulation validate only a system model. But
the simulation method, as well as the system test on prototype, are not exhaustive
ones. For a given simulation run, not all the possible system states are considered.
As the behavior is simulated in a random way, it is not possible to be sure that all
the possible behaviors has been explored, even in a numerous simulation campaign.
This problem is the same for the system test: the system is tested with a input
data scenario, which is not exhaustive. It is not feasible to test all the possible
input data values, as there is an infinite number of such scenarios. Furthermore,
some specific values can not be tested as they can result from faults impossible to
recreate.

Therefore, all the more in some critical contexts, more formal methods are re-
quired to complete the validation process. Formal methods are based on mathe-
matical concepts and provide more confidence on the validation results are they
are exhaustive ones. This exhaustive validation is done by model checking ([Sifakis
1992; Clarke and Emerson 1982; Berard et al. 2001]): verification of properties on
the state space of the system model, i.e. all the possible behaviors. Furthermore,
analysis of a model of the system allows detecting errors at an early step of the
design process, before the implementation step. Then this validation method is the
most appropriate one in our critical context, as this formal approach leads to a
more accurate validation of the system reliability.

The methodology we used is a classic one from now for formal validation of com-
municating systems ([A. David 2000], [Godary et al. 2007], [T. Stauner 1997]). This
methodology can be resumed in four main parts. The first step of the validation
process is the modeling of the system. It is then necessary to choose a formal
language which fits with the system to model and the properties to verify. The
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second step consists in abstracting the model to allow the analysis process. Indeed,
combinatory explosion is a well-known problem of exhaustive analysis methods.
The system model must then be reduced, keeping on only the relevant information.
The desired properties must also be modeled, since they can be too complex to be
expressed directly in temporal logic. Next, the properties can be verified, and, at
last, this validation results must be analyzed to conclude on the system reliability.

In our context, we used model checking on Petri Nets (PN) based system mod-
els. PN are a formalism allowing the expression of parallelism, synchronization,
resource sharing and concurrency in a simple and natural way. They are then well-
adapted for the modeling of distributed and communicating systems. At last, PN
are associated to a mathematical formalism from which structural and behavioral
analysis can be performed, including the model-checking analysis. Since we deal
with non-autonomous systems, i.e. systems that interact with their environment
via inputs (signals, sensors, etc.) and outputs (signals, actuators, etc.), we use
extensions of PN that permit the description not only of the evolution of the model
state but also when this occurs. Thus, we use the temporal extension introduced
by [Merlin 1974]: the Time Petri Nets (TPN). TPN allow modeling dense time as
intervals associated to transitions. In this article, the validation results have been
obtained with the TINA toolbox1 [Berthomieu et al. 2004]. The system is modeled
and simulated using TINA, which also builds the analysis state graph [Berthomieu
and Diaz 1991]. Finally, the selt model checker (a part of the TINA toolbox) is
used for properties verification.

Time Petri Nets (TPN)

Validating some specific properties, as collision absence, we can be sure that it
could never append in the system provided that the system implementation is faith-
ful to the system model. This problem is resolved in our context as the STIMAP
model has been implemented on a FPGA based prototype using an automatic
VHDL code generator named HILECOP [Andreu et al. 2008]. HILECOP allows
the automatic translation of Petri Nets into VHDL components. This guaranties
that the properties verified on the system model remain true on the implemented
system.

In the specific context of STIMAP, the validation process has two main goals.
First, it must of course verify the behavior of all the protocol mechanisms verifying
all the necessary properties, as for example the verification of collision absence.
But this validation process has a second purpose: improving the efficiency of the
protocol, without loosing the reliability. Indeed, one parameter (named D) is the
basis of the temporal behavior of STIMAP. FixingD as a too small value definitively
leads to communication problems, as collisions. But fixing a too large D value
implies an increase of the communication duration for each DSU and then badly
influences the protocol performances. Thus, this paper provides validation results
as constraints on the STIMAP parameters which must be respected to verify the
desired properties.

1www.laas.fr/tina
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GSRReception_DSU2
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Fig. 4. Basic DSU model: time slot positioning mechanism

4. STIMAP MODEL

The whole system comprises several DSUs communicating with one master. But the
combinatory explosion of the model checking method does not permit to analyze a
complex model. Since the goal of the validation process is to validate the STIMAP
mechanisms concepts, the analysis can be done on a limited number of DSUs. So,
the global model we consider in the following only represents three DSUs, the master
and the medium of communication. Moreover, models of all these components are
abstracted ones: parts of the models that support the mechanisms to be studied
have been kept in details whereas parts that do not have any influence have been
aggregated. It is for instance the case of the model of the application layer as it
does not impact the MAC behavior. We particularly focus on the GSR mode so we
represent the emission and the reception of the GSR frame, mentioning to all DSUs
if the sliding is activated (Sliding place), and in such case the selected sliding rule
(Sliding Rule place, see Figure 5).

4.1 DSU model: time slot positioning mechanism

First we only consider the model of the basic medium access strategy of STIMAP:
the time slot positioning mechanism in case of group communication (GSR mode)
without the sliding time interval mechanism. In this simplified version of the MAC
model, given Figure 4, we suppose that the GSR beacon is received at the same
time for all DSUs; that corresponds to the symmetric hardware architecture case.
In that case, the reference time positioning mechanism is not represented on the
model.

This model of the MAC behavior is the same for all the DSU, except for the
priority (each DSU having a different priority in the group). The priority mecha-
nism, which is the basis of the TDMA principle, is represented by means of places
priority DSUi and priorityComp DSUi. The first place is the priority of the DSU,
which practically represents the number of slots the DSU has to wait before emit-
ting. The second place is the complementary one: it represents the number of slots
already waited. The DSU which is represented has a priority 1 (the first priority
being equal to 0): it has to wait only one D interval before emitting.

The reception of the GSR frame is modeled by the generation of a token in
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Fig. 5. DSU time slot positioning model with the sliding mechanism

the place GSRReception DSUi. Then the medium access mechanism starts: the
transition t BeginAccMed DSUi is fired and the place SlotPositioning DSUi is
marked. In case of no sliding, the Sliding place is not marked and then transition
t NotMyTurn NoSliding DSUi could be fired (inhibitor edge). The fire of the tran-
sitions t NotMyTurn NoSliding DSUi or t MyTurn DSUi depends on the priority of
the DSU and on the number of already waited slots. If there is at least one token
in the priorityComp DSUi place, transition t NotMyTurn NoSliding DSUi is fired
and the DSU waits a D interval (here D = 500 time units). On the contrary, if the
DSU has already waited all the expected slots, the DSU can access to the medium:
transition t MyTurn DSUi is fired and the place t EmissionPermission DSUi is
marked, representing the permission to emit. The behavior of the frame emission
will be described section 4.3.

4.2 DSU model: sliding time interval mechanism

We now expose the model of the time slot positioning with the sliding mecha-
nism (Figure 5). In case of sliding (place Sliding marked), the DSU slot D is
shared into two half-intervals. If its not its turn to emit, the DSU has to wait:
transition NotMyTurn Sliding DSU2 is fired. After waiting the first half-interval
(transition t Wait HalfD DSUi), the DSU verifies (in the TestRecept DSUi place)
if it can slide or not, depending on the sliding rule and the reception (or not) of
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EndEmission_DSU1

Frame_DSUMaster

FRAMEReceived_DSU2

t_End_DSU1

[0,0]

p0

MEDIUM

Fig. 6. Model of the medium

the preceding DSU frame. The reception of a frame is modeled by a token in place
FRAMEReceived DSU2. In our context we suppose that it is not possible to detect
a frame which is being emitted before the end of its emission. Then the MAC
level considers there is no frame on the medium until a complete frame is received.
Supposing that the sliding rule is ”used time interval” (Sliding Rule is marked):

—if the DSU has received the preceding frame, it slides: t NoWaitG1 DSUi is fired
and the DSU returns in the SlotPositioning DSUi place.

—if not, t WaitG1 DSUi is fired and the DSU waits one more half-interval.

4.3 Medium model

The medium is modeled in a simple way, using only one place to represent its oc-
cupation. This representation is well-adapted to represent a shared medium where
all the frames are sent in broadcast (like on wired bus as non-switched Ethernet).
For wireless medium, it depends on the broadcast range: we suppose here that all
nodes are reachable. Modeling the medium in a global way is a convenient over-
approximation: if there is no collision detected on the global medium model, we
can be sure that collision will not actually occur.

Figure 6 shows the medium model and its relation with DSU1: when DSU1
emits on the medium (transition t Emission DSU1), the place MEDIUM becomes
marked representing that the medium is occupied. At the end of the frame emission
(transition t End DSU1), this token is consumed and a token is generated at the
MAC level of the receivers (the DSU2 and the Master for instance), representing
the complete reception of a frame. This model supposes that all the DSUs (and the
master) receive the emitted frame at the same time. This is an over-approximation
of the reality, since all nodes do not necessarily receive the frame simultaneously
(in the model they are all as slow as the slowest).

4.4 DSU model: Reference time positioning mechanism

In the symmetric architecture case, the reference time is supposed to provide a
global synchronization time to all DSUs (see section 2.6). To model that, we
just have to integrate a waiting duration after the beacon reception (GSR master
frame). On the model the transition t BeginMedAcc DSUi becomes the transition
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t RefTime DSUi to which is associated a fixed time interval equal to D
2 .

In the asymmetric architecture case, the reference time mechanism has to be
entirely modeled, and it is quite difficult to do so using Petri nets. Indeed, the
reference time is not the same for all DSUs, as it depends on the value of the
TE
DSUi and TR

DSUi parameters. The basic idea to model the reference time is to
separately integrate TR

DSUi and TEDSUi durations: the first one is taken into ac-
count in the RefT imeWaitDSUi duration whereas the latter is taken into account
in the FrameDurationDSUi duration. Of course the RefT imeWaitDSUi calcula-
tion must be done in an off-line step, since in the Tina tool the fired interval of
transitions can only be integer values (calculation are not possible). But this solu-
tion provides a model for fixed values of TE

DSUi and TR
DSUi. Since we want to study

all the possible cases of the asymmetry, these values must not be constant ones:
we want to represent them as random values taken in a given interval. Represent-
ing TR

DSUi as a random value in a given interval, it is so impossible to separately
represent the TR

DSUi and RefT imeWaitDSUi parameters. Indeed, the calculation
of the RefT imeWaitDSUi value depends on the exact value of TR

DSUi and should
then be dynamically determined taking into account the exact firing date of the
transition to which TR

DSUi has been associated. But the dynamic calculation of
a transition fired interval is impossible. We resolve this problem representing the
reference time instant itself as a random duration in a time interval defined by
[minRefT ime,maxRefT ime] and associated to transition t RefTime DSUi. This
interval is calculated off-line and represents all the possible reference time values
for the given TR

DSUi possible values. However this solution does not resolve the
second mentioned problem: the TE

DSUi value is also dependent on the exacte value
of TR

DSUi (since TE
DSUi + TR

DSUi = RTTDSUi). This problem will be discussed in
section 6.

5. STIMAP FORMAL VALIDATION FOR A SYMMETRIC ARCHITECTURE

This section concerns the STIMAP validation process in a symmetric architecture
case: the transmission duration of a frame (included the emission and reception
time) is the same between the controller and the DSU than between the DSU
and the controller. It then can be estimated with the RTT measurement (see
section 2.6.2). The reference time mechanism then provides a global reference time
which is the same for all DSUs and permits the DSUs to be synchronized .

The validation process concerns of course different properties, like the time-slot
positioning and the respect of the emission order of the GSR mode. This article
focuses on the ”no collision” property. This property is verified if there is no more
than one token in the place MEDIUM of the medium model (figure 6). The result
of this verification is dependent on the relation between the D parameter and the
FrameDuration DSUi and AnswerDuration DSUi ones. FrameDuration DSUi is the
duration of the DSUi frame, whereas AnswerDuration DSUi is the duration of the
master answer frame (when it reacts and so answers in the dedicated DSUi slot),
including frame treatment duration at the master application level. The validation
has been done for each possible scenario: no sliding, sliding in case of used or unused
interval, with or without DSU frame emission. This work is the continuation of
the one presented in [Godary et al. 2007], which presents the validation results of a
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Table I. STIMAP constraints in a symmetric architecture case

Sliding rule No-collision Constraints

No sliding D > FrameDurationDSUi ∀i

Sliding : unused

{
D
2

> FrameDurationDSUi ∀i
D > FrameDurationDSUi + AnswerDurationDSUi ∀i

Sliding : used

{
D
2

> FrameDurationDSUi ∀i
D
2

> AnswerDurationDSUi ∀iScénario avec collision, avec sliding mais RefTime=0 
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Fig. 7. Collision examples with sliding in case of unused interval

very simple model: the time slot positioning without sliding, assuming a symmetric
architecture. This first work permitted to verify basic concepts of the TDMA-based
GSR communication. We want now to study and validate the full mechanism of
STIMAP.

Setting the D parameter value, we find using dichotomy the maximal values for
the parameters FrameDuration DSUi and AnswerDuration DSUi for which no col-
lision can occur. We thus extract some basic constraints that the parametering of
STIMAP has to respect to ensure a collision-free medium access in a symmetric
hardware architecture case. These constraints confirm the theoretical behavior of
STIMAP. They are resumed in Table I and explained in the following.

No sliding. In this case, the only condition is that the DSU must have finished
to emit at the end of the D interval: FrameDurationDSUi must be shorter than
D, for all DSUs.

Sliding in case of unused time interval. In this case, the master can answer to
the DSU frame, then a DSU must not slide if there is a DSU emission in its preceding
slot. For this sliding rule, two constraints have to be respected. First, as illustrated
at the left of Figure 7, if the duration of the DSU1 frame is longer than D

2 , the next
node (DSU2) and the master do not received this frame before the end of the first
half-interval. Then they suppose that no frame has been emitted: the master does
not answer and DSU2 slides and begins to emit its frame, provoking a collision with
that of DSU1. The second condition concerns the master answer: if a DSU emits
a frame and the master answers to it (see the right of Figure 7), the next DSU
does not slide and waits the end of the D interval. So, the master frame must be
finished before the end of the D interval. Then the sum of the DSU frame duration
and the answer duration must be lower than the D parameter. If the first DSU
does not emit its frame, the master do not answer, the next DSU slides, there is no
additional condition.

Sliding in case of used time interval. In this case, the master answers if there is
a passive DSU. In this sliding rule, two constraints must be respected: first if the
DSU1 emits a too long frame (greater than D

2 ), the master supposes there is no
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frame and begins to answer, provoking a collision with the DSU1 frame. Second, if
the DSU1 does not emit its frame, the master answers in the second half interval:
this frame must be finished before the DSU2 begins to emit in its time-slot, then
the answer duration must be lower than D

2 .

Concluding on these validation results, we can say that the behavior of the
medium access protocol STIMAP is valid (i.e. it verifies all the desired proper-
ties) provided that the D parameter respects the conditions resumed table I. How-
ever this validation has been done assuming the hypothesis that all the DSUs have
the same global reference time (symmetric architecture case). Thus the previous
validation results are dependent on the reference time values of each DSU. So we
have to study this mechanism and extend the validation process to the asymmetric
architecture case. This validation is presented in the next section.

6. STIMAP FORMAL VALIDATION FOR AN ASYMMETRIC ARCHITECTURE

An experimental series of measurements with a platform based on Ethernet and RF
technology [Andreu et al. 2008], shows that some hardware architectures can imply
important variations between the different RTT durations, but most of all these
experimental measurements prove that it is possible to have significant differences
between the transmission duration from the master to a DSU (named TR

DSUi) and
the one from this DSU to the master (named TE

DSUi). This means that the system
is not a perfect one and that the hypothesis on the synchronization of the DSUs
must be reconsidered: a system is neither a perfect nor a symmetric one.

We have seen that the reference time mechanism in a symmetric hardware pro-
vides a global reference time on which all the DSUs are synchronized. An asymmet-
ric hardware architecture, on the contrary, provokes a gap between the reference
times of the different DSUs: they are not synchronized anymore. We then have
to study the effect of the asymmetric hardware on the medium access mechanism,
principally the implied collision risks.

6.1 Values of the model parameters

On the STIMAP model, we fix the STIMAP model parameters, respecting the
basic constraints of the protocol verified in the preceding section, and adding the
asymmetric hypothesis.

We have to use the two parameters TR
DSUi and TE

DSUi in the STIMAP model
to represent an asymmetric system. But as said section 4.4, we can not represent
dynamic calculations on the fired interval of the transitions.

For the reference time parameter, we can represent it as a random duration in
a [RefT imeMIN , RefT imeMAX ] interval for all DSUs. We then have to calculate
these two bounds, depending on the asymmetric hypotheses. Indeed, experimental
results shows that the asymmetric is always in the same way for a given technology.
For example, Ethernet hardware couplers are always faster to emits than to receive,
whereas the situation is inverse for a RF technology. The validation process of
STIMAP for an asymmetric hardware architecture is then decomposed in two steps:
on the fast emission hypothesis, i.e. when the DSU is faster in emission than in
reception (TE

DSUi < TR
DSUi ∀i), and with the opposite slow emission hypothesis.

But we also have to consider the relationship between the three parameters
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TE
DSUi, T

R
DSUi and RTTDSUi. We want to explore all the possibilities of the param-

eters values. First, the worst asymmetric solution is when TE
DSUi and TR

DSUi are
the most different, for example, considering the TE < TR hypothesis, if TE = 0
and TR = RTT . We can then supposed that TE

DSUi ∈ [0, RTTDSUi

2 ] and TR
DSUi ∈

[RTTDSUi

2 , RTTDSUi]. However, we also have to respect that TE + TR = RTT .
Then in the preceding given intervals, the TE and TR values are not independent
one from the other. This constraint can not be express on the model and have to
be verified analyzing the verification results.

Then we have to fix the D parameter value. We want to fix it as the best value,
which is the most inferior one to increase the protocol efficiency, but respecting all
the protocol constraints: the ones of table I, and also the reference time constraint
of equation (6): D ≥ RTTDSUi ∀i. The D value will depend on the direction of
the asymmetry, as we will see in the two next sections.

We also suppose that FrameDurationDSUi = TE
DSUi. In fact, this first parame-

ter represents the medium occupation duration when DSUi emits a frame, whereas
TE
DSUi also includes the reception duration of the master. Therefore the medium

occupation duration is an over-approximation of the reality. Supposing that, our
validation results will be good even if the reception duration of the master is null.

6.1.1 Parameters values for a fast emission architecture: TE
DSUi < TR

DSUi. The
hypothesis that TE

DSUi < TR
DSUi can be traduced in two intervals for those param-

eters values:

TE
DSUi ∈ [0,

RTTDSUi

2
] and TR

DSUi ∈ [
RTTDSUi

2
, RTTDSUi]. (9)

In this hypothesis, as FrameDurationDSUi = TE
DSUi and TE

DSUi ∈ [0, RTTDSUi

2 ],
then we can fix D = maxRTTDSUi.

Then, knowing D and considering the reference time theoretical equation 2.6.2
we have:

RefT imeDSUi = TR
DSUi +

D

2
− RTTDSUi

2

= TR
DSUi +

D

2
− TE

DSUi + TR
DSUi

2

We can then explain the RefTime DSUi parameter as:

RefT imeDSUi =
D

2
+
TR
DSUi − TE

DSUi

2
(10)

Based on these conclusions, we can calculate the maximal and minimal values of
the RefTime DSUi parameter.
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Table II. Parameters values for asymmetric architectures

TE
DSUi < TR

DSUi TE
DSUi > TR

DSUi

D = maxRTTDSUi D = 2×maxTE
DSUi = 2×maxRTTDSUi

FrameDurationDSUi = TE
DSUi FrameDurationDSUi = TE

DSUi

TE
DSUi ∈ [0, RTTDSUi

2
] TE

DSUi ∈ [RTTDSUi
2

, RTTDSUi]

TR
DSUi ∈ [RTTDSUi

2
, RTTDSUi] TR

DSUi ∈ [0, RTTDSUi
2

]

RefT ime ∈ [maxRTTDSUi
2

,maxRTTDSUi] RefT ime ∈ [maxRTTDSUi
2

,maxRTTDSUi]

minRefT imeDSUi =
D

2
+ min (

TR
DSUi − TE

DSUi

2
)

=
D

2
+

minTR
DSUi −maxTE

DSUi

2

=
D

2
+

RTTDSUi

2 − RTTDSUi

2

2

minRefT imeDSUi =
D

2
=

maxRTTDSUi

2

maxRefT imeDSUi =
D

2
+ max (

TR
DSUi − TE

DSUi

2
)

=
D

2
+

maxTR
DSUi −minTE

DSUi

2

=
D

2
+

maxRTTDSUi − 0

2
maxRefT imeDSUi = maxRTTDSUi

All these parameters values are resumed table II.

6.1.2 Parameters values for a slow emission architecture: TE
DSUi > TR

DSUi. In
this hypothesis, TE

DSUi is always bigger than TR
DSUi. We can traduce it with:

TE
DSUi ∈ [

RTTDSUi

2
, RTTDSUi] and TR

DSUi ∈ [0,
RTTDSUi

2
]. (11)

In that case, the most restrictive constraint for the D value is: D > 2 ×
FrameDurationDSUi. Then we fix D = 2 × maxRTTDSUi, and the reference
time interval becomes: RefT imeDSUi ∈ [maxRTTDSUi

2 ,maxRTTDSUi].

6.2 Analysis of one collision situation

6.2.1 Collision scenario. Verifying the STIMAP model for asymmetric archi-
tecture, with the fixed parameters of table II, we detect that collisions are possible.
In this section we will precisely analyze a situation which lead to a collision, with
sliding in case of unused interval. The execution of this scenario is shown Figure 8,
and its detailed behavior is:

—t = 300µs: the DSU2’s reference time is 300µs; as DSU2 is not the first DSU of
the GSR sequence, it waits a half time-interval D

2 before emitting.
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COLLISION : Asymmetric architecture, with sliding in case of unused interval 
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Master frame 
emission 

Fig. 8. Collision example in an asymmetric architecture case, with ”used time interval” sliding

rule

—t = 450µs: the DSU1’s reference time is 450µs; as DSU1 is the first DSU to emit,
it begins to emit its frame.

—t = 550µs: DSU2 has waiting its first D
2 interval, it has to decided if it must

slid or not; if the frame of DSU1 is longer than = 100µs, this frame emission
is not finished and DSU2 considers that it has not received a frame. With the
”unused time interval” sliding rule, DSU2 then slides and begins to emit its frame,
provoking a COLLISION.

This scenario seems realistic, but we have to study the specific values of TE
DSui

and TR
DSui parameters to verify if they respect their constraint. First, if 450 =

RefT imeDSU1 = D
2 +

TR
DSU1−TE

DSU1

2 = 250 +
TR
DSU1−TE

DSU1

2 then we have:

TR
DSU1 − TE

DSU1 = 400

In the same time, we must have:

TR
DSU1 + TE

DSU1 ≤ maxRTTDSU1 = 500

So if the reference time value if DSU1 is 450µs, we must have a TE
DSU1 value inferior

to 50µs. But the collision occurs only if TE
DSU1 > 100µs.

Then this collision situation is not a real one, it corresponds to one
of the over-estimated states of the system.

6.2.2 Generalization. Figure 8 shows that to generate a collision with the
sliding mechanism in case of unused interval, the hardware values must respect the
following equations:

RefT imeDSU1 + FrameDurationDSU1 > RefT imeDSU2 +
D

2

RefT imeDSU1 + TE
DSU1 > RefT imeDSU2 +

D

2
D

2
+
TR
DSU1 − TE

DSU1

2
+ TE

DSU1 >
D

2
+
TR
DSU2 − TE

DSU2

2
+
D

2
TR
DSU1 + TE

DSU1

2
>

TR
DSU2 − TE

DSU2

2
+
D

2

In summary a collision can occur if the hardware parameters respect:

(TR
DSU1 + TE

DSU1)− (TR
DSU2 − TE

DSU2) > D (12)
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Calculating the maximal value of the left term with our hypothesis, we have:
max ((TR

DSU1 + TE
DSU1)− (TR

DSU1 − TE
DSU1)) = max (TR

DSU1 + TE
DSU1) −

min (TR
DSU1 − TE

DSU1) = max(RTTDSU1)− 0.

Then, as in the fast emission hypothesis D = maxRTTDSUi, the left term could
never be superior to D, and then a collision could never occurred for an
asymmetric architecture with sliding in case of unused interval.

6.3 Other validation results and STIMAP constraints summary

The preceding section analyses the results of the no-collision verification with sliding
in case of unused interval, with the fast emission hypothesis. This analysis shows
that in fact, the collision situations detected with the model checking validation
correspond to some unrealistic states of the system, provided that the D parameter
respects D > maxRTTDSUi. Similar analyses of all the no-collision verification
results (for each sliding rules, for both fast and slow emission hypotheses) shows
that collisions are never possible, but for the slow emission hardware architecture
the maximal D value must be D > 2×maxRTTDSUi.

Table I finally reminds all the constraints for the STIMAP parameters, for both
symmetric and asymmetric hardware. But all these constraints can be resumed in
the following one, which includes all the others:

D > 2×maxRTTDSUi (13)

7. CONCLUSION

This article deals with the validation of STIMAP, a deterministic medium access
protocol. This protocol has been designed to meet the specific requirements of a
FES application. Thus the protocol must fit with real-time and reliability con-
straints, as well as embedded ones. It must be reactive, determinist, reliable, with
a simple and light implementation. Thus, STIMAP is based on a TDMA group
communication with a sliding mechanism to improve the efficiency of the classic
TDMA approach. This approach is mixed with a master/slave approach to initi-
ate a TDMA communication for one group of nodes. In such a critical context,
we propose to complete classical validation methods as simulation and prototype
experimentation with a formal validation process, which provides more confident
validation results.

This article presents the Time Petri Nets (TPN) STIMAP model and its valida-
tion, focusing on the no-collision property verification. The STIMAP validation is
proved with an analysis of model checking results. The TPN formalism has been
chosen to guarantee the implementation process: the validated model (in fact, an
abstracted one) is directly implemented, automatically generating VHDL code for
a FPGA target with the HILECOP tool. Moreover, the TPN formalism fits well
with our modeling needs. However, the timed model checking for TPN is not as
developed as we need. First, the verification process often implies the research of
an a priori unknown duration value. It is then necessary to make several verifica-
tion runs to find the suitable value. But the parameterized model checking is not
yet mature, especially for the TPN formalism, so it can not be used. Second, the
STIMAP validation is confronted to an even more complex modeling and verifica-
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tion problem: the fired interval of one transition is a calculation which depends of
the fired date of another transition. This fired date is dependant on the hardware
used architecture, and the formal validation have to study all the possible cases to
guarantee the protocol behavior. But this dynamical construction of the state space
graph of a model is not resolved for now. This paper then presents a validation
of an over-approximation of the real possible states of the system, then a precise
analysis of the results to conclude for the real states. So, the whole validation pro-
cess allows extracting constraints which must be verified to guarantee the STIMAP
behavior. We conclude saying that, provided that these constraints are respected,
the STIMAP protocol has a correct behavior for whatever hardware architectures.

This study also shows that the model checking is not still fully well adapted to
the modeling and the validation of real systems. For example, the STIMAP valida-
tion has been done without changing the basic mechanisms of the protocol, as the
synchronization one. Parameterized model checking, as well as (dynamic) calcula-
tion of transitions fired intervals, could help to find the most suitable constraint for
the reference time value. Therefore, an interesting continuation of this work should
be the study and the improvement of the interface between the theoretical formal
methods, and their associated tools, with the actual needs of the systems validation.
Especially in specific contexts as embedded ones, where real-time constraints and
hardware parameters have to be considered during the validation process. This
work has already begun with the development of a validation tool: LPT (Little
Parametric Tool) [Godary 2008], which allows the parameterized verification of the
maximal execution time between two transitions using automatic dichotomy. This
work should be deepened to provide a useful and suitable formal validation tool. In
the same idea, we work on the interfacing between the HILECOP tool and this new
validation tool, in order to closely link the system design process and the formal
validation one.
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